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Abstract 

Iterative gradient descent algorithms to solve algebraic linear equations are well known in 

the literature. These algorithms can be interpreted as dynamical closed loop control systems, 

where the step sizes are the control variables that can be optimally calculated by the 

Liapunov Control Functions (CLF) and Liapunov Optimizing Control (LOC) methods. In this 

paper matrix versions of gradient descent algorithms are deduced, including an unpublished 

matrix form of the Barzilai-Borwein algorithm. The step sizes (control variables) are also 

calculated by CLF/LOC. The main utility of these matrix algorithms is in image deblurring in 

the cases where the matrix that represents the blurring process is too large to be stored in the 

memory of the majority of conventional computational systems.  

 
Keywords: Control Liapunov Functions; Liapunov Optimizing Control; iterative 

algorithms; image deblurring 

 

1. Introduction 

There exist many applications in which images are used to analyze experiments, record 

events, among other utilities. Images recorded by a camera are rarely perfect due to envi-

ronmental effects and/or technological problems, and in some cases maybe substantially 

distorted by blurring and noise. Image restoration refers to the process of recovering a clearer 

image from a degraded one.  

A digital image is composed of picture elements called pixels. Each pixel represents an 

intensity on a gray scale or a color scale of a small rectangular segment of the scene. Thus, 

rectangular images can be mathematically represented by a matrix of dimensions m×n, where 

m is the number of pixels in the columns and n is the number of pixels in the rows of the 

image (about different formats to represent color images, see [11, chap. 1]).  
Blur in digital images refers to the fact in that the recorded intensity of a pixel is related to 

the intensity in a larger neighborhood of the corresponding section of the scene. Blurring can 

arise from many sources, such as limitations of the optical system, camera and object motion, 

astigmatism and environment effects [18]. The blurring process can be mathematically 

represented as follows. We denote the real image as X
∗ 

∈ R
m×n

, and B ∈ R
m×n 

is the recorded 

blurred image. The function which describes how every pixel of the matrix X* is blurred into 

the matrix B is called the Point Spread Function (PSF). The Point Spread Function can be 
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represented as a matrix P called PSF array. Knowledge of the physical process that causes the 

blur provides an explicit formulation of the PSF. For example, the PSF array for blurring 

caused by atmospheric turbulence can be represented as a two-dimensional Gaussian 

function, whose elements at the coordinates (i,j) are given by:  

[𝑝𝑖𝑗] = 𝑒𝑥𝑝 (−
1

2
[
𝑖 − 𝑘
𝑗 − ℓ

]
𝑇

[
𝜎1

2 𝜌2

𝜌2 𝜎2
2]

−1

[
𝑖 − 𝑘
𝑗 − ℓ

])           (1) 

where p, σ1 and σ2 are parameters that determine the dimension and orientation of the PSF 

centered at the coordinates (k,ℓ). The PSF array of an astronomical telescope is often modeled 

by the so-called Moffat function, and the elements of this PSF array at the coordinates (i,j) are 

given by:  

[𝑝𝑖𝑗] = (1 + [
𝑖 − 𝑘
𝑗 − ℓ

]
𝑇

[
𝜎1

2 𝜌2

𝜌2 𝜎2
2]

−1

[
𝑖 − 𝑘
𝑗 − ℓ

])

−𝛽

      (2) 

where β is a positive scalar parameter (for details of these PSF arrays, see [11, p. 25]).  

The blurring process can be mathematically represented by a two-dimensional discrete 

convolution operation between the real image and the PSF array; this convolution is 

performed with suitable boundary conditions. Roughly speaking, boundary conditions are 

determined by the assumptions we make on the behavior of the scene outside the boundary of 

a given image. Thus, the blurred image B = P ∗ X*. The discrete convolution is essentially a 

linear operation, so the blurring process can be also represented as a system of equations 

 Ax*=b                         (3) 

where x = vec(X*) is the column-wise stacked image X*, i.e. the vector vec(X*)=[x1*
T
x2*

T
 

··· xn*
T
] and xi*, i ∈{1,...,n}, is the i

th 

column vector of the matrix X*, b = vec(B) is the 

column-wise stacked image B, and the matrix A ∈ R
nm×nm 

is a blurring matrix that depends on 

the PSF array P and on the boundary conditions. The matrix A is, in general, unsymmetric 

and presents a specific structure involving Toeplitz, circular, and Hankel matrices [11, chap. 

4] [16-18]. 

The goal of a deblurring process is to recover an image X ∈ R
m×n 

as faithful as possible to 

the real image X*, from the recorded blurred image B. The blurring matrix A usually has large 

dimensions. For example, for an image of 512 by 512 pixels, A ∈ R
262144 x 262144

. These 

dimensions make the solution of (3) via Gaussian elimination or explicit inversion of the 

matrix A very expensive in computational terms. The alternative is to use iterative algorithms 

that start at an arbitrary initial guess x0 and calculate, at the k
th 

iteration, a point xk, until for 

large enough k a point arbitrarily close to the solution point x* is reached. The iterative 

algorithms steepest descent (SD), orthomin (OM), Barzilai-Borwein (BB) and conjugate 

gradient (CG) are well known in the literature and they can be interpreted as dynamical 

closed loop control systems [3]. However, as the dimensions of A are usually too large to 

store it in the memory of the majority of the conventional computational systems, the 

algorithms just mentioned cannot be applied to solve (3).  

We present here matrix versions of these iterative algorithms that do not require the 

explicit formulation of the matrix A, thus avoiding its storage in memory. Thus, these matrix 

algorithms are suitable to deblur images using conventional computers or embedded systems. 

A matrix version of the CG algorithm was first presented, without deduction, in [13]. We 
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deduce the equations of the CG algorithm as well as extend this deduction to matrix forms of 

the other iterative algorithms mentioned. In addition, computational experiments show that 

the matrix version of the BB algorithm may converge faster and execute less floating point 

operations than the matrix version of the CG algorithm.  

 

2. Gradient Descent Algorithms Interpreted as Dynamical Closed Loop 

Control Systems  

Many problems of science and engineering can be expressed as linear algebraic equations 

(LAE).This system of equations can be expressed as Ax = b, where A ∈ R
n×n 

is symmetric 

positive definite, x ∈ R
n 

is the vector of unknowns, b ∈ R
n 

is the vector of known data. As A 

usually has a large dimension, one approach to solve LAE is to minimize instead the scalar 

convex quadratic function [15]  

φ(x)= ½ x
T

 Ax − b
T 

x               (4) 

since its unique optimal point is given by x = A
−1

b. Several algorithms are based on the 

standard idea of generating a sequence of points, starting from an arbitrary initial guess x0 ∈ 

R
n

, and proceeding in the descent direction (negative gradient of φ(x)), with an adequate 

choice of the step size. In mathematical terms:  

xk+1 = xk − αk rk , k =0, 1, 2 ···                (5)  

where rk := ∇φ(xk) = Axk − b is called the residue and αk ∈ R is the step size.  

Algorithm (5) can be interpreted as a dynamical closed loop control system (see details in 

[4] and [3]), where the step size is the control variable.  

The update vector of the state variable xk can be chosen by the Control Liapunov Function 

(CLF) method and optimized by the Liapunov Optimizing Control (LOC) method. Roughly 

speaking, the CLF method is as follows: given a positive definite scalar Liapunov function 

candidate V(x): R
n 

→ R+, choose any update vector of the state variable x that makes the time 

derivative of the Liapunov function negative definite, thus ensuring the asymptotic 

convergence of the trajectories to the solution point x* by the Liapunov direct method. The 

LOC method is to choose the update vector that minimize V(x), thus ensuring the fastest 

convergence of the trajectories to the solution point (see a complete description of the 

methods in [3]). In the context of gradient descent iterative algorithms (5), the CLF/LOC 

method is essentially this: given a scalar discrete Liapunov function candidate V(xk), choose 

the step size that minimizes the decrement of the Liapunov function between two consecutive 

iterations.  

If (4) is chosen as Liapunov function candidate, the choice of step size by the CLF/LOC 

method yields the well-known steepest descent (SD) algorithm, presented in [6]. The related 

algorithm orthomin (OM) [1] minimizes the decrement of ||rk||
2 

between two consecutive 

iterations. Both algorithms are characterized by slow convergence to the solution x* when the 

condition number of A is large [7]. Barzilai and Borwein [2] presented a gradient descent 

algorithm that uses the step size of the SD delayed by one iteration. This simple modification 

speeds up the convergence of the algorithm surprisingly, and its remarkable improvement 

over the SD and OM algorithms has been much studied. However, a complete explanation of 

why this simple modification of the SD algorithm improves its performance considerably has 
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not yet been found. Table 1 shows the step sizes used by these algorithms. Other step sizes for 

(5), also designed using control-theoretic ideas, are presented in [5].  

 
Table 1. Step Sizes of the Methods: Steepest Descent (SD), Orthomin (OM), 

Barzilai–Borwein (BB) 

 
 

The conjugate gradient algorithm (CG) developed by Hestenes and Stiefel [12] is the most 

popular conjugate direction method. At each iteration the algorithm minimizes the scalar 

function (4) along conjugate directions also searched at each iteration; as conjugate directions 

are linearly independent, the convergence of the sequence of points xk to the solution point x* 

is produced after at most n iterations in exact arithmetic (see [8] for a proof). In the CG 

algorithm, the residual vector rk = Axk − b and a direction vector dk must be calculated at each 

iteration. The CG algorithm can be described as follows. Starting at any x0 ∈ R
n

, and 

choosing d0 = r0 = Ax0 − b, at the k
th 

iteration calculate 

xk+1 = xk − αkdk  

rk+1 = rk − αkAdk                (6) 

dk+1 = rk+1 − βkdk  

 
The step size αk is calculated in order to minimize the decrement of the scalar convex 

function (4) at each iteration; the step size βk is calculated to guarantee that dk+1 is conjugate 

with respect to the directions calculated at the former iterations, i.e. dk+1
T

 

Adj =0 for all j ≤ k, 

according to the Gram-Schmidt orthogonalization method. These step sizes can be also 

deduced by the CLF/LOC method: choosing Vk = φ(xk) and Wk = dk
T

 

Adk respectively as 

discrete Liapunov functions candidates, the step sizes that minimize the decrement of these 

functions are given by:  

𝛼𝑘 =
𝑟𝑘

𝑇𝑑𝑘

𝑑𝑘
𝑇𝐴𝑑𝑘

 ,          𝛽𝑘 =  
𝑟𝑘+1

𝑇 𝐴𝑑𝑘

𝑑𝑘
𝑇𝐴𝑑𝑘

        (7) 

To deblur an image B (which can be also represented by its column-wise stacked vector b) 

it is necessary to solve the linear algebraic equation (3). As the blurring matrix A is often 

unsymmetric, iterative gradient descent algorithms are applied to solve instead the normal 

equation  

A
T
Ax = A

T
b 

the solution of which is the least squares solution of (3), i.e.: x =(A
T 

A)
−1

A
T

b.  
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3. Separable PSF and Matrix Forms  

When the blurring process in the columns of the image is independent of the blurring 

process in the rows, the PSF array has rank 1 and can be represented as  

P = cr 
T              (8)  

where c ∈ R
m 

represents the vertical components of the blur and r ∈ R
n 

represents the 

horizontal components [11]. This is the case of the PSF array with Gaussian distribution with 

equal variance in both axes. In these cases the matrix A can be represented as [11, chap. 4]  

A =  Ar ⊗ Ac             (9)  

where Ar ϵ R
nxn

 and Ac ϵ R
mxm 

are matrices that depend on the vectors r and c, respectively, 

and on the boundary conditions. This Kronecker decomposition has the advantage that the 

original image X* can be restored without the necessity of explicit formulation of the matrix 

A, as can be demonstrated from the following properties of the Kronecker product: 

Ar ⊗ Ac vec(X) = vec(AcXAr
T
)  

(Ar ⊗ Ac)
T
 = Ar

T
 ⊗ Ac

T
     (10)  

(Ar ⊗ Ac)
−1

 = Ar
−1

 ⊗ Ac
−1

   

Substituting (9) in (3) and applying the properties (10): 

Ac X* Ar
T
 = B         (11) 

so that 

X* = Ac
-1

 B Ar
-T 

        (12) 

in exact arithmetic, where Ar

-T 

is the transpose of the inverse matrix.  

Therefore, given the blurred image B, the restoration process to recover an image X as 

similar as possible to the original image X* can be carried out without the explicit formulation 

of the matrix A.  

Evidently, although the matrices Ar and Ac have dimensions similar to that of the original 

image X*, their explicit inversions can also be expensive in computational terms. In the 

following section matrix forms of iterative algorithms will be presented in order to obtain a 

restored image X without the formulation of the matrix A.  

 

4. Matrix Forms of Iterative Algorithms  

Consider the linear system (3), for which the normal system is defined as  

A
T 

A vec(X*) = A
T 

vec(B)             (13)  

We define the inner product between two matrices X,Y ∈ R
m×n 

as:  

⟨𝑿,𝒀⟩ ≔ ∑ ∑ 𝒙𝒊𝒋𝒚𝒊𝒋 = 𝒕𝒓𝒂𝒄𝒆(𝑿𝑻𝒀) = 𝒗𝒆𝒄(𝑿)𝑻𝐯𝐞𝐜(𝒀)𝒏
𝒋=𝟏

𝒎
𝒊=𝟏    (14) 

 

Note that this definition observes all the conditions required by an inner product. Note also 

that (X,X) = ||X||F
2
.  
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The matrix solution of (13) is also the unique minimum of the scalar quadratic convex 

function defined as:  

φ(X) := ½ x
T
A

T
Ax – (A

T
b)

T
x 

 = ½ vec(X)
T
A

T
Avec(X) - (A

T
vec(B))

T
vec(X) 

  = ½ vec(AcXAr
T
) vec(AcXAr

T
) – vec(X)

T
vec(Ac

T
BAr)   (15) 

  = ½ trace(ArX
T
Ac

T
AcXAr

T
) – trace(X

T
Ac

T
BAr) 

where the properties presented in (10) were applied. The gradient vector of (15) is defined as 

the residue: 

r = ∇φ(X) = vec(R) := A
T

A x −A
T

b  

= A
T 

vec(AcXAr

T

) − vec(Ac

T

BAr)     (16)  

= vec(Ac

T

AcXAr
T

 

Ar –Ac

T

BAr) 

The error vector is defined as:  

e = vec(E) := x – x* = vec(X – X*)       (17)  

The relation between the residue and the error is given by:  

A
T

Ae = A
T

A vec(E)= vec(Ac
T

 

Ac E Ar
T
 Ar) = vec(Ac

T
AcXAr

T
Ar – Ac

T
 AcX*Ar

T
Ar)  

 = vec(Ac
T
 AcXAr

T
 

Ar – Ac
T

 

BAr)= vec(R)= r 

 
4.1. Steepest Descent, Orthomin and Barzilai-Borwein  

The gradient descent algorithms in their matrix forms are defined as follows. From an 

initial guess X0 ∈ R
m×n

, with initial residue R0 = Ac
T

 

AcX0Ar
T
Ar – Ac

T
 

BAr, at each iteration 

calculate:  

Xk+1 = Xk − αkRk  k = 0, 1, 2 ···        (18)  

where αk is the scalar step size which can be also calculated by the CLF/LOC method in order 

to minimize the decrement of a discrete Liapunov function candidate at each iteration. The 

stopping criterion can be adopted as the Frobenius norm of the residual matrix ||Rk||F lower 

than a determined tolerance.  

In the matrix form of the steepest descent algorithm the Liapunov function candidate is 

chosen as the scalar function (15). Substituting (18) in (15), the function φ(X) at the point 

Xk+1 is given by: 

φ(Xk+1) = φ(Xk) − αk vec(Xk)
T
 A

T
Avec(Rk)+αk vec(B)

T
Avec(Rk) 

          + ½ αk
2
 vec(Rk)

T
A

T
 Avec(Rk) 

   =φ(Xk) − αk trace(Rk
T
 Rk) + ½ αk

2
 trace(ArRk

T
Ac

T
AcRkAr

T
) 

and hence the step size that minimizes the decrement of the Liapunov function between two 

consecutive iterations, calculated the derivative of φ(Xk+1)−φ(Xk)with respect to αk and 

equating to zero, is given by:  
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𝛼𝑘 =
𝑡𝑟𝑎𝑐𝑒(𝑅𝑘

𝑇𝑅𝑘)

𝑡𝑟𝑎𝑐𝑒(𝐴𝑟𝑅𝑘
𝑇𝐴𝑐

𝑇𝐴𝑐𝑅𝑘𝐴𝑟
𝑇)

        (19) 

This step size is equal to 𝛼𝑘 =
𝑟𝑘

𝑇𝑟𝑘

𝑟𝑘
𝑇𝐴𝑇𝐴𝐫𝐤

 , which is the step size of the SD algorithm applied 

to the system (13). However, the use of (18)-(19) allows the calculation of a restored image X 

arbitrarily close to the original image X* without explicitly forming the matrix A. 

Similarly, the step size of the orthomin algorithm is calculated in order to minimize the 

decrement of the discrete Liapunov function candidate ||Rk||F
2 

= trace(Rk
T
Rk) = ||rk||

2
.
 

The 

application of the CLF/LOC method to the calculation of this step size yields: 

𝛼𝑘 =
𝑡𝑟𝑎𝑐𝑒(𝐴𝑟𝑅𝑘

𝑇𝐴𝑐
𝑇𝐴𝑐𝑅𝑘𝐴𝑟

𝑇)

𝑡𝑟𝑎𝑐𝑒(𝐴𝑟
𝑇𝐴𝑟𝑅𝑘

𝑇𝐴𝑐
𝑇𝐴𝑐𝐴𝑐

𝑇𝐴𝑐𝑅𝑘𝐴𝑟
𝑇𝐴𝑟)

      (20) 

 

This step size is equal to 𝛼𝑘 =
𝑟𝑘

𝑇𝐴𝑇𝐴𝑟𝑘

𝑟𝑘
𝑇(𝐴𝑇𝐴)2𝐫𝐤

 , which is the step size of the OM algorithm 

applied to the system (13), however, here again, the use of (18)-(20) permits the restoration of 

an image without explicitly forming the blurring matrix A.  

The matrix form of the Barzilai-Borwein algorithm consists in the algorithm (18) with the 

step size (19) delayed by one iteration:  

𝛼𝑘 =
𝑡𝑟𝑎𝑐𝑒(𝑅𝑘−1

𝑇 𝑅𝑘−1)

𝑡𝑟𝑎𝑐𝑒(𝐴𝑟𝑅𝑘−1
𝑇 𝐴𝑐

𝑇𝐴𝑐𝑅𝑘−1𝐴𝑟
𝑇)

       (21) 

Note that the use of classical gradient descent algorithms to solve the normal system (13) 

requires the storage of a matrix of n
2
m

2
 

components, whereas the use of the matrix form (18) 

with the residual matrix defined in (16) requires the storage of two matrices of m
2
 and n

2
 

components respectively, requiring a total storage of n
2
+m

2
 components. 

 
4.2. Conjugate Gradient  

The matrix form of the conjugate gradient algorithm can be expressed as follows. Starting 

at an initial guess X0 ∈ R
m×n

, with initial residue and direction R0 = D0 := Ac
T

 

AcX0Ar
T

 

Ar – 

Ac
T
BAr , at each iteration calculate:  

Xk+1 = Xk − αkDk 

Rk+1 = Ac
T
AcXk+1Ar

T
Ar - Ac

T
BAr       (22)  

    = Rk − αk Ac
T
AcDkAr

T
Ar 

Dk+1 = Rk+1 − βkDk  

where αk and βk are the step sizes, and Di, i = {0,...,k+1} are conjugate matrices with respect 

to A
T
A, i.e.:  

vec(Di)
T
 A

T
 

A vec(Dj)=0  ∀ i ≠ j 

which implies that trace(ArDi
T
Ac

T
 AcDjAr

T
)=0 forall i ≠ j. 

Note that the application of the vec operator in the equations (22) yields in the classical 

vectorial form of the conjugate gradient algorithm (6).  
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The step size αk is calculated in order to minimize the decrement of the function φ(Xk) at 

every iteration in the direction vector given by dk = vec(Dk). The application of the CLF/LOC 

method to calculate this step size yields: 

𝛼𝑘 =
𝑡𝑟𝑎𝑐𝑒(𝐷𝑘

𝑇𝑅𝑘)

𝑡𝑟𝑎𝑐𝑒(𝐴𝑟𝐷𝑘
𝑇𝐴𝑐

𝑇𝐴𝑐𝐷𝑘𝐴𝑟
𝑇)

       (23) 

The step size βk is calculated in order to observe the A
T

 

A-orthogonality of the vectors 

vec(Dk), according to the Gram-Schmidt orthogonalization method, i.e.:  

𝛽𝑘 =
𝑡𝑟𝑎𝑐𝑒(𝐴𝑟𝑅𝑘+1

𝑇 𝐴𝑐
𝑇𝐴𝑐𝐷𝑘𝐴𝑟

𝑇)

𝑡𝑟𝑎𝑐𝑒(𝐴𝑟𝐷𝑘
𝑇𝐴𝑐

𝑇𝐴𝑐𝐷𝑘𝐴𝑟
𝑇)

      (24) 

These step sizes are equal to those defined in (7) applied to the normal equation (13). 

However, differently from what happens with the classical SD algorithm, the application of 

(22)-(23)-(24) permits the recovery of a matrix X without explicitly forming the matrix A. The 

algorithm (22) with its step sizes (23) and (24) were presented, without proofs, in [13, p. 304].  

In the case that the blurred image B is also corrupted by noise and the blurring matrix A is 

ill-posed (as it usually is), some kind of regularization method must be applied in order to 

filter the noise effect. The Tikhonov regularization method [20] is perhaps the most frequently 
used. A matrix form of the Tikhonov method can be defined as:  

Ac
T
Ac X Ar

T
Ar + λX = Ac

T
BAr             (25)  

where λ ∈ R is the Tikhonov regularization parameter chosen in order to minimize the 

regularization error plus the error introduced by the noise. Iterative methods to solve 

regularized linear algebraic equations that aim to restore noise-contaminated blurred images 

were presented in [9-10, 14, 16]. The calculation of the regularization parameter λ without the 

use of either the matrix A or its singular value decomposition will be investigated in future 

work.  

 

5. Computational Experiments  

The goal of the experiments presented in this section is to restore a noise-free blurred 

image. The original image X* (Figure 1a) is 256 pixels by 256 pixels and has 256 gray levels.  

The original image was blurred by a PSF array P ∈ R
31x31

 

with Gaussian distribution with 

mean 0 and variance 8 in both axes and reflexive boundary conditions (Figure 1b). 

The initial guess of the iterative algorithms was chosen as X0 ∈ R
256x256 

such that             

x0ij =128, ∀i,j ∈ {1,..., 256}. The stopping criterion was chosen as ||Rk||F < 10
-3

 

. 

The Barzilai-Borwein algorithm required 1947 iterations to reach the stopping condition, 

and the final error norm achieved was ||Ek||F := ||Xk|| − ||X*||F =3.4783e +03. Figure 1c shows 

the image recovered by this algorithm.  

The conjugate gradient algorithm required 3700 iterations to reach the stopping condition, 

and the final error attained was ||Xk|| − ||X*||F =2.6609e +03. Figure 1d shows the image 

recovered by this algorithm.  

The results of the steepest descent and the orthomin algorithms are not presented because 

they did not reach the stopping condition in 21000 iterations.  
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The experiment was repeated with other dimensions of the PSF array of Gaussian 

distribution with mean zero, and with different values of the variance, maintaining the 

boundary conditions, the initial guess and the stopping criterion. Table 2 presents the results 

of these experiments.  

The same experiments were also carried out with the image presented in Figure 2a. This 

image is 256 pixels by 256 pixels and has 256 gray levels. In the first series of experiments, 

the original image was blurred with a PSF array P ∈ R
31x31

 with Gaussian distribution with 

mean 0 and variance 8 in both of the axes and reflexive boundary conditions (Figure 2b). The 

initial matrix was also chosen as X0 = 128I and the stopping criterion as ||Rk||F < 10
−3 

. 

The Barzilai-Borwein algorithm required 2408 iterations to reach the stopping condition, 

and the final error norm achieved was ||Ek||F :=C ||Xk|| − ||X*||F =4.0575e +03. Figure 2c shows 

the image recovered by this algorithm.  

The conjugate gradient algorithm used 4089 iterations to reach the stopping condition, and 

the final error was ||Ek||F := ||Xk|| − ||X*||F =3.0278e+03. Figure 2d shows the image recovered 

by this algorithm.  

Experiments with the original image shown in Figure 2a using other dimensions of the PSF 

array of Gaussian distribution, mean zero, and with different values of the variance were also 

performed. Table 2 presents the results of these experiments.  

The Moffat point spread function (2) was not used in the tests because it is not separable, 

hence the PSF array cannot be written in the form (8).  

Table 2 shows that in some experiments the CG algorithm reached the stopping condition 

in less iterations than the BB algorithm (as usually happens with their classical vectorial 

forms). However, the time employed to perform each iteration is proportional to the number 

of floating point operations executed. The BB algorithm (18)-(21) executes a number of scalar 

products and quotients per iteration equal to  

NBB(n,m)= nm(2m +2n +3)+1  

which means that in the experiments reported here (where n = m = 256) the BB algorithm 

executes NBB = 67305473 scalar products and quotients per iteration. The CG algorithm 

(22)-(23)-(24) executes a number of scalar products and quotients per iteration equal to  

NCG(n,m)= nm(2m +3n +5)+2  

which means that in the experiments reported here the CG algorithm executes NCG = 

84213762 scalar products and quotients per iteration. The number of floating point operations 

executed in these experiments is also reported in Table 2. Note that in these experiments, only 

with a PSF array of 61 × 61 and variance 16, the CG algorithm reached the stopping condition 

faster than the BB algorithm. Independent of the speed of convergence, in all the experiments 

carried out here, the final error presented by the CG algorithm was lower than the final error 

presented by the BB algorithm, and the positive effect of this can be appreciated visually by 

comparing Figures 1(c) with 1(d) and 2(c) with 2(d), respectively.  
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Figure 1. a. Original Image of 256 × 256 Pixels 
b. Blurred Image with Gaussian Distribution, Mean 0, Variance 8 and Reflexive 

Boundary Conditions 
c. Image Restored by the Barzilai-Borwein Algorithm after 1947 Iterations 

d. Image Restored by the Conjugate Gradient Algorithm after 3700 Iterations 

  

Figure 2. a. Original image of 256 × 256 pixels 
b. Blurred image with Gaussian distribution, mean 0, variance 8 and reflexive 

boundary conditions 
c. Image restored by the Barzilai-Borwein algorithm after 2408 iterations 

d. Image restored by the conjugate gradient algorithm after 4089 iteration 
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Table 2. Results of the experiments with the original images shown in Figure 1a 
and 2a respectively using different sizes of the PSF array of Gaussian 

distribution, mean zero and different values of the variance (var.). Initial guess 

X0 = 128 I. Stopping condition ||Rk||F < 10
−3 

. it.: number of iterations. flops: 
number of floating point operations. error=||Xk|| − ||X*||F 

 
 

6. Conclusions  

The matrix forms of the gradient descent algorithms are adequate for the restoration of 

noise-free blurred images for which the blurring matrix A has dimensions too large to be 

stored in the memory of conventional computer systems and the matrices produced by the 

Kronecker decomposition Ar and Ac are also too large to solve the linear system (3) via 

Gaussian elimination. In the experiments reported here, Ar, Ac ∈ R
256x256 

and A ∈ R
65536 x 65536

 . 

The matrix forms of the steepest descent and the orthomin algorithms took a large number of 

iterations to reach the stopping condition, as happens with their classical vectorial versions 

and are thus not attractive for this application. In almost all the experiments carried out here, 

the matrix form of the conjugate gradient algorithm employed more iterations and executed 

more floating point operations than the matrix form of the Barzilai-Borwein algorithm, 

differently from what usually happens with the respective vectorial versions. However, even 

though the norm of the residue used as stopping criterion is the same in both the algorithms, 

the final error achieved by the CG algorithm is lower than that achieved by the BB algorithm 

in all the experiments reported here; moreover, it is possible to appreciate this difference 

visually comparing the images restored by each algorithm, and observing the superior quality 

of the CG restored image. 

When the original image is not only blurred but also contaminated by noise, a filtering 

method must be used in order to minimize the noise effects. The vectorial version of the 

classical CG algorithm presents an inherent capability to filter the noise [13]. This capability 

in the matrix version of the CG algorithm will be the object of future research, together with 

the use of other tools for noise filtering, such as matrix versions of regularization methods.  
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