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Abstract 
 

The concept of the quaternion is useful for colour image processing and recognition. This 

paper introduces quaternion discrete Tchebichef moments (QTM), which use the traditional 

Tchebichef moments (TM) of each colour channel to describe colour images. A set of 

invariants that are invariant to translation and scale transformations is introduced for colour 

object recognition and image classification. A theoretical framework is provided for the 

recognition of colour face images by combining the proposed quaternion Tchebichef moment 

functions with the sparse representation classification (SRC) strategy for improving 

recognition despite partial occlusions. Simulation results on standard colour face databases 

demonstrate the effectiveness of the proposed algorithm, even when the images include 

Gaussian or pepper-and-salt noise. 

Keywords: Sparse representation, colour, quaternion, discrete Tchebichef moments, 

invariant, recognition 

1. Introduction 

Tchebichef moments are discrete orthogonal moments that were introduced by 

Mukundan [1]. Tchebichef moments have quickly gained popularity as pattern features 

in image processing [2] and pattern recognition [3] because of their excellent 

properties. Their implementation does not require numerical approximation because the 

basis set is discrete in the domain of the discretised image coordinate space. The 

orthogonality of the moments reduces the redundancy in the representation because the 

contribution of each Tchebichef moment is independent. Tchebichef moments have 

been proven to have better descriptive capabilities and invariant properties [4-6] than 

other moment functions such as Legendre moments [7], Zernike moments [7], pseudo-

Zernike moments [8], and Fourier-Mellin moments [9]. However, Tchebichef moments 

have been used primarily for processing binary or greyscale images, not colour images, 

although colour information has been proven to be very useful in pattern recognition. 

The conventional approach for computing the moment functions and their invariants is 

to process each colour channel of the colour image separately using greyscale 

techniques and then to the sum the three individual responses to derive the overall 

result [10]. Recently, a sophisticated quaternion-based image processing approach was 

introduced by Sangwine [11] that treats colour images as vector fields by encoding the 

channel components in the imaginary parts of hypercomplex numbers . This approach 

has attracted increasing theoretical interest [12] and has been applied in areas such as 

texture analysis [13], edge detection [14], adaptive filtering [15], and motion estimation 

[16]. In the present study, we extend the traditional Tchebichef moments to colour  
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images using quaternion algebra and discuss the application of Tchebichef moments to 

image description and invariant pattern recognition.  

Invariant pattern recognition is a fundamental tool in machine vision applications. 

Feature selection, which requires independent geometric transformations, plays a 

central role in this approach. The original work in this field was presented by Flusser 

and Suk [17], who proposed moment-based invariant features for image recognition. 

The invariant properties of moments, which can be utilised as features for object 

recognition, have received increasing attention [18-19]. However, these methods are 

mainly limited to processing greyscale images. Several studies have described 

invariants based on quaternion moments. Recently, Chen et al. [20] used quaternion 

Zernike moments to construct a set of combined invariants with respect to rotation, 

scaling, and translation (RST) transformations. The use of quaternion-based Fourier-

Mellin moment functions for colour images was investigated by Guo and Zhu [21]. 

Discrete Tchebichef moments have better performance overall than continuous 

moments such as Legendre moments, Zernike moments, and Fourier -Mellin moments 

[22]. The present study extends previous work [3] and constructs a set of translation 

and scaling invariants using Tchebichef orthogonal polynomials and quaternion algebra 

for colour image recognition. 

Face recognition and face-expression recognition have received considerable 

attention in pattern recognition because of their wide applications in information 

security. Recently, Wright et al. [23] introduced sparse-representation-based 

classification, which efficiently processes data in non-traditional ways. They showed 

that the choice of features becomes less critical than the number of features when the 

concept of sparseness is properly used. In their work, the training face images constitute 

the dictionary, and a test image is classified by finding its sparse representation with 

respect to this dictionary. This sparse-representation-based classification scheme is 

successful on standard datasets even when a face is partly occluded. Several methods 

have recently been developed to improve Wright’s approach, including kernel sparse 

representation [24], Gabor feature-based sparse representation [25], and adaptive sparse 

representation [26]. However, most of these methods are based on greyscale face 

images. Because colour face images contain far more information than greyscale face 

images, recent research has focused on colour face recognition. For example, Rajapakse 

introduced a non-negative matrix factorisation method to encode the colour channels 

separately [27]. Wang et al. presented a colour face recognition approach based on the 

2DPCA method [28]. However, these schemes do not make use of the spatial 

relationship information in the image, and their recognition performance is not 

satisfactory. Sun et al. improved Wang’s method by using a quaternion matrix 

representation scheme to describe the intrinsic colour relationships in images [29]. 

Inspired by their work, the present study improves upon Wright’s method by using 

discrete Tchebichef moments and quaternion algebra to define the QTM+SRC method. 

Unlike Wright’s method, the proposed method uses quaternions to represent and 

process colour face images in a holistic framework that not only takes the RGB 

information into account but also the spatial structure of the image.  Unlike common 

face recognition approaches based on feature extraction, this study uses a colour face 

recognition scheme based on a sparse representation and Tchebichef moments and 

treats the recognition problem as one of finding a sparse representation of the test 

image in terms of the training set. The proposed QTM+SRC method is evaluated using 

the Face94, Face95, Face96, and Grimace colour face databases, and we also 

investigate the effectiveness of the approach when the face image is partially occluded. 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 7, No. 6 (2014) 

 

 

Copyright ⓒ 2014 SERSC  151 
 

The experimental results demonstrate that the QTM+SRC method can achieve better 

classification accuracy than existing algorithms, with a moderately high computational 

cost and less complexity. 

The rest of this paper is organised as follows. Section 2 briefly reviews quaternions, 

Tchebichef polynomials and Tchebichef moments. Section 3 defines the quaternion 

Tchebichef moments. Section 4 introduces the quaternion Tchebichef translation and 

scale invariants, and we derive the sparse-representation-based and Tchebichef-

moment-based colour face recognition methods. Section 5 presents the results of 

simulations using standard database images and is followed by conclusions and 

promising future directions in the last section.  

 

2. Preliminary 

This section reviews some basic definitions and the notation used in the rest of the 

paper.  

 

2.1. Quaternion Algebra 

The quaternion, which is a four-dimensional hypercomplex model, was first 

introduced by British mathematician Hamilton [30] and is denoted by H . A quaternion 

value q∈ H has a real component and three imaginary components and can be 

represented in hypercomplex form as 

0 1 2 3q a a a a   i j k                                                                 (1) 

where the orthogonal imaginary units satisfy ij = -ji = k, jk = -kj = i, ki = -ik = j, and a0, 

a1, a2, a3∈R. i, j, and k are three orthogonal unit vectors defining a frame in 3-D space. 

They have the property that i
2

 = j
2

 = k
2

 = -1. q is a pure quaternion if a0 = 0. The 

following important basis properties are valid for any two quaternions q1, q2∈ H , 

where q1 = a0 + a1i + a2j+ a3k and q2 = b0 + b1 i + b2j + b3k: 

(1) Addition and Subtraction 

1 2 0 0 1 1 2 2 3 3( ) ( ) ( ) ( )q q a b a b a b a b        i j k                                 (2) 

(2) Multiplication 

1 2 0 0 1 1 2 2 3 3 0 1 1 0 2 3 3 2 0 2 2 0 3 1 1 3

0 3 3 0 1 2 2 1

( ) ( ) ( )

( )

q q a b a b a b a b a b a b a b a b a b a b a b a b

a b a b a b a b

            

   

i j

k
        (3) 

(3) Quaternion conjugate 

1 0 1 2 3q a a a a   i j k                                                        (4) 

(4) Quaternion norm 

2 2 2 2

1 0 1 2 3|| ||q a a a a                                                        (5) 

Moxey proposed a new model for the quaternion based on the following equation [31]: 

0 1 2 3q a a a a A B     i j k j                                                 (6) 

where A = a0 + a1i and B = a2 + a3i. 
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2.2. Tchebichef Orthogonal Moments 

The Tchebichef polynomials of order n are defined as [1] 

0

1
( ) ! ( 1)

n
n k

n

k

N k n k x
t x n

n k n k





  
 



   
   
   

                                         (7) 

They satisfy the following orthogonality property in the discrete domain: 

1

0

( ) ( ) ( , )
N

n m nm

x

t x t x n N 




                                                   (8) 

where δnm is the Kronecker function, i.e., δnm = 1 if p = q and 0 otherwise, and the squared 

norm ρ (n, N) is given by 

( )!
( , )

(2 1)( 1)!

N p
n N

p N p





  
                                               (9) 

Tchebichef polynomials satisfy the following recurrence relation 

2 2

1 1( 1) ( ) (2 1)(2 1) ( ) ( ) ( ) 0, 1,2,..., 1n n nn t x n x N t x n N n t x n N          　       (10) 

This set of polynomials is not suitable for defining moments; the scaled discrete 

Tchebichef polynomials are defined as 

( )
( )

( , )

n

n

t x
t x

n N
                                                     (11) 

where β (n, N) is a suitable constant that is independent of x. A particular choice of β (n, N) is 

( , ) ( , )n N n N                                                  (12) 

Mukundan [1] defined the 2-D discrete Tchebichef moment of order (p + q) of an image f 

(x, y) with size N×N as 

1 1

0 0

( ) ( ) ( , )
N N

pq p q

x y

T t x t y f x y
 

 

                                        (13) 

Eq. (13) leads to the following exact image reconstruction (i.e., the inverse moment 

transform): 

1 1

0 0

ˆ ( , ) ( ) ( )
N N

p q pq

p q

f x y t x t y T
 

 

                                               (14) 

 

3. Colour Image Analysis using Quaternion Tchebichef Moments 

Inspired by quaternion Fourier transforms and quaternion cosine transforms of 2-D 

functions [32-33], this study defines quaternion (or hypercomplex) Tchebichef 

moments, which are a generalisation of traditional Tchebichef moments. 

Without loss of generality, we consider here only RGB colour images. The 

generalisation to other types of colour images is not difficult. Let f(x, y) be an RGB 

image; the three channels of the image can be represented using the three components 

of a pure quaternion as follows: 

( , ) ( , ) ( , ) ( , )R G Bf x y f x y f x y f x y  i j k                               (15) 
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where fR(x, y), fG(x, y) and fB(x, y) represent the red, green and blue components of the 

colour image, respectively. This representation effectively equates the RGB colour cube 

to the right-handed coordinate frame imposed by the imaginary part of the quaternion 

space and treats the colour image as a whole, rather than as separate components. We 

now introduce the definition of the right-side form of the quaternion Tchebichef 

moments of a function of two variables based on Ell's formula [32]. 

 

Definition 1: Given a quaternion root of -1, μ, for an N×N colour image f(x, y), the 

right-side form of the forward quaternion Tchebichef moments of the image is defined 

as 

1 1

0 0

( , ) ( , )QTM ( ) ( ), (( ) () )R G

N N
R

pq p q

x y

Bf x y f x y f xf t x ty y
 

 

  i j k                  (16) 

where ( ) / 3   i j k  and 
2 2 2 2 1    i j k . This choice corresponds to the 

grey line in RGB space, on which all three components are equal.  

1 1

0 0

1 1

0 0

1 1

0 0

QTM ( ) ( ) ( ) ( )( ) / 3

1
[ ( )) ( ) ( )]

3

1
[ ( ( , ) ( , )) ( ) ( )]

3

1
[ ( ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( ,

3

N N
R

pq p q

x y

N N

p q

x y

N N

G B p

R G B

R G B

q

x y

B R

f x y f x y f x y

f x y f x y f x y

f t x t y

t x t y

f x y f x y t x t y

f x y f x y

 

 

 

 

 

 

  



  



 

 









i j k i j k

i

j
1 1

0 0

1 1

0 0

) ( ) ( )]

1
[ ( ( , ) ( , )) ( ) ( )]

3

N N

p q

x y

N N

R G p q

x y

t x t y

f x y f x y t x t y

 

 

 

 

 



k

         (17) 

0 1 2 3QTM ( )R

pq f A A A A   i j k                                                   (18) 

where 

0 R G B

1
[TM TM TM ]

3
A    , 1 G B

1
[TM TM ]

3
A    ,  

2 B R

1
[TM TM ]

3
A    ,  3 R G

1
[TM TM ]

3
A     

TMR, TMG, and TMB are the traditional discrete Tchebichef moments for the red, green, 

and blue components, respectively, of the colour image. This paper defines the left-side 

forward quaternion Tchebichef moments similarly by interchanging the positions of the 

colour image and the imaginary part μ. 

 

Definition 2: Given a quaternion root of -1, μ, for an N×N colour image f(x, y), the left-

side form of the forward Quaternion Tchebichef moments of the image is defined as 

1 1

0 0

( , ) ( , ) (QTM ( ) ( ) (, ) ( ))
N N

L

pq

y

R B q

x

G pf t xf x y f x yf x ty y
 

 

  i j k                (19) 
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Corresponding to the QTM, there are two forms of the inverse quaternion discrete Tchebichef moments 

(IQTM), which satisfy the following equations.  

1 1

0 1 2 3

0 0

IQTM ( ) ( ) ( ) ( )
N N

R

pq p q

p q

f A A A A t x t y
 

 

    i j k                   (20) 

1 1

0 1 2 3

0 0

1 1 1 1

1 2 3 0 2 3

0 0 0 0

1 1

0 1 3 0 1

0 0

IQTM ( ) ( ) ( ) ( )( ) / 3

1 1
[ ( ) ( ) ( )] [ ( ) ( ) ( )]

3 3

1 1
[ ( ) ( ) ( )] [ (

3 3

N N
R

pq p q

p q

N N N N

p q p q

p q p q

N N

p q

p q

f A A A A t x t y

A A A t x t y A A A t x t y

A A A t x t y A A

 

 

   

   

 

 

      

     

     



 



i j k i j k

i

j k

0 1

2

2 3

1 1

0 0

) ( ) ( )]
N N

p q

p q

A t x t y

a a a a

 

 

   



ki j

    

(21) 

0 1 2 3

1
[ITM( ) ITM( ) ITM( )]

3
a A A A   , 1 0 2 3

1
[ITM( ) ITM( ) ITM( )]

3
a A A A   i , 

2 0 1 3

1
[ITM( ) ITM( ) ITM( )]

3
a A A A   j , 3 0 1 2

1
[ITM( ) ITM( ) ITM( )]

3
a A A A   k  

where a1, a2, and a3 
are the three colour components of the reconstructed image. The 

left-side inverse transform is similarly defined as follows: 

1 1

0 1 2 3

0 0

IQTM ( ) ( ) ( ) ( )
N N

L

pq p q

p q

f A A A A t x t y
 

 

 - i - j - k                          (22) 

This study will use the right-side forms QTM ( )R

pq f  and IQTM ( )R

pq f  as the default 

QTM and IQTM, respectively, unless stated otherwise. The QTM pair is separable, and 

thus may be evaluated with a 1D summation over the rows and columns of the input 

array. 

 

4. Colour Image Object Recognition using Quaternion Tchebichef 

Moments 

4.1. Quaternion Tchebichef Translation Invariants 

The 2-D quaternion Tchebichef translation invariants can be obtained by evaluating 

their central moments, which are defined by  

1 1
'

0 0

0 0

( ) ( ,( ))( ( , ) )( ) / 3( , )
nm

N N

m R

y

Bn G

x

f xQT t x x t y fy y f yx y x
 

 

      i j k i j k         (23) 

where (x0, y0) denotes the image centroid coordinates. As shown in our previous work [3], the 

translated Tchebichef polynomials in the x direction can be derived as follows: 

0 ( )

0

( ) ( )
n

n n n k n k

k

t x x v t x 



                                                (24) 
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where 

1

( ) ( ) 0 ( )( ) ( )

0 0( )( )

1 k k

n n k n n k l l n i n k n n i

l in k n k

n k l
v B x B v

lB



     

  

   
      

  
              (25) 

with 

2

( )!

( , )( )!( !)
nk n k

n k
B n N

n N n k k



   


                                (26) 

The translated Tchebichef polynomials in the y direction can be obtained using the 

same procedure. 

 

4.2. Quaternion Tchebichef Scale Invariants 

Assume that the scale factors for the original image are a and b in the x direction and 

the y direction, respectively. The scaled quaternion Tchebichef moments can be defined 

as follows: 

''

0 0

( ) ( )( ( , ) )( , ) ( , ) ( ) / 3
n m

nm nk ml k l R

k l

G Bf x y f x yQT t ax t by f x y 
 

   i j k i j k             (27) 

Using the Stirling numbers of the first kind, s(k, i), the scaled Tchebichef polynomials in 

the x direction can be written as 

0

( ) ( , )
n

i

n

i

t x C n i x


 ,  
0

( ) ( , )
n

i i

n

i

t ax C n i a x


                                 (28) 

where  

,

0

( , ) ( , )
n i

n n k

k

C n i B s n k i






                                                 (29) 

Eq. (27) can be rewritten as 

'' 1 1

0 0

( , ) ( , )( ) ( )( ( , ) )( ) / 3
n m

n m

nm nk ml k l R G

k l

BQT a b t f x yx f x xt y f yy  

 

    i j k i j k         

(30) 

The relationship between the original and scaled Tchebichef moments can then be 

established as 

'' 1 1

0 0 0 0

n m n m
n m

nm nk ml kl nk ml kl

k l k l

Q QT a b QT     

   

                              (31) 

where  

1
( ) ( )

0

n k
n r k n n r

nk

r kk

C

C




 
 




  ,    0 ≤ k ≤ n                                  (32) 

To obtain the scale invariants, the scale factors a and b must be eliminated. The following 

constructed invariants are not influenced by the scale factors. 
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1

00

,0 0,

r

nm
nm

n r m r

Q Q
Q

Q Q

 


 



 

 ,   n, m = 1, 2,…   r = 1, 2, 3…                (33) 

The combined translation and scale invariants are computed using Eq. (33), where the 

nmQ  
on the right-hand side of Eq. (33) are computed using Eqs. (23) and (31). 

 

4.3. Face Recognition based on Quaternion Tchebichef Moments 

For an N1 × N2 image f(x, y), one can resize all the pixels using a column v. Any test 

sample y of this object class can then be approximately represented in the linear span of 

the training class. 

11,1 1,2 1, ,1 ,2 , ,1 ,2 ,[ , , , , , , , , , , , , , ]
i ks i i i s k k k sA v v v v v v v v v                         (34) 

where vi,j is the ith object class of the jth picture, si is the number of pictures of the ith 

object class, and S is the total number of pictures in the training set. Suppose that test 

image y is from the ith object; according to Eq. (34), the contribution of the complete 

training set to this image can be written as 

1,1 1,2 ,1 ,1 ,2 ,2 , , ,1 ,2 ,0 0 ... ... ... 0 0 ... 0
i i ki i i i i s i s k k k sa a a                y v v v v v v v v          

(35) 

The ith training set provides the entire contribution to this test image; the linear 

spans of the other object training sets cannot describe the image, and thus they provide 

no contributions to the image. The linear combination of y can then be written in matrix 

form: 

y = Ax                                                                           (36) 

where ,1 ,2 ,[0, ,0, , , , ,0, ,0]
i

T S

i i i sa a a R x . When the database is sufficient, the S-

dimensional vector x  has only si non-zero values, where 
is S ; therefore, the 

representation of Eq. (35) is sparse. One can rewrite the traditional Tchebichef 

moments in vector form 

2 1 2 2

1 2

(0,0)

[ (0) (0), , (0) ( 1), (1) (0), , ( 1) ( 1)] (0, 1)

( 1, 1)

nm n m n m n m n m

f

T t t t t N t t t N t N f N

f N N

 
 
 
     
 
 
   


nm

t v

          (37) 

where v∈R
l
 is an image f(x, y) in column order, and the image size l = N1 × N2. According to 

Eq. (37), one has 

( ) ( )(1) (2)

00 00 00 00

( ) ( )(1) (2)

01 01 01 01

( ) ( )(1) (2)

i k

i k

i k

s s

s s

s s

pq pq pq pq

T T T T

T T T T

T T T T

 
 
  
 
 
  

A MA                                  (38) 
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where p + q = L. In the current study, the Tchebichef moments M are substituted for the 

random matrix in the SRC algorithm [22]. M can be defined as 

1( , , , , , , )T d lR  00 0 0q 10 pqM t t t t t                                     (39) 

M is a matrix with size d×l (d = (L+1)(L+2)/2). Multiplying Eq. (36) by matrix M on both 

sides gives 

  y My MAx Ax                                                       (40) 

For each colour component R, G, and B, one can calculate 
ry , gy , and 

by . The 

quaternion sparse representation y  can thus be derived as 

ˆ QTM( )y y                                                              (41) 

The recognition problem for an image y can be obtained by solving the following l1-norm 

problem: 

1argmin || ||x ,   s.t.   ˆ QTM( ) QTM( ) y y Ax                                 (42) 

In this study, the Tchebichef polynomials are not related to unknown images and thus 

can be calculated and saved ahead. The following algorithm summarises the complete 

recognition procedure: 

(1) The inputs are a matrix of training samples containing  S images of k objects and a 

test sample. 

(2) Calculate the quaternion representation for each training set A  as Â , and calculate 

the quaternion representation for test image y  as ŷ . Normalise the columns of Â  and 

ŷ . 

(3)Compute the residual 2
ˆˆ( ) || ( ) ||i ir  y y A x  for i = 1, 2, …, k, where ( )i x  denotes 

the component of object i in x; the other components are zeros. 

(4)The output of the algorithm is identity(y) = ˆargmin ( QTM( ))ir y My . 

 

5. Experimental Results 

5.1. Invariance Tests 

In this subsection, two experiments are performed to illustrate the invariance 

properties of the proposed QTM method. The first experiment aims to verify the 

performance of the invariants under translation and scaling. The second experiment 

verifies the classification capability of the QTM features. We choose the database used 

in Chen et al. [20] to compare our results. This database consists of 7200 images evenly 

divided into 100 categories. Ten images are randomly selected for the training set 

(Figure 1). The test set is generated by translating the images by Δx, Δy = -10, -3, 4, 11 

in the horizontal and vertical directions and by scaling with a scaling factor λ ∈ {0.5, 

0.8, 1.1, 1.4}, forming a set of 2560 images from the 10 original images. A bilinear 

interpolation is used when required. Two 128×128 images are randomly chosen to 

evaluate the proposed QTM invariants. The invariant values, computed using Eq. (33), 

are listed in Tables 1 and 2. In this study, the absolute value of the logarithm of the 

invariant is used to reduce the dynamic range. Tables 1 and 2 show that the proposed 
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invariants remain invariant as the translation and scaling is varied. The second 

experiment compares the classification accuracy of the QTM and the QZM [20]. For the 

recognition task, we use the following feature vector: 

V = [I00, I11, I20, I02, I21, I12, I30] 

where Inm is the same as 
nmQ  defined previously. The Euclidean distance is used as the 

classification measure. Additionally, to test the robustness of the proposed method in a 

noisy environment, we add Gaussian random noise or pepper-and-salt noise to the test 

images. Table 3 shows the classification results from the two moment invariants. Table 

3 shows that the rate of accurate classification using the QTM is higher in each test than 

the state-of-art QZM algorithm, proving the feasibility of the proposed method.  

Table 1. The QTM Invariants for a Colour Image 

p,q 

         
0, 0 0.9508 0.9514 0.9517 0.9513 0.9510 0.9511 0.9513 0.9512 0.9511 

1, 1 0.9472 0.9431 0.9459 0.9450 0.9450 0.9420 0.9475 0.9457 0.9418 

2, 0 0.9327 0.9335 0.9339 0.9336 0.9330 0.9332 0.9333 0.9331 0.9330 

0, 2 0.9315 0.9325 0.9327 0.9324 0.9318 0.9320 0.9320 0.9319 0.9318 

2, 1 0.9164 0.9134 0.9178 0.9145 0.9126 0.9135 0.9176 0.9154 0.9158 

1, 2 0.8732 0.8717 0.8786 0.8759 0.8777 0.8703 0.8721 0.8767 0.8764 

3, 0 0.9152 0.9159 0.9165 0.9156 0.9153 0.9156 0.9159 0.9159 0.9157 

0, 3 0.9095 0.9042 0.9078 0.9068 0.9097 0.9099 0.9095 0.9094 0.9084 

 

Table 2. The QTM Invariants for a Second Colour Image 

p,q 

         
0, 0 0.9438 0.9447 0.9448 0.9443 0.9435 0.9449 0.9443 0.9448 0.9449 

1, 1 0.9087 0.9011 0.9089 0.9023 0.9030 0.9087 0.9018 0.9088 0.9026 

2, 0 0.9278 0.9287 0.9282 0.9286 0.9278 0.9290 0.9284 0.9284 0.9288 

0, 2 0.9170 0.9184 0.9182 0.9177 0.9165 0.9185 0.9176 0.9182 0.9184 

2, 1 0.8919 0.8918 0.8904 0.8916 0.8909 0.8931 0.8917 0.8984 0.8917 

1, 2 0.8732 0.8731 0.8750 0.8777 0.8776 0.8717 0.8760 0.8668 0.8793 

3, 0 0.9129 0.9139 0.9131 0.9135 0.9127 0.9140 0.9135 0.9135 0.9134 

0, 3 0.8977 0.8969 0.8974 0.8973 0.8967 0.8992 0.8977 0.8992 0.8972 

 

Table 3. The Recognition Rates of QZM and QTM with Different Levels of Noise 

Method Noise-Free Gaussian Noise (Variance) Pepper & Salt Noise 

0.01 0.02 1% 2% 3% 4% 

QZM 100% 91.32% 77.56% 91.18% 89.04% 82.76% 80.53% 

QTM 100% 93.75% 80.00% 93.75% 90.63% 86.25% 84.38% 
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Table 4. The Effect of Varying the Order L in Colour Face Recognition 

 L = 3  

(d = 10) 

L = 6  

(d = 28) 

L = 9  

(d = 55) 

L = 14  

(d = 120) 

L = 30  

(d = 540) 

Face95 91.69% 94.44% 97.80% 98.80% 100% 

Face96 96.58% 97.17% 97.52% 98.10% 100% 

 

Table 5. The Recognition Rates of the Different Methods of Colour Face 
Recognition 

Methods L/d Face94 Face95 Face96 Grimace 

Random + SRC 4/15 89.47% 60.56% 83.94% 98.33% 

5/21 89.47% 67.92% 92.24% 99.44% 

6/28 98.51% 79.17% 95.33% 100.00% 

Downsample + 

SRC 

4/15 96.67% 61.11% 89.94% 99.44% 

5/21 98.60% 67.64% 91.56% 100.00% 

6/28 98.95% 73.61% 95.73% 100.00% 

QTM + SRC 4/15 99.74% 92.08% 96.64% 100.00% 

5/21 99.91% 92.92% 97.30% 100.00% 

6/28 99.91% 94.44% 97.17% 100.00% 

 

5.2. SRC-based QTM for Colour Face Recognition 

To evaluate the effectiveness of the proposed method, a colour face recognition 

experiment is performed. The experiments are conducted using the Face94, Face95, 

Face96 and Grimace colour face databases assembled by the Computer Vision Group of 

Essex University [34]. The Face94 database consists of 20 female and 133 male face 

images from 20 distinct subjects, with variations in the illumination and the facial 

expression. Some test images from this database are shown in Figure 2(a). Figure 2(b) 

shows several images from the Face95 database, which includes 72 subjects. The image 

background in this database is a red curtain. Background variation is caused by shadows 

as the subject moves forward. The Grimace database contains 20 images each of 18 

male and female subjects. These images have a plain background and very little 

variation in illumination (see Figure 2(c)). To provide a challenging test, the Face96 

database, consisting of over 152 subjects, is included. The images in this database vary 

in the position of the face in the image, the illumination, the  arrangement of the 

artificial lighting, the facial expression, and the complexity of the background.  

 

          

Figure 1. The Test Images used in the Recognition Tasks 
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(a) 

 

         
(b) 

 

        
(c) 

 

        
(d) 

Figure 2. Some of the Test Images used in the Face Recognition Tasks, from 
(a) the Face94 database, (b) the Face95 database, (c) the Grimace database, 

and (d) the Face96 database 

We test the recognition rate of quaternion Tchebichef moments of order L first using 

the Face95 and Face96 databases and then using all of the databases. In these 

experiments, all subjects in these databases are used. For each subject, we randomly 

choose 10 images as the training data. The remaining images serve as the test data. For 

each test image, we apply the proposed approach using different moment orders L. 

Table 4 shows the recognition rate as L is varied. The QTM+SRC method performs 

very well, and a higher L leads to a higher recognition rate. However, when the order of 

the orthogonal Tchebichef moments is high, the computational cost becomes very high. 

How to balance the time cost and the recognition rate is an open problem. In the final 

experiment, to further investigate the performance of the proposed method, we compare 

the recognition rate of our algorithm with two state-of-the-art methods, the Random + 

SRC method and the Downsample + SRC method [23]. In these two methods, the colour 

face images are treated using three separate channel components. We choose L = 4, 5, 6 

for all databases and a corresponding dimension d = 15, 21, 28 from Eq. (39) for a 

sparse representation. From the Face94 database, we use only a subset made up of 1500 

images from 153 subjects, with each subject providing 20 images. A total of  1200 

196×196 images are selected from the Face96 database to be used in the recognition 

experiment. All subjects from the Face95 and Grimace databases are used. From each 

of the colour face databases, we used 10 images of each subject as the training sample 

and used the remaining images as test samples. Table 5 shows the recognition rates for 

each method. The proposed method produces better recognition rates than the Random 

+ SRC and Downsample + SRC methods.  

 

6. Conclusions 

In this paper, we first extend the conventional discrete Tchebichef moments defined 

for greyscale images to colour images using the quaternion algebra. The purpose is to 
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process the colour image directly, without losing colour information. The main 

contributions of this paper are the following: 

The quaternion Tchebichef moment invariants with respect to translation and scale 

transformations are constructed. The results obtained from real data show that the 

proposed descriptors are more robust to noise and have better descriptive capabilities 

than the existing methods. 

A sparse-representation-based colour face recognition strategy using the proposed 

quaternion Tchebichef moments is introduced. The effectiveness of the classification 

method is demonstrated on colour face databases. The simulated results are compared 

with state-of-the-art methods. The experimental results demonstrate the advantages of 

our method over these well-known methods.  

Future research will investigate the effectiveness of the proposed approach in other 

biometric verification applications and explore the optimal choice of quaternion 

Tchebichef moments of order L.  
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