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Abstract 
 

Tracking-Learning-Detection (TLD), also known as Predator, has become one of the most 

popular state-of-the-art algorithms in the domain of visual tracking in recent years. It has 

demonstrated outstanding performance in the application of long-term tracking of a human 

face in unconstrained videos. In this paper, we address the problem of tracking a single ship 

in inland waterway CCTV videos given its location in the first frame and no other prior 

information. Firstly, we deeply analyze Predator in a perspective of control system and point 

out the search strategy in detection procedure is the most time-consuming part in Predator 

system. Secondly, in order to speed up the whole pipeline, we propose a novel motion model 

based on extended particle filter with orthogonal design. Due to the power of particle 

optimization and re-combination with orthogonal design, we can relate the motion of object 

of interest better and obtain the most likely candidates of object regions more effectively. 

Finally, both qualitative and quantitative evaluations on numerous challenging CCTV videos 

demonstrate that the proposed algorithm achieves favorable performance in terms of 

efficiency and accuracy. 

Keywords: Control system, extended particle filter, Predator, orthogonal design 

1. Introduction 

Visual tracking has been extensively studied in computer vision due to its crucial 

importance in many practical applications such as HCI (human-computer interaction), 

automated surveillance, traffic monitoring and video indexing, to name a few [1]. Although 

much success has been demonstrated in building some domain specific trackers (e.g., mice 

[2], faces [3], humans [4], etc.), real-time robust visual tracking has remained challenging due 

to various factors such as the limited amount of priori knowledge about the object of interest, 

the number and type of parameters being tracked (e.g., contour, location, scale) and so on [5]. 

The recent years have witnessed great developments of CCTV system in the domain of 

inland waterway automated surveillance [6-7]. With the combined efforts of automatic 

identification system (AIS), global position system (GPS) and inland waterway electronic 

chart, CCTV acts as an eye for observers to tell whether a ship is retrograding, overtaking or 

parking without regulation. To keep long-term robust ship tracking is the core of inland 

waterway CCTV automated surveillance. Despite that numerous tracking algorithms [8-12] 

have been proposed in the literature over the past couple of decades, ship tracking remains 

challenging due to factors such as pose variation, illumination change, occlusion, and motion 

blur. 

Recently, Kalal et al. [13] propose a novel tracking framework “Predator” that explicitly 

decomposes the long-term tracking task into three components: tracking, learning and 

detection. Then the system tracks, learns and detects a specific face in unconstrained videos. 
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The numerous reliable experimental results demonstrate that Predator achieves superior 

performance. However, we observe that it is problematic to apply Predator into the domain of 

inland waterway CCTV ship tracking. Because in the detection procedure, in order to track 

both the location and scale of the object of interest, each frame is scanned at all predefined 

scales by employing a sliding window strategy. As a result, the greedy search strategy brings 

comparatively high computational load and makes the overall system of low efficiency in 

terms of time and space complexity. 

Motivated by the above-mentioned discussions, in this paper, we firstly analyze Predator in 

a perspective of control system and point out the search strategy in detection procedure is the 

most time-consuming part. Moreover, we further propose a novel motion model based on 

extended particle filter with orthogonal design to speed up the complete pipeline. 

Experimental results demonstrate that particle optimization and re-combination with 

orthogonal design significantly improves the efficiency in terms of both time and space 

complexity. 

The remainder of this paper is organized as follows: Section 2 deeply analyzes the Predator 

in a perspective of control system and explains why we need to develop a more effective and 

efficient motion model. Section 3 describes extended particle filter with orthogonal design in 

details. Section 4 conducts numerous experiments on challenging CCTV video sequences to 

illustrate the effectiveness of the proposed method. Finally, Section 5 presents a brief 

summary. 

 

2. Predator Closed-loop Control System 
 

2.1. Predator Overview 

Predator consists of a median flow tracker and a cascade of object detectors. The median 

flow tracker is based on a LK short-term tracker which recursively tracks the object of 

interest over time [14]. The cascade of detection procedure includes three components: a 

variance filter, an ensemble classifier and a nearest-neighbor classifier [15]. The detector 

localizes all appearances that have been observed so far. The detector runs in parallel with the 

tracker and corrects the tracker if necessary. The semi-supervised P-N online learning 

estimates the error of the tracker and detector and updates them to avoid these errors in the 

future [16]. The combined efforts of all components mentioned above make the system robust 

to pose variation, illumination change and occlusion. The basic flow of Predator is illustrated 

in Figure 1. 
 

 

Figure 1. Block Diagram of Predator 
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2.2. Closed-loop Control System 

According to the definition in control theory, traditional tracking methods (mean-shift 

tracker, particle filter, compressive tracking, etc.) belong to the open-loop controller, i.e., a 

type of controller that computes its output according to the current state and its model of the 

system. The input is the video frame (with the associated state) and the tracker acts as the 

controller. The tracker then makes response to the corresponding change of the input. 

However, it is commonly known that open-loop control system has its intrinsic limitations 

due to its design. For example, the response of the system may appear to be unstable because 

of some specific parameter variations caused by disturbance. That is to say, in an open-loop 

tracking system, slight inaccuracy of locations may lead to errors. These errors may 

accumulate over time, resulting in tracking drift or even tracking failures [17]. 

On the contrary, Predator is a typical closed-loop control system which extends open-loop 

control system with a mechanism of feedback. Closed-loop control system demonstrates 

advantage over open-loop controllers with reduced sensitivity to parameter variations. The 

Predator closed-loop control system is illustrated in Figure 2. 

 

 

Figure 2. Predator Closed-loop Control System 

Different from open-loop tracking system, Predator employs a cascade of object detectors 

to serve as its feedback basis. The feedback object detectors observe the performance of the 

tracker and correct the response of the tracker if it suffers any drift. Moreover, once the short-

term median flow tracker completely loses track of the object of interest, the feedback object 

detectors will then reinitialize the tracking process. As a result, the feedback mechanism 

significantly stabilizes the tracking system, making it possible to perform long-term robust 

tracking in unconstrained videos. 

According to classic control theory, an effective and efficient feedback factor is of crucial 

importance to the overall performance of a control system [18]. However, in the procedure of 

object detection in Predator, each frame is scanned at multiple predefined scales by using a 

sliding window. About a hundred thousands of likely candidates of object windows will be 

generated, depending on the size of the image and the size of the original object bounding box 

(in fact, for typical size of 320*240 input images, if the size of the original object bounding 

box is 100*80, this will generate about 70000 likely patches). The greedy search strategy in 

such a large search scope is problematic because of its comparatively high computational load. 

Hence the remedy power of cascade of detectors is decreased, which in turn has an uncertain 

effect on the short-term tracker or brings new error into the system. Based on the above 

discussions, we can safely draw the conclusion that a more effective and efficient motion 

model can improve the performance of the entire system. This motivates us to design a more 

effective and efficient motion model. 

 

3. Extended Particle Filter Motion Model with Orthogonal Design 

Particle filters [19-21] have been the most frequently used powerful tools in dealing with 

nonlinear and non-Gaussian state estimation of the stochastic system in the past decades. This 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 7, No. 6 (2014) 

 

 

128   Copyright ⓒ 2014 SERSC 

 

technique has been widely used in various fields such as robotics, signal processing, and 

visual tracking. 

Particle filter is a type of Monte Carlo executive methods of recursive Bayesian state 

estimation. A typical state space representation of dynamic system can be written as follows: 

 1 1,k k kx f x v                                                                        (1) 

 ,k k ky h x w                                                                         (2) 

where     xn

kx Rò ,     yn

ky Rò are the state vector and measurement vector at time k  respectively. 

1      vn

kv R ò ,      wn

kw Rò are the process noise and measurement noise with the known probability 

density function (PDF). xn , yn , vn , wn  are the dimensions of vectors, and f  , h  are known 

possibly nonlinear functions. kv and kw are independent of the past and current states. 

Meanwhile, kv is independent of the measurement noise kw . The recursive Bayesian state 

estimation requires to construct the PDF of the state kx , given all the available information  

 1:p |k kx y  where  1: : 1, ,k iy y i k   . This PDF can be obtained recursively in two steps: 

prediction and update. If the PDF  1 1: 1p |k kx y   at time 1k   has been obtained, the prior 

PDF  1: 1p |k kx y   of the state at time k  can be obtained by using the system model [20]: 

     1: 1 1 1 1: 1 1p | p | p |k k k k k k kx y x x x y dx                                          (3) 

Once the observation ky at time k  is available, the required posterior PDF  1:p |k kx y can be 

obtained by using ky to update the prior via Bayes rule [20]: 

 
   

 
1: 1

1:

1: 1

p | p |
p |

p |

k k k k

k k

k k

y x x y
x y

y y





                                                   (4) 

where 

     1: 1 1: 1p | p | p |k k k k k k ky y y x x y dx                                                (5) 

The  p |k ky x is defined by the observation equation and the known state of kw : 

      p | σ h , pk k k k k k ky x y x v w dw                                             (6) 

where  σ · is the Dirac delta function and  p kw is the PDF of kw . The pseudocode 

description of generic particle filter is shown in Table 1. 

Table 1. Pseudocode Description of Generic Particle Filter 

For i=1: N  

Draw  1| ,~ qi i

k k k kx x x y  

Evaluate the importance weights: 

   
 

1

1

1

p | p |

,q |

i i i

k k k ki i

k k i i

k k k

y x x x

x x y
 







                                                       (7) 

End For 
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Calculate total weight: 

 1t sum i N

ki                                                                  (8) 

For i=1: N  

Normalize: 
i

i k
k

t


                                                                        (9) 

 

End For 

Calculate effN :

1

2

1

N
i

eff k

i

N w





 
  
 
  

If eff thrN N  

    
1 1

, , RESAMPLE ,
N N

i i i i

k k k ki i
x x 

 

  
  

                                        (10) 

End if 

1

·
N

i i

k k k

i

x x


                                                              (11) 

 

From Table 1, we observe that some particles are eliminated and some particles are copied 

in RESAMPLE procedure, which results in sample impoverishment. Yiu-Wing Leung [22] 

proposes a genetic algorithm called orthogonal genetic algorithm with quantization for global 

numerical optimization with continuous variables. They utilize the orthogonal experiment 

design to enhance the genetic algorithm. Motivated by [22], we propose a novel motion 

model based on extended particle filter with orthogonal design. Our objective is to reduce the 

search scope of the cascade of detectors, thus we can significantly improve the efficiency of 

the process of detection in Predator. The detailed steps of our proposed algorithm are shown 

in Table 2. 

 

Table 2. Extended Particle Filter with Orthogonal Experiment Design 

Step1: Randomly sample N  particles 
1

,
N

i i

k k i
x 


 from the particle sets  1| ,~ qi i

k k k kx x x y  

and initialize parameters. 

Step2: Evaluate and normalize the importance weights using formula (1), (7), (8) and (9). 

Step3: Orthogonal experimental design. Suppose that there are Q groups of particles 

1 2, , , QG G G , where  1 2, , ,i i i idG G G G   and d represents the dimensionality of each 

group. Then each group is regarded as a level il ,      1,2, ,i Qò . In the next step, particles in 

each group are divided into F  sub-groups, and each sub-group contains N  particles equally. 

Then each sub-group is regarded as a factor   1 1
, ,j jNj N

f G G
 

   ,      1,2, ,j Fò . Once 

we obtain the level il and factor jf , we construct our orthogonal array by the following 

procedure: 

a) Construct the basic columns: 

Compute the minimum J which satisfies  ( 1) / 1JF Q Q   , and let
JM Q ; 
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FOR 1k   TO J  DO 
1 1

1
1

kQ
j

Q

 
 


                                                                     (12) 

FOR 1i   TO 
JQ  DO 

,

1
   i j J k

i
a mod Q

Q 


                                                                (13) 

END 

END 

b) Construct the non-basic columns: 

FOR 2k  TO J  DO 
1 1

1
1

kQ
j

Q

 
 


                                                                       (14) 

FOR 1s  TO 1j  DO 

FOR 1t  TO 1Q  DO 

    1 1 t
*    s jj s Q

a a t a mod Q
   

                                                  (15) 

END 

END 

END 

c) Increment ,i ja by one for all1 i M   and1 j N   . 

d) Calculate the new state vector at time 1k  and update the importance weights: 

 

 1

*
j

k

f w
x

w
 




                                                                        (16) 

1 1p( | )j j

k k kw y x                                                                        (17) 

e) Calculate the final state vector: 

1 1

1

x *
N

j j

k k

j

x w 



                                                                         (18) 

 

Due to the power of particle optimization and re-combination with orthogonal design, 

we significantly reduce the scope of search region for the object of interest, which 

further facilitates the object searching procedure and improves the efficiency of whole 

pipeline. 

 

4. Experiments 

In order to demonstrate the superior performance of our proposed algorithm, we compare 

our tracker with three state-of-the-art trackers on 4 challenging CCTV videos. The reference 

trackers are Predator [13], incremental Learning for visual tracking (IVT tracker) [11] and 

multiple instance learning (MIL tracker) [5]. The 4 CCTV videos are challenging because the 

ship of interest suffers cluttered background, illumination variation, dramatic occlusion and 

extreme scale change. To make fair comparison, all trackers mentioned above are 

implemented in MATLAB. The qualitative results are illustrated in Figure 3 and the 

quantitative results are shown in Table 3 and Figure 4. 
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4.1. Qualitative Evaluations 
 

 
(a) CCTV 1 

 
(b) CCTV 2 

 
(c) CCTV 3 

 
(d) CCTV 4 

Figure 3. Screenshots of Sampled Tracking Results 

(Red—our tracker  Blue—Predator  Green—IVT tracker  Black—MIL tracker) 
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4.2. Qualitative Evaluations 

We use two metrics to evaluate the proposed tracker and the reference trackers. One of the 

metrics is center location error (CLE) (in pixels). Simultaneously, since one of our main goals 

is to demonstrate the improved efficiency, we further employ average frames per second (FPS) 

as the other criteria to evaluate efficiency. The green fonts in Table 3 indicate the best 

performance and the blue fonts indicate the second-best. We can obviously see that our 

tracker achieves the best or second-best performance in all sequences, in terms of both CLE 

and FPS. 

Table 3. Quantitative Evaluation Results of Ten Challenging CCTV Videos 

Sequence Ours Predator IVT MIL 

CCTV 1 7.3 7.3 15.1 14.2 

CCTV 2 4.2 4.8 5.8 12.5 

CCTV 3 8.9 8.5 14.2 24.2 

CCTV 4 11.1 13.3 19.5 21.5 

Average CLE 7.9 8.5 13.6 18.1 

Average FPS 42 16 12.6 18.1 

 

 

 

Figure 4. Center Location Error for Each Sequence 
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CCTV 1 is a very long sequence which suffers cluttered background, making it very 

challenging to track the ship of interest. Both IVT tracker and MIL tracker drift to the 

background because the texture of the background is similar to the ship (see frame 300). Our 

tracker and Predator perform well on this sequence because the appearance model based on P-

N learning strategy makes the classifier better differentiate the target from the cluttered 

background. CCTV 2 comprises motion blur and in-plane rotation. MIL tracker performs not 

well in this sequence because the feature selection method used in the MIL tracker has 

potential overfitting problem and this method is easy to select the less discriminative features. 

This will lead to error accumulation over time. Thus MIL tracker will eventually drift, as 

shown in frame 310. The ship undergoes partial and even full occlusion in CCTV 3. Both IVT 

tracker and MIL tracker yield some unstable results when two ships occlude each other 

severely (see frame 325 and 400). Though the short-term median flow tracker in our system 

and Predator is also sensitive to appearance change caused by occlusion, these two trackers 

achieve much preferable results. This is partly due to the cascade of detectors, which helps to 

locate the object of interest and corrects the error of short-term median flow tracker. 

Meanwhile, the discriminative model with local features has demonstrated to handle 

occlusion better than simple feature extraction procedure such as MIL strategy. CCTV 4 is a 

long sequence which suffers extreme scale change. Both IVT tracker and MIL tracker 

eventually fail to track the ship of interest due to its intrinsic weakness with regard to 

appearance change caused by scale change. It can also be seen that our tracker performs 

comparatively better overall than Predator in terms of accuracy. This is due to the power of 

particle optimization and re-combination with orthogonal design, which leads to a more 

effective and efficient motion model. The motion model better relates the location of the 

object over time, which facilitates the search procedure for finding the most likely location in 

the current frame. Moreover, since our main purpose is to design a more effective and 

efficient motion model, we notice that Predator runs about 16 FPS on our 2.2 Ghz Intel i3 

processor on a 320*240 CCTV video. However, our tracker runs about 42 FPS on average, 

meaning that our proposed tracker runs almost 3 times as fast as the Predator. 

 

5. Conclusions 

In this paper, we deeply analyze Predator in a perspective of control system and indicate 

the greedy search strategy in cascade object detection procedure is the most time-consuming 

part. In order to solve this problem, we propose a novel motion model based on extended 

particle filter with orthogonal design. We significantly improve the efficiency in terms of both 

time and space complexity by employing particle optimization and re-combination with 

orthogonal design. In the experiments, we demonstrate that our enhanced tracker outperforms 

some state-of-the-art trackers in terms of both accuracy and efficiency. 
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