
International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.7, No.5 (2014), pp.361-374 

http://dx.doi.org/10.14257/ijsip.2014.7.5.31 

 

 

ISSN: 2005-4254 IJSIP 

Copyright ⓒ 2014 SERSC 

Remote Sensing Image Fusion Based On IHS and Dual Tree 

Compactly Supported Shearlet Transform 
 

 

Chang Duan
1,2

, Qihong Huang
3
, Xuegang Wang

1
, Shuai Wang and Hong Wang

1
 

1
School of Electronic Engineering, University of Electronic Science Technology of 

China 
2
Research Institute of Electronic Science and Technology, University of Electronic 

Science Technology of China 
3
Electronic Engineering College, Chengdu University of Information Technology 

Pertinax@163.com; 

Abstract 

This paper presents a novel remote sensing image fusion algorithm, which implements the 

intensity-hue-saturation (IHS) transform on panchromatic sharpening of multispectral data 

and the dual-tree compactly supported shearlet transform (DT CSST) during fusion. Shearlet 

transforms can provide almost optimal representation of the anisotropic features of an image. 

The spatial domain discrete implementation, the compactly supported shearlet transform 

(CSST), which represents the directions by dilation operations, are selected in the proposed 

fusion method. Since most of the prominent features of images, such as edges and regions, 

have limited sizes in the spatial domain, CSST is very suitable for image fusion. However, the 

conventional CSST is shift-variant, which causes distortions in fused images. With the 

embedded dual-tree (DT) sturcture in the CSST, the shift-variant properties can be effectively 

reduced. Combining the IHS transform and the DT CSST, an effective panchromatic and 

multispectral image fusion method is proposed in this paper. The experiments’ results suggest 

that the proposed method extract more spatial information from panchromatic images with 

less lost in spectral consistency compared to other fusion methods which are based on 

discrete wavelet transform (DWT), à trous wavelet transform, à trous shearlet transform, the 

dual-tree complex wave transform ( DT CWT), or the Curvelet transform. 

 

Keywords: Compactly supported shearlet transform, panchromatic multispectral image 

fusion, Pan-sharpening, Dual-tree 

 

1. Introduction 

Different image sensors are equipped on satellites to capture different images of the same 

area or object. Generally, there are two types of images recorded on a satellite: pan-chromatic 

images, which record the total intensity of radiation falling on each pixel, and multispectral 

images, which record the intensity of radiation in a small band of visible spectra, include the 

red-green-blue (RGB) region and infrared region. The wavelengths of RGB region are 

ranging from 0.7 µm to 0.4 µm and the wavelengths of infrared region are ranging from 0.7 

µm to 10 µm or greater which are further classified as near infrared (NIR), middle infrared 

(MIR), or far infrared (FIR or thermal). Panchromatic images supply high spatial resolution 

for distinguishing features, while multispectral images supply high spectral resolution. In 

many applications, it would be more helpful if images had both high spatial and high spectral 

resolutions. This has led to creation of the panchromatic and multispectral image fusion 

http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/%CE%9Cm
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method or pan-sharpening method, which is very important development in this field of 

study. 

The panchromatic and multispectral image fusion method has been studied for decades. In 

the early period of this research, the fused images were simply a linear combination of source 

images, such as Brovery Transform [1]. The early methods are relatively simple and the 

performances of fused results are low. Gradually, researchers realized that colour information 

is actually useful and should be maintained. Thus, many solutions in colour space have been 

proposed, and the representative methods are IHS[2] and principal component analysis (PCA) 

[3] algorithms, in which a main spectral component is generated from MS-images, and this 

main component will be substituted by pan-images to increase the spatial resolution prior to 

inverse IHS or PCA transform. By this procedure, spatial resolution is increased and the 

spectral information is maintained as much as possible. Finally, researchers realized that both 

the spatial and spectral consistencies should be maintained simultaneously. With the 

development of harmonic analysis theory, several multi-scale transform-based methods have 

been proposed. They include the DWT [3], the analytic wavelet transform (AWT) [4], the 

dual-tree complex wavelet transform [5, 6], and the curvelet [7, 8]. Many of these methods 

combine IHS or PCA simultaneously.  

Among the multi-scale transforms, the shearlet system stands out in recent years for its 

efficient representation of multidimensional data. Indeed, many other transforms have been 

introduced to overcome the limitation of traditional multi-scale methods which cannot capture 

edges and other anisotropic features in a satisfactory manner. The shearlet transform has 

many advantages. For example, it is unique in that it has a single or finite set of generating 

functions; it provides almost optimal representations for multi-dimensional data; It allows a 

unified treatment of the continuum and digital realms, and it provides a compactly supported 

transform. Presently, there are two categories of the implementation of the discrete shearlet 

transform: Frequency-domain based approaches and spatial-domain based approaches. The 

frequency-domain based approaches have better frequency localization, while the spatial-

domain based approaches have better spatial localization. Suppose that the sizes of the 

frequency and spatial windows are FS  and SS , respectively. According to the Uncertainly 

Principle, the product of F SS S  is a constant, meaning that increasing or decreasing both FS  

and SS  simultaneously is impossible. In the case of image fusion, spatial localization is more 

important than frequency localization because most of the salient features of images, such as 

the regions and edges, have limited sizes in the spatial domain, and the human visual system 

also extracts that information directly from the spatial domain. The compactly supported 

shearlet transform (CSST) belongs to the spatial-domain based implementation category [9, 

10]. However, CSST has a shift-variant disadvantage to image fusion because it is based on a 

traditional critically-sampled discrete wavelet transform. Fortunately, this disadvantage can 

be sophisticatedly mitigated by the dual-tree structure, the details of which will be discussed 

in Section 3. 

Many image fusion methods based on the shearlet transform have been proposed recently. 

A remote sensing image fusion method based on the band-limited shearlet transform (BLST) 

has been proposed by[11], and is claimed to be superior to the curvelet method. Miao [12, 

13] discussed the multi-focus image fusion method based on the CSST; however, the shift-

variant property of the CSST was not considered and consequently, no compensation was 

made for it. [14] proposed an IHS and shearlet-based pan-MS image fusion method, but did 

not clearly describe which type of shearlet implementation was used.  

In this paper, the dual-tree compactly supported shearlet transform (DT CSST), which is 

almost shift-invariant, is proposed firstly. Then, a Pan-MS image fusion method based on IHS 
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and DT CSST is proposed. The IHS guarantees the spectral consistency, and the DT CSST 

provides the ability to extract more spatial information from the pan-image. The rest of the 

paper is organized as described in the following sentences. The basic theory of the shearlet 

transform and its digital implementation of CSST are introduced in Section 2. The 

construction of DT CSST and its shift invariant property are introduced in Section 3. The 

proposed remote image fusion method is given in Section 4. After the experiments and 

analysis in Section 5, a conclusion is drawn in Section 6. 

 

2. Shearlet Transform 

In this section, the basic theory of the shearlet transform and the implementations of 

CSST are briefly introduced.  

A shearlet transform is a special case of the composite dilation wavelet transform. 

The dilation operation 
MD  is given as: 

1/2 1( ) det ( ), ( )M dD x M M x M GL 
   R ,                                 (2.1) 

where M  is the parameter of the dilation operation, ( )x  is any function, and 

( )dGL R represents the group of d -dimensional invertible matrices defined on R . The 

translation operation tT  is given as: 

( ) ( ),tT x x t t   R .                                                   (2.2) 

Let 
1/2

0

0
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R be 

the shearing matrix. The continuous shearlet system 
2 2( ), ( )SH L   R  is defined by: 

2

, ,( ) { : 0, , }
aa s t t A sSH T D D a s t      R R .                             (2.3) 

The definition of the continuous shearlet transform of 
2 2( )f L R  is the mapping: 

( , , ) , ( , , ) ,( , , )f SH f a s t f a s t a s t   S ,                             (2.4) 

where 
2: ( )  R R RS , ( , , )

a st A Sa s t T D D   . The irregular discrete shearlet system 

upon   and  is 
3

1 14
, ,( , ) { ( ( )) : ( , , ) }a s t a sDSH a A S t a s t  


      . A (regular) 

discrete shearlet system associated with  , denoted by ( )SH  , is defined by 

 
3

24
, , 2( ) { 2 : , , }

j

j k m k jSH S A m j k m      Z Z . Notice that the regular versions of 

discrete shearlet systems are derived from irregular systems by choosing 
2

2
{(2 , , ) : , , }j

j

kk S A m j k m



    Z Z . The discrete shearlet transform of 
2 2( )f L R  

is the mapping defined by: 
2

, ,( , , ) , ,( , , )j k mf DSH f j k m f j k m    Z Z Z                             (2.5) 

Cone-adapted shearlets were introduced for the purpose of treating the different 

directions more equally, so the number of directions could be limited [15]. 

In the study by Lim [9], the principle and the details of the construction of the CSST 

were presented, including separable and non-separable transforms. The separable 

shearlet generator was written as 1 2 1 2( , ) ( ) ( )x x x x   , where the details of   and   are 

given in Corollary III.3 of Lim’s study [9]. The forward and backward steps of the 

CSST are given in Figure 1. The input function ( )f x  is first processed by the shear 
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operation along vertical and horizon directions in the spatial domain. Then, the 

anisotropic discrete wavelet transform (ADWT) is performed on every sheared version 

of the input image. The outputs of ADWT, 
,1, , ,j m j k mC C and 

,1, , ,j m j k mC C , are the 

coefficients of two cones of where j is the scale parameter, k  is the number of directions, 

m refers the positions. 

k
f 
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Figure 1. Forward and Backward of CSST 

3. Dual-tree Compactly Supported Shearlet Transform 

The dual-tree complex [16, 17] wavelet transform employs two real discrete wavelet 

transforms (DWTs). The first DWT gives the real part of the transform, while the 

second DWT gives the imaginary part. The two real wavelet transforms use two 

different sets of filters, each of which satisfies the PR (Perfect Reconstruction) 

conditions separately. The two sets of filters are jointly designed so that the overall 

transform is approximately analytic. If these two DWTs satisfy the half-sample delay 

condition, which also means that the wavelets form an approximate Hilbert transform 

pair, then the transform would be approximately shift-invariant.  

Heuristically, the definitions of forward DT CSST can be represented as follows:  

Let ,CS ( , , )f j k m   represent DT CSST, its coefficients can be calculated by: 

,CS ( , , ) SH ( , , ) SH ( , , )f j k m f j k m j f j k m     ,                             (3.1) 

where ( , , )SH f j k m  and ( , , )SH j k m  denote the real and imaginary parts of the 

complex coefficients, which are calculated by equation (2.4). The backward DT CSST 

transform or reconstruction of f  is given by: 

2 2
, , , , , , , ,

, , , ,

1 1
( , , ) , ,

2 2j k m j k m j k m j k m
j k m j k m

f j k m f f   
   

      
Z Z Z Z

                     (3.2) 

This study used the same method as used by [17, 18]. Kingsbury proceeded to 

illustrate the shift-variance of DWT and the shift-invariance of DT CWT; the 

comparison of reconstruction results, each single scale-by-scale, for a traditional CSST 

and DT CSST are given in Figure 2. The input is a white circle located at the centre of a 

black background. The first and second rows are the reconstruction for the same 

direction for a horizontal cone of the DT CSST and CSST, and the third and fourth rows 

are the reconstruction for the same direction for a vertical cone of the DT CSST and 
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CSST. It was observed in Figure 2(a) that both the CSST and the DT CSST can 

reconstruct the input image precisely, but in different scales, and that the reconstruction 

of DT CSST is much smoother than that of CSST. This comparison shows the shift -

variant effect of the CSST and the approximate shift-invariant effect of the DT CSST. 

 

Figure 2. The Comparison of Reconstruction 

(a) the reconstruction of all coefficients, (b) the reconstruction of the low 
frequency coefficients alone, and (c) to (g) the reconstruction for each 

different single scale of high frequency coefficients 

 

4. Proposed Method and Measurements 

4.1 General Image Fusions 

 

Figure 3. General Image Fusion 

General image fusion (GIF), in this paper, refers to steps A and B in Figure 3. A and 

B represent two input images, and they are decomposed by certain forward transforms 

into two sets of coefficients, denoted by AC  and BC . Then, under certain fusion rules, 

these coefficients are fused into one set, which is denoted by FC . Finally, an inverse 

transform is performed and the output image F is the fused image. 

The source images AC  and BC  decomposed by DT CSST from source images have 

different features: AC  is generated from the pan-image, which is monochromic with 

high spatial resolution and BC  is generated from MS-images, which contain spectral 

information. In the fusion rule, the high frequency coefficients FHC  are extracted from 
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AC  and the low frequency coefficients 
FLC  are the average of both 

AC  and 
BC  as given 

in:  

.                                                (4.1) 

After fusion, the fused image contains both spatial and spectral information.  

 

4.2 IHS Transform 

The IHS colour transform effectively separates spatial I  and spectral H  and S  

information from a standard RGB image. It relates to the human colour  perception 

parameters. The mathematical context is expressed by equation (4.2). I  represents the 

intensity, while ‘
1 ’ and ‘

2 ’ represent intermediate variables which are needed in the 

transform. H  and S  stand for hue and saturation (Elghazali 2011). 

  

 1 2

1

tanH




                                                                 (4.2) 

2 2

1 2S     

4.3 IHS Combined with GIF based on DT CSST  

 

Figure 4. Steps of the Proposed Algorithm 

The steps of the proposed method are given in Figure 4. In the first step, the source 

images are registered. Then, the small-sized MS-images are resized to the same size as 

the pan-image, and the IHS transform is performed on the resized MS-images; the 

output are the I , H , and S components. Next, the histogram equalization (HE) 

operation is performed on the pan-image, according to the grey-scale distribution of the 

I -component of the multispectral images, this step can make the substituted I -

component of the pan-image closer to that of the MS-images, which can retain the 
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spectral consistency. GIF based on the DT CSST is performed in the  next step. Finally, 

the inverse IHS transform is performed, and the result is the final fused image.  

 

4.4 Performance Measurements 

Two measurement groups were utilized to analyze the performance; one is related to 

the space consistency where mutual information (MI), 
|AB FQ  of [18] and 0Q  of [19] are 

the selected performance indices, and the other type is related to spectral consistency, 

where RASE, ERGAS and 3Q  of [2] are the selected performance indices.  

MI measures how much information, which originated in the source images, is 

contained in the fused image. It is defined as: 

FA FBMI I I  ,                                                 (4.3) 

where 
,

( , )
( , ) ( , ) log

( ) ( )

FA
FA FA

f a F A

P f a
I f a P f a

P f P a
 , 

,

( , )
( , ) ( , ) log

( ) ( )

FB
FB FB

f b F B

P f b
I f b P f b

P f P b
 , and P  is the 

distribution of grey-scale of images. 
|AB FQ  in the study by[2] evaluates the amount of edge information that is transferred 

from the input images to the output fused images. The larger the 
|AB FQ , the more 

amount of important edge information is being transferred.  

0Q  of [20] is defined as: 

2 2 2 2 2 2 2 2

4 22
0

( )( )

xy xy x y

x y x y x y

xy xy
Q

x y x y

   

     
   

   
,                   (4.4) 

where x  and y  denote two input images, x  and y  are the mean of x  and y , and 
2

x  

and 
xy  denote the variance of x  and the covariance of x , y . The value of 0Q  is 

between -1 and 1. The maximum value of 1 is achieved when x  and y  are identical. 

RASE is defined as (4.5), can estimate the average performance of the method of 

image fusion in the spectral bands. 

2

1

100 1
( )

N

i

i

RASE RMSE S
M N 

  ,                                    (4.5) 

where M  is the mean radiance of N  spectral images ( )iS  of the original MS bands, 

RMSE is the root mean square error defined as: 
2 2 2( ) ( ) ( )i i iRMSE S bias S SD S  . 

ERGAS refers to the relative global dimensional synthesis error  as in euqtion (4.6): 
2

2
1

( )1
100

N
i

i i

RMSE Sh
ERGAS

l N M

  ,                                  (4.6) 

where h  is the resolution of the pan-image, l  is the resolution of the MS-images, and 

i
M  is the mean radiance of each spectral band. The lower the value of RASE and the 

ERGAS indexes, the higher the spectral quality of the fused images.  

For the original MS-images with three spectral bands, let 1a , 1b , and 1c  denote the 

radiance value of a given image pixel in the fourth band. For the fusion images with 

three spectral bands, let 2a , 2b , and 2c  denote the radiance values of a given image 

pixel in the four bands. Let 1 1 1 1z a ib jc    and 2 2 2 2z a ib jc    denote the three-band 

original MS image and the fusion product, respectively, both of which are expressed as 

quaternion. Then, 3Q  is defined as in Equation (4.7). 
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1 2 1 2

1 2 1 2

1 2

2 22 2
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2 2
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z z z z
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Q

z z

  

   

 
  

  
,                                  (4.7) 

where 
1 2z z  is the hyper-complex covariance between 

1z  and 
2z , 

1z
  and 

2z  are the 

square roots of the variances of 
1z  and 

2z ,  and  are the expected values of 
1z  and 

2z , and  is the modulus of .  , in fact, is the vector version of . The 

maximum value of 1 is achieved when  and  are identical. 

 

5. Experiments and Analysis 

 

Figure 5. Source and Result Images of the First Group 

(a) Multispectral images, (b) Panchromatic image, (c) fused image by DT CSST, (d) 
fused image by curvelet, (e) fused image by DWT, (f) fused image by DTCWT, (g) 

fused image by à  trous wavelet, (h) fused image by à trous shearlet 

In this section, the results of experiments performed to evaluate the qualities of the 

proposed method are reported. Three groups of data are used as the source data, where the 

first and second groups are originated from IKONOS, and third group is originated from 

QuickBird. The spatial resolution of IKONOS is 1 m for the panchromatic image and 4 m for 

the multispectral images. The spatial resolution of QuickBird is 0.6 m for the panchromatic 

image and 2.4 m for the multispectral images. The sizes of all of the panchromatic images are 

512×512; whereas the multispectral images are 128×128. The sources images are shown in 

(a) and (b) from Figure 5 to Figure 7, where (a) are the multispectral images and (b) are the 

panchromatic images, and the multispectral images are resized to the same size of 

panchromatic images. 

The result images of three groups of proposed method (c) and other methods based on else 

transforms combined with IHS (d) to (h) are shown in Figure 7 respectively, where the 

number of scale equal to five. The visual effect of all of the result images are almost identical, 

which means that the proposed method, as well as other methods, can effectively extract the 

spatial information from panchromatic images and combine it with spectral information from 

1z 2z

  3Q 0Q

1z 2z



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.7, No.5 (2014) 

 

 

Copyright ⓒ 2014 SERSC  369 

the multispectral images, and that the performance cannot really be evaluated simply from the 

visual effect. 

 

Figure 6. Source and Result Images of the Second Group 

(a) Multispectral images, (b) Panchromatic image, (c) fused image by DT CSST, (d) 
fused image by curvelet, (e) fused image by DWT, (f) fused image by DTCWT, (g) 

fused image by à  trous wavelet, (h) fused image by à trous shearlet 

 

Figure 7. Source and Resulting Images of the Third Group 

(a) Multispectral images, (b) Panchromatic image, (c) fused image by DT CSST, (d) 
fused image by curvelet, (e) fused image by DWT, (f) fused image by DTCWT, (g) 

fused image by à  trous wavelet, (h) fused image by à trous shearlet 

When evaluating the performance of all of the methods, both spatial and spectral 

information need to be take into account, because these two types of measurements are, in 

fact, negatively correlated, which means that, for certain chosen method, it is impossible to 
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increase both spatial and spectral consistency simultaneously. Different number of scale 

provides different proportions of mixture for spatial and spectral information. Usually, if the 

number of scale is too small, equalling 1 or 2, excessive spectral information will be included 

in fused images, which ultimately cause many unpleasant regions in fused images. While if 

the number of scale is too large, over 5 for example, in several implementations of 

transforms, such as à trous wavelet, à trous shearlet, the size of filter becomes larger than the 

data which causes inner errors and the methods become useless; and for other transforms, 

such as DWT, DTCWT, CSST etc. larger number of scale means larger computation cost. 

Therefore, the recommended numbers of scale are 3, 4 and 5.  

Table 1. The Spatial Consistency Performance Indices for Third Group Data 

Table 2. The Spectral Consistency Performance Indices for Third Group Data 

Parts of the performance indices of the third group, with number of scale from 2 to 5, are 

shown in Table 1 and Table 2. From these two tables, it can be noticed that the à trous 

shearlet based method has most of the largest values in spatial indices, but its spectral indices 

are not the best. It’s also hard to compare the performances by the values directly. But after 

the curves, whose first dimension is the spatial indices and the second dimension is the 

spectral indices, are drawn as shown in Figure 8, the performance can be compared easily. In 

Figure 8, only the curves of MI with RASE and Q3 are shown. In fact, other curves such as 

Q0 with RASE or Q
AB|F

 with Q3 etc. are similar to those in Figure 8; therefore they are 

Scale 

Number 
DWT DTCWT 

À trous 

wavelet 

À trous 

shearlet 
Cuvelet CSST 

2 

MI 2.7865 3.2022 3.2154 3.1703 3.212 3.2217 

Q
AB|F

 0.42584 0.60288 0.61502 0.61359 0.61001 0.61766 

Q0 0.83832 0.95673 0.95868 0.96089 0.95774 0.95887 

3 

MI 2.6526 3.2341 3.2531 3.244 3.2449 3.2586 

Q
AB|F

 0.56044 0.6533 0.65873 0.65935 0.65633 0.65819 

Q0 0.88436 0.96902 0.97023 0.97111 0.96962 0.97031 

4 

MI 2.6439 3.354 3.3876 3.3892 3.3732 3.3987 

Q
AB|F

 0.62359 0.67546 0.6781 0.67942 0.67689 0.67824 

Q0 0.91677 0.97768 0.97889 0.9803 0.97828 0.97923 

5 

MI 2.7487 3.5589 3.6018 3.6633 3.5822 3.6301 

Q
AB|F

 0.6642 0.68782 0.68869 0.68917 0.68848 0.68858 

Q0 0.94641 0.98559 0.98647 0.98795 0.98607 0.98697 

Scale Number DWT DTCWT 
À trous 

wavelet 

À trous 

shearlet 
Curvelet  CSST 

2 

Rase 11.1636 14.3793 14.611 15.4422 14.4656 14.5817 

Ergas 86.8722 111.8956 113.6989 120.1671 112.5673 113.4709 

Q3 0.94944 0.91012 0.9075 0.89768 0.90916 0.90785 

3 

Rase 14.5059 16.8123 16.9493 17.327 16.8587 16.8864 

Ergas 112.8813 130.8291 131.8948 134.8344 131.1895 131.4051 

Q3 0.91756 0.88113 0.87934 0.87449 0.8805 0.88011 

4 

Rase 17.0354 18.3477 18.4794 19.0217 18.3921 18.4686 

Ergas 132.565 142.7767 143.8017 148.0214 143.1225 143.7174 

Q3 0.88619 0.85953 0.85745 0.84924 0.85881 0.85757 

5 
Rase 19.1829 19.9046 20.0039 20.4483 19.9445 19.9859 

Ergas 149.2758 154.8922 155.665 159.1231 155.2026 155.5245 
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ignored for the limitation of the paper. From the curves in Figure 8, it can be noticed in the 

centre parts of the curves, if a horizontal line is drawn from left to right, it will intersect with 

all the curves. The curve of proposed method is the last one which the horizontal line 

intersects with. This suggests that under the case of equal indices for spectral consistency, the 

proposed method has the largest spatial consistency. And similarly, if a vertically line is 

drawn, the proposed method has the least RASE and highest Q3. This also suggests that under 

the case of equal indices for spatial consistency, the proposed method has the best spectral 

consistency. To sum up, the results of experiment suggest that the proposed, CSST with IHS 

based, panchromatic and spectral image fusion method is superior to methods based on other 

multi-scale transforms such as DWT, DTCWT, à trous wavelet, à trous shearlet or curvelet. 

 

Figure 8. Performance Curves between Spatial and Spectral Consistency 

6. Conclusion 

Shearlet theory has a better ability to represent anisotropic features of multi-dimensional 

data than conventional wavelet theory, and the digital implementation of CSST is efficient 

and effective. The advantages of CSST, such as multi-resolution on directions, compactly 

supported in the spatial domain, make it very suitable for remote image fusion. However, its 

shift-variant property leads to distortions in fused images and hampers the performance. The 

dual-tree structure of DT CWT can be embedded here to reduce the shift variant property of 

conventional CSST. Combining the DT CSST and IHS transforms, the proposed remote 

image fusion method can effectively fulfill the task of fusing the panchromatic and the 

multispectral images. According to the experimental results, the proposed remote image 

fusion method is superior to the methods based on DWT, à trous shearlet, à trous wavelet, DT 

CWT, and curvelet transform. 
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