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Abstract

In this paper, we firstly propose a new image restoration model including non-smooth ¢*-
norm data-fidelity term and non-smooth ¢*-norm regularization term based on the bilateral
total variation regularization. Secondly, we prove the existence of minimal solutions of our
proposed energy functional model. Thirdly, we consider the convergence of the discrete
numerical algorithm, and obtain that the limit point of the solution sequence is the minimal
point of our proposed energy functional. Finally, we give some experimental simulation
results in the case of the single noisy image without blurring, multiple different noisy images
without blurring, single noisy image with blurring, and multiple different noisy images with
different blurring, respectively. The restoration results show our model works effectively.

Keywords: image restoration, bilateral total variation, minimal solution, mathematical
induction method

1. Introduction

Image denoising and deblurring are two fundamental problems in the field of image
processing. Image denoising is to enhance images by reducing some degradation. Image
deblurring is to recover the original, sharp image by using a mathematical model of the
blurring process. The key issue is that some information is "hidden" and can only be
recovered if we know the details of the blurring process.

The observed image is the convolution of a shift invariant blurring function with the true
image plus some additive noise. Let u(x) be an original image, z(x) be an observed image,

and h(x) be a point spread function (PSF). A degraded image model can be described as
z(x)=.|'Qh(s)u(x—s)ds+n(x). Here n(x) is an additive noise, x=(x;,X,) is a vector. Let

u, z and n be discrete original image, degraded image and PSF, respectively. Then, a
discrete image formation process can be put into the matrix-vector form z=Hu+n, where
H is a Toeplitz matrix which is built according to the discrete PSF h. Assuming that the
discrete image u has mxn pixels, notation N=mxn, then u, z and n are N x1 vectors
arranged by row, and H is a matrix of N x N.

Blurred image restoration has been referred in many works when the PSF is known [1, 3-
5]. One of the most successful regularization approaches is the TV regularization method
[20], so the mathematical model can be stated as follows [23],

min E(u) = %"Hu - z||f2 + aJ.Q|Vu|dx,
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where « is a positive constant. However, the disadvantage of the model leads to over-smooth
and produce block-effect.

Recently, many researchers have discussed the local minimization problem, or the global
minimum [6-7, 10-11, 15-16, 18]. The minimal problem is

min E(u) =%||Hu —z||/22 + AD(u),
where | is the Euclidean norm, ®:R" - R is a piecewise C* smooth regularization
term, ®(u)=> ¢(Gu), where G :R" > R" is a difference operator, ¢: R—>R is an
i=1

increasing function[1,3-4,13-15,19-21]. Especially, Geman, et al., [13] studied the cost
function involving convex ¢*-norm data-fidelity term and ¢“-norm regularization term, that
is, ¢(t)=[t|", 1<a <2. We call the model as ¢* + ¢ model, where 1< <2.

In 2004, Nikolova[17] offered another image restoration model, and proved the existence
of solutions of the minimal functional model. The functional model is

minE(u)=|Hu—z|. + A¥(u),
where W (u) is a regular function, i.e., ‘P(u):ziq)(Giu), G, is a difference operator for
i=1

each i=1,2,---,r, and ¢: R~ R is a potential function. The following potential functions
are some smooth and convex edge-preserving [2, 4, 9, 17]. Especially, Bouman, et al., [4]
thought the cost function involving non-convex ¢*-norm data-fidelity term and convex /*-

norm regularization term, i.e., o(t)=|t|", where 1<a<2. We call the model as ¢'+¢*

model, where 1<« <2. Afterwards, Li et al.[17] analyzed the case ¢)(t)=\/a+t2, where

a>0.

In 1998, Tomasi, et al., [22] first put forward the concept of bilateral filtering, the
advantages of the bilateral filtering are not only to consider space distance between two
pixels, but also to consider illumination distance between two pixels. In 2002, Based on the
spirit of TV criterion, and a related the bilateral filter technique, Fariu, et al., [12] proposed
the bilateral total variation(BTV) regularization, which is computationally cheap to
implement, and preserves edges. The regularizing function looks like

P P2

Fow= 3 3 ok
k=—p; I=—p,

where matrices operators S and S, shift X by k, and Y by | pixels in horizontal and

kel
u-S,Su

l
/,1

vertical directions respectively, presenting several scales of derivatives. The scalar weight «,
O0<a <1, is applied to give a spatially decaying effect to the sum of the regularization terms.

After the above analysis, we will consider a cost function including non-smooth ¢*-norm
data-fidelity term and non- smooth ¢*-norm regularization term based on the bilateral total
variation in this paper. We call the model as ¢* +¢* model.

The rest of the paper is organized as follows. In section 2, we will construct a novel image
restoration model based on the bilateral total variation regularization term. In section 3, we
will prove the existence of minimal solutions of our proposed model. In section 4, we will
consider the convergence of discrete numerical algorithm by the mathematical induction
method. In section 5, we show some experimental results. In section 6, we give some
discussions and conclusions.

274 Copyright © 2014 SERSC


dict://key.0895DFE8DB67F9409DB285590D870EDD/mathematical%20induction

International Journal of Signal Processing, Image Processing and Pattern Recognition
Vol.7, No.5 (2014)

2. Bilateral Total Variation-Based Image Restoration Model

Given R degraded images, we describe as z, =H,u+n,, r=12,---,R, where n, is an
additional noise, r=12,---,R.

Using R degraded images, and the advantages of BTV regularization preserving edges, we
consider the following minimization functional model

min E(u Z||H u-z,+4 Z Z el
k=—p; I=—p,
where A, a are positive constant,0 <« <1, p,, p, are two positive integers. The first term is

2.1)

called data-fidelity term, i.e., the residual error term. We adopted ¢'-norm, instead of ¢*-
norm, since when the error is slightly large, the growth rate of ¢*-norm is slower than that of
¢%-norm. Hence, the term is also robust. The second term is called the BTV regularization
term, Sy and S can see the section 1. We call the model (2.1) as ¢* +¢* model.

In order to simplify in the following section, we only consider the case R=1,

min E (u |bT zi|+2Q(u), (2.2)

ueRN

where Q(u)=Ya[Gu., S = {km+1|Vk = —py,---, py, 1 ==, By}, [s] = K|+,

seS
Vk:_pli'”’pl’ |=—p2,~~,p2, s=km+l, sz_pll"'!plv I=_p2"”1p21 GSGRNXN’
=("), Guisa N x1 vector by rows of (1 -S}S, Ju.

Suppose H ™ exists, put y=Hu—z, so u=H"(z+y), the functional (2.2) becomes

mllan Z|yl|+ﬂQ (y). (2.3)
where Q,(y)=Q(H™(z+y)). Q Zas‘”G ull. —ZaS‘Zgo(gs, ) #:R>R,

o(t)=[t|, g{, is the ith row of G, i=1.---,N. For every yeR", E,(y)is 0-coercive, and
E,(y)=0. Q,(y) is convex and continuous. Clearly, E(u) reaches its minimum at G eR",
if and only if, E, (u) reaches its minimumat § = Hui-z.

3. Existence of Minimal Solutions of Energy Functional (2.3)

Now, we construct a relaxation of the minimal energy functional

minE; (y )=i|yi|+ﬂ,Qj(y), (3.1)

N
yeR i-1

where Qj(y):Qg( (z+y ) zas‘zfl’&(gs. z+y)) . (t)=ve+t?, £>0. Some

seS

notations can be referred in the section 2.
According to equations (2.3) and (3.1), we can get the following propositions

Proposition 1 E; (y) is uniformly convergent to E, (y) while &£ —»0".
Proposition 2 Suppose H™ exists, and given &> 0, for every zeR", the functional E’ (y)
in (3.1) is O-coercive, i.e., E/ (y)—> oo, if |y| > .
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Proposition 3 The function Qj(y) is convex and C'—continuous about y, and that, for
every zeR", >0, VyeB(0,¢), Vte[-¢,¢], i=1---,N, there is >0 such that for every
Qi (y+te)-Qi (y)=tDQ; (y)+mt? i=1---,N, where DQ;(y) is the ith npartial
derivative of Q; ().

Proof: Since ¢/ (t)>0, then Q; (y) satisfies the case in Remark 1 [18]. ||

Proposition 4 Fixed z, y, the functional Ej(y) is an increasing function, i.e., for every
£ <&, thereis Ej* (y)<E>(y), and E;(y)=0.

Lemma 1 [14, 17] Suppose H™ exists, and given & >0, then Ej(y) reaches its minimum at
y,eRY, ie. Ef(9,)<E/(y), WyeR".

Proof: The function E; (y) does admit a minimum for every z e R". This minimum is both
local and global [14, 17]. We call the minimal point y,, and the minimum E; (¥, ). |
Theorem 1 Suppose H™ exists, and for every zeR", then there is a minimal point §,,
suchthatE, (¥,)<E,(y), VyeR".

Proof: Taking a strict monotonically decreasing positive sequence {gn}, and g, — 0 while
n— oo, Taking &, =1, and given &, >0, there are the following conclusions by Lemma 1,

1° For ¢ =¢,, there are a minimal point §, and M (>0) only relevant with &,, such that

&

E° (9, )<E*(y), VyeR", 0<E? (9, )<M. (3.2)
2° For & =g, there are a minimal point y.,» such that
E# (9, )<E2(y), vyeR". (3.3)
and since ¢, < g, , according to Proposition 4, we have
E:(9.,)<Er(9.,): (3.4)
Es(9,)<EX(9.,), (3.5)

From the inequalities (3.2), (3.4) and (3.5), we can see
0<E} (5, )<Er(Y,)<E (9, )M,
then, 0<E? (9, )<E> (Y, )<M.
In a similar way, we can get
0<-<Ef (9, )< <Ef(9,)<E?(9,)<M. (3.6)

A~

Therefore, we can conclude that the energy sequence {Ejﬂ (ygn )} is uniformly bounded, i.e.

9. <E2(5.)=3)9
i=1 i=1

Then, Hygﬂ Hs M. As we know, there are a subsequence {9%} and a point §,, such that

~

ygn M

&

+2Q¢"(§, ) <M, where M is a generalized positive constant.

limy, =9,. According to Lemma 1, there is E* (9, )<E"(y) for each yeR". Then

E;’ (90)=1EPOE; (}A’g”k )S E (y), vy eR".
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By Proposition 1, we have E, (¥, )=limE: (J,)<limE (y)=E,(y), vyeR". |

n—o0 n—o

4. Convergence of Discrete Numerical Algorithm
In section 3, we have proved that there is a minimal point §, for the functional (2.3). In
what follows, we will give a specific calculation of the minimal point.

4.1 Minimal Solution of Relaxation Energy Functional (3.1)

Given £>0, we can obtain that the functional E; (y) reaches its minimum at §, using
Lemma 1. Here, we will get the minimal solution Y, using numerical iterative method.
Lemma 2[17] Suppose H™ exists, and given & >0, then the functional Ef(y) reaches its
minimum at §, e R" if and only if
~1<ADQ:(9,)<1, ifieh, (4.2)
sign(9,.; )+ AD,Q; (9,)=0, if ieh". (4.2)
where ﬁ:{i e{],---,N}:ngi :O}, h° is its complement of h. Moreover, for any ich®, we
have
if AD,Q; (Y. —9..6)<-1,then §,,>0, (4.3)
if AD,Q; (Y, ~9..&)>-1,then §,, <0, (4.4)

Lemma 3[17] Suppose H ™ exists, and given & >0, there is a constant 7 >0 such that for
every ke N,

(k-1) (k-1

Er (Y vy v V) = B (Vo v v Y vD)

zln(ygfi’l) y‘(g ,)) Vie{l--,N}.
In the following, we will proceed to calculate the discrete form of the minimal point §, of
the functional (3.1).

Fixed £>0, let ygo) e R" be a starting point. At every iteration k =1,2,---, the new iterate

y™ is obtained from y** by calculating successively each one of its entries y*) using one-

dimensional minimization:
Forany i=12,--,N, find y such that
Er (v0 o v Yy VD ) < B (v vty Y ) ViR (45)
According to the mequallty (4.5), the solution obtained at step i—1 of iteration k is
(Ve Y Yy D)
Then the function t — E? (yél, Ly® Lty 1)) is strictly convex and O- -coercive.

Hence, ygvi is well defined and unique [14].
Suppose H™ exists, and given & >0, the solution at step i—1 of iteration k , the entry
y™*) is determined using Theorem 1:

if ie{1,2,-, N}, caleulate & =AD,Q¢ (y1),-++, v&1,0,y% 7+ y5Y),

g+l r’
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2°if ~1<&™ <1, then y™ =0. otherwise y%) is the unique solution of

sign(y) )+ 2D,Q; (v, ,yifi!-O.yifillf,~~~,yif@”)=0,

where if &%) <1, then v >0;if &¥ > -1, then y" <0.

Theorem 2 Suppose H™ exists, and fixed & >0, for k — oo, the sequence {y } defined by
(4.5) converges to a point §,, such that E; (y,)<EZ(y), vyeR". And there is a positive
M such that 0<E; (y,)<M, where M is only relevant with the fixed &.

Proof: To simplify the notation, let ygf[)i] denote the intermediate solution at step i of
iteration k forany i=1---,N,

Yo = (v v, yi.k?, yﬁkfff YY) (4.6)
For |=0, put %, = ¥ Notice that ', = y'“). For every ke N, (4.5) shows that

B (V) <Ef (v ). vistN.

Then E; (y )< E; (y ) vk € N. The sequence EZ (ygk ) is monotonically decreasing and

bounded below by E; (¥,), i.e. lim Ej(yg ): EZ (¥, ). Hence, we have

£ ()2 () = (B (v ) - B (v) (4.7)
i=1
> An i( yg-l,(i_l) - yi;l,(i) )2- (4.8)
i=1

for every k e N. The inequality in (4.8) is obtained by applying Lemma 3 to every term on
the right side of (4.7). It follows that the sequence y"*) is convergent, i.e.,

1 (k) — \J A— I cee B, .=
limy,” =y, and h={ie{l--N}:y,, =0}.
And then, we will show that y, satisfies the conditions given in Lemma 2.

1° if h is nonempty, for every ich, the convergence of y* —0(k —) can be produced
in two different ways.
(1) If existing an integer n;, for all k >n;, we have y' =0, vk >n,, then
1< ADQ (Y v VI Y D) <1
And because D,Q; is continuous, we get (4.1) when k — oo.
(I1) Otherwise, there is a subsequence, for simplicity denoted y‘(;i) , such that
y* #0, vk e N. Then, any such y* satisfies the equation
sign(y®) )+ AD,Q: (¥4, -, ¥4, 0,y YY) =0, Wk e,

At this time, we will show that there is an integer n, and a constant o, ; € {-1, 1}, such
that k>n, = sign(yﬁfi))zo-gvi.

Suppose the contrary: for each k, thereis j, > j so that sign(zfik)):—sign(sz)). Then
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there is a subsequence, denoted y(k.) , such that sign(y(k.)) = (—1)k forall ke N,
>1.

k isodd = ADQ; ( YO YLy Y ey ) 1

kiseven = ADQ! (Y%, vy v vid -y ) <1
This result contradicts the fact that since Q¢ (y) is C*, that is
I!ij)po DIQ;(yS,(l)’ ’ya i-1 ygl 7y5 |+1 e ’ya N ) DIQZE(yé)
() If o; =1, we have y ) >0, vk >n,. For k — o, we have
1+2DQ ( cl' : ycl l'yal 'yak|+1l)’ ”7y£'l,<§l)):0'
(IV) If o, =—1, you can similarly get 1+ AD.Q¢ ( y¥,-- ,yﬁ‘fill,yﬁfi),yﬁfifl),m,yﬁ‘f,;l))zo.
2° If h° is nonempty, for all k e N, Vieh®, we have
sign(y%) )+ AD,Q7 (v, v, 0,y - v ) =o.
Put g::%min|y”|, there is ne N such that y™* e B(9,,5) for all k>n. Since for every
ieh® o
ieh,
we get (4.2). I

.Q: (y,) is continuous on B(Y,,s), at the limit k — oo,

4.2 Minimal Solution of the Energy Functional (2.3)

In this subsection, we first construct a minimizing sequence by using Lemma 2, and then
use the mathematical induction method to prove the convergence of the minimal sequence,
and get that the limit point of the minimal sequence is the minimum point of the minimal
energy functional (2.3).

Taking a strictly monotone decreasing positive sequence ¢, 40, and & =1
For £ =g, =1, and given an initial point y\ =y{”. At each iteration k=12,-, the new
iterate y*) is obtained from y!? by calculating successively each one of its entries y*)

using one-dimensional minimization.
Forall i=12,--,N, find y%, such that

E (0 Y Y Y V) ) < B (Y0 vty E e YY), VEeR (4.9)
According the inequality (4.5), the solution obtained at step i —1 of iteration k is
(Y0 Y YO0 it ).
(k-1)

Then the function t — E* (y K) e, ﬁ:?i_l,t, yif;i)l,- ,yg N ) is strictly convex and O-coercive.

gl

Hence, y is well defined and unique [14].
According to Theorem 2, we can get the following conclusion after calculating
Proposition 5 Supposing H™ exists, and given ¢ =¢, =1, y(o) = yl(o) e R" as a starting point,

& i

for k — o0, the sequence {y } defined by (4.5) converges to a point §_, such that

E* (9, )<E*(y), vyeR".
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And there is a positive M such that 0<E®(, )<M , where M is only relevant with the

fixed g,.
In a similar way, we can get some other conclusions
Proposition 6 Supposing H ™ exists, and given ¢ =g, < go,yg’) = yl(o) e R" as a staring point,

for k >, the sequence {y(k)} defined by (4.5) converges to a point y_, such that

E+ (9, )<EX(y), vyeR".

Proposition 7 Supposing H™ exists, and given e =¢, <&, _, <---<&,, yg’) =y1(°) eR" as a
starting point, for k — oo, the sequence {y } defined by (4.5) converges to a point §,_
such that E* (§, )<Ef(y), vyeR".,

In what follows, we will prove the convergence of the constructed sequence {ygn} using

the mathematical induction method.

Theorem 3 Suppose H™ exists, if the sequence {)7 } are the minimal solutions of the

corresponding relaxation energy functional sequence {Ej" (y)} ,for n >, £ >0, thereisa
convergent subsequence {ygnk} limiting to §,, and the energy functional (2.3) reaches to the
minimum at the point §,, that is limy, =9, and E, (9,)<E,(y), vyeR".

Proof: Here, we will prove the convergence of the sequence {ygn} using the mathematical
induction method. We only prove the case ¢, <¢&,, so proved other cases in the similar way.

For any i=1---,N, let y . be the intermediate solution at step i of iteration k .
According to the above notatlon Notlce

v =(y£n e Y Y Yk v ),

YO =y = (Y YD v ) v =y ==y,

(a) Use the inductive hypothesis for any i when k =1

10 FOI’ i Zl, notice yg)’[l] = (yg)’l, yi:’)zi %y yES?N )5 yS?[l] = (yg?ll yg)’)za' * Yy yi?y)N )

By (4.9), we have

B2 (yW) = B (Y20 Y ¥ ) = B (Y20 v YR ) < B (699 i),
E (y0) =B (Y20 v ¥ ) =B (v v v ) < B2 (639 v,
Since &, < ¢,, and the uniqueness of y\”,, y%;, using Proposition 4, we have

B (Y2 v YN ) < B2 (Vv iR ) < B (v2 v i),

thatis, E} (y []) E) (yg0 [1])

2° Suppose that Efl(y‘ 0 )g E% (y(‘l)[. ) holds when i=i,and i <N, that is

Ex (v ) = B (Vo Vs v Vs Y YN )
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<ER (Y Y Y Y Y Yk )
S ESO (yao 1077 yao i-17 yao i’ yao i+17? ygo iv20" " y(O) ) E‘SU (yso [])
3° Now, we will prove that EZ (y e )< Eo (y l)M) holds when i=i+1 for every
i=1---,N-1. Notice
Y = (Vo Ve Y Y Y Y ),
yg?[m] = (yg?lv' T yg?iflv yg?i ) yg?nl! yf:?,)nz 1T y‘(;f,)N )-
According to 2° and Proposition 4, we can get
Efl (y«(s?[”l]): Ejl (yg?u'“’ yg?i_p yg?i J yg?iw i?,)i+z""’ yi-l,N )
)

<ER (Yo Y Y Yk Yoha YN )
Egl (ygo 10770 ygo i-1 yg)l ! ygo i+1? y£2)|+2’ ] y‘(sg)N )
< E;O (yg),lr T yg;,i—ll y.(rt),i ) yg),nl! y£3)|+2! T ygoo,)N ) = Ezg0 (yg),[.u])

(b) Consider i when k =k
1°For i =1, notice y%, =(y§01, APLERN ey ) o (yﬁll,yél2 o y(lk’Nl)) there is
& (k) £o (k)
E, (yem])g E, (yso,m)'
2° Suppose that there is E2 (y(k)[. )s Ef (y(")[. ) holds when i=i, i <N, that is,
B2 (y5) ) =B (Ve v v v v v
<P (Y Y Y Y i) = B (v )
3° Now, we will prove that EZ (yglk’)[m])s E (yif?[i+l]) holds when i=i+1 for every
=1---,N -1. Notice
yi:,)[iﬂ] = (yg,()l" h y.(c:)i—l’ yg:)i J yg:)nl! yi:i)z T Yﬁ:ﬁ) )-
y:(,)[iﬁ-l] :(y‘g1 11770 yél i-17 yal i yél i+1? y61 |+2’ ' yir;vl) )
According to 2° and Proposition 4, we can get
Egl(y [|+1]) Egl(yall’ ’ygf)'—l’yall’yal |+1’y51 |+2"”’y51,N

<ES (Y Y Y Y Y Y

01 ('}

Egl (ygo 1" ﬂygo i-11 yg:)u ’ ygo i+17 y‘(e: iz""v Yeo N

<E50(y€01, 7y$0'—1’ E::,)i’ ‘E::?i+1’ys:;]32""7y£0N

(c) Consider i when k=k+1
1° For i =1, notice y "*1 (yﬁ:jl), ey ) y;kfll]) = ()/21k 2y Y )
According to Proposmon 4 and the above assumptions when k =k, we have

B (Vo) =B (v v v i)

=Ep (ygo [.+1])
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<7 (v v v ) <E2 (v v v
< Eso (yé:? , yél ) 1y‘(:) ) Eso (yetﬁ]))
2° Suppose that there is E* (y (ke) )< E> (y k*[l ) holds when i =i, i <N . In the similar way,

we can get E (y, ) <E2 (v, ) holds when i=i+1, i+1<N.
Considering the above results after using the mathematics method in the case

0<eg <& =1, we can see E‘gl(yk*l )s Ef"(yﬁ(‘f“)), vk e N, where

Yo = (V8 Y Y ) Ve = (L v L )

According to Theorem 2, we can gain that the two sequences yk+l

and y*¥ both
converge when k — oo . Hence, there is
0<E?(9, )— lim E;* (y (k1) )< limE? (y(k+1 ): E® (9, )<M
where M (>0) is only relevant with the fixed &,.
In the same way, we can prove the following conclusion

0<-<Ef (9, )<-<EX(9,)<Er(9,)<M.
Then, the energy sequence E/ (§, ) is bound, that is,

N
<EP (9., )=2]9

N
Vs Zg“(f/sn)ﬁl\/l.

y. ‘s M . There is a subsequence 9% such that Eim 9% =Y,. Using Lemma 1, we can

get Ef”(90)=l!iL?OEf”(ygnk)sEf"(y), vyeR". And since &, —0 (n—>o ), based on

Proposition 1, we have
E, (J,)=limE? (9,) <limE? (y)=E,(y), vyeR". |

5. Numerical Experimental and Simulation Results

In this section, we will provide some experimental results, which show that our proposed
image restoration model based on the bilateral total variance regularization term works very
well. To simplify the numerical calculation, we use the steepest descent method to find the
minimal solution of the energy functional (2.1). So, the evolution equation

d_ ZH -sign(H,u-z,) /12 Z oM (1 - s,')-sign(u—sisyu)
EI= k=—py1==P,

where H, represents conjugate transpose of the Toeplitz matrix H, .

In our experiments, we adopt the normal Camera-man image with 256x 256 pixels, p,
and p, are chosen as 1 or 2, and add Gaussian noise with zero-mean, o -variance, or
Gaussian blurring. In what follows, signal-to-noise-ratio(SNR) is computing as follows

_\2
Z(“ij -0;) Z“ij
SNR = o=

Z(Zij_uii)z, mxn

i
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where u is an original image, z is a noisy image. All codes are performed in Matlab. (Note
that B/N means blurred and noisy.)

4

Figure 1. Restoration of Single Noisy Image, but without Blurring (a) Original
Image, (b) Noisy Image Noise Variance ¢° =0.1, but no Blurring (SNR=3.03 dB),
(c)Result of ROF Model (SNR=4.46 dB), (d) Result of our Model (SNR=5.15 dB)

In Figure 1, we denoise using single noisy image without blurring, and compare the
restoration result of our model with that of ROF model. In Figure 1(c), using the ROF model,
we can see that the whole image will become constant in the end, but in Figure 1(d), we can
get that the local domain will be constant by using our proposed model. Through comparing
the SNR in Figure 1(c) with that in Figure 1(d), we obtain that our proposed model works
better than the ROF model does while employing only one noisy image.

Figure 2. Restoration of Three Different Noisy Images, but without Blurring (a)
The 1st Noisy Image, Noise Variance ¢° =0.05, but no Blurring(SNR=4.95 dB),
(b)The 2nd Noisy Image, Noise Variance ¢* =0.1, but no Blurring (SNR=3.05 dB),

(c)The 3rd Noisy Image, Noise Variance ¢° =0.15, but no Blurring (SNR=1.89
dB), (d) Result of our Model (SNR=6.50 dB)

In order to show the advantage of our proposed model, which can restore image by using
multiple degraded images, we do two experiments in Figure 2 and Figure 4. Through
comparing Figure 1(d) with Figure 2 (d), we can receive the fact that the effect of using
multiple noisy images to restore is better than that of using only single degraded image.
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@ O
Figure 3. Restoration of Single Noisy Image with Blurring (a) B/N Image, Noise
Variance o” =0.1, with 1x3 Horizontal Motion Blurring (SNR=2.68 dB), (b) Result
of our Method (SNR=4.57 dB).

(a) (b) (c) (d)

Figure 4. Restoration of Three Different Noise Images with Three Different
Blurring (a) The 1st B/N Image, Noise Variance o* =0.05, with 1x3 Horizontal
Motion Blurring (SNR=4.32 dB), (b)The 2nd B/N Image, Noise Variance o¢* =0.1,
with 3x1 Vertical Motion Blurring (SNR=2.66 dB), (c)The 3rd B/N Image, Noise
Variance ¢° =0.15, with 3x3 Gaussian Blurring, Gaussian Kernel Variance o, =3
(SNR=1.59 dB), (d) Result of our Model (SNR=5.34 dB)

In Figure 3, we use single noisy image with blurring to denoise and deblur. In Figure.4, we
adopt multiple degraded images with different noise and different blurring to wipe off noise
and restore deblurring. Comparing Figure 1(d) and Figure 3(b) with Figure 2(d) and Figure
4(d), respectively, we conclude that our proposed model works better by using multiple
degraded images than it does by only single degraded image, even if the degraded images
include noise and blurring.

6. Discussion and Conclusion

Based on many variational models mentioned in Section 1, we present a unified method for
image denoising and deblurring by using single or multiple degraded images. In our model,
we use non-convex ¢*-norm data-fidelity term and ¢*-norm regularization term. Although we
have proved the existence of discrete numerical form of the minimal functional (2.3), we
don't adopt the discrete format to do our numerical experiments because of the complexity
and difficulty of taking a strictly monotone decreasing positive sequence {¢,} , then we
employ the steepest descent method to find the minimal solution of energy functional(2.3).
However, experiments show that firstly, our model works better that the ROF model when
single degraded image is considered; Secondly, the restoration results with multiple degraded
images yields better than with single degraded image.
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