
International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.7, No.5 (2014), pp.273-286 

http://dx.doi.org/10.14257/ijsip.2014.7.5.24 

 

 

ISSN: 2005-4254 IJSIP 

Copyright ⓒ 2014 SERSC 

Image Restoration Based on L1 + L1 Model 
 

 

Ruihua Liu
1, 2 

1
School of Mathematics and Statistics, Chongqing University of Technology, Chongqing, 

China, 400050 
2
Institute of Automation, Chinese Academy of Sciences, Beijing, China, 100090 

1,2
lruih@sohu.com 

Abstract 

In this paper, we firstly propose a new image restoration model including non-smooth 1 -

norm data-fidelity term and non-smooth 
1
-norm regularization term based on the bilateral 

total variation regularization. Secondly, we prove the existence of minimal solutions of our 

proposed energy functional model. Thirdly, we consider the convergence of the discrete 

numerical algorithm, and obtain that the limit point of the solution sequence is the minimal 

point of our proposed energy functional. Finally, we give some experimental simulation 

results in the case of the single noisy image without blurring, multiple different noisy images 

without blurring, single noisy image with blurring, and multiple different noisy images with 

different blurring, respectively. The restoration results show our model works effectively. 

 

Keywords: image restoration, bilateral total variation, minimal solution, mathematical 

induction method 

 

1. Introduction 

Image denoising and deblurring are two fundamental problems in the field of image 

processing. Image denoising is to enhance images by reducing some degradation. Image 

deblurring is to recover the original, sharp image by using a mathematical model of the 

blurring process. The key issue is that some information is "hidden" and can only be 

recovered if we know the details of the blurring process. 

The observed image is the convolution of a shift invariant blurring function with the true 

image plus some additive noise. Let ( )u x  be an original image, ( )z x  be an observed image, 

and ( )h x  be a point spread function (PSF). A degraded image model can be described as 

( ) ( ) ( ) ( ).


  z x h s u x s ds n x Here ( )n x  is an additive noise, 1 2( , )x x x  is a vector. Let 

,  u z  and n  be discrete original image, degraded image and PSF, respectively. Then, a 

discrete image formation process can be put into the matrix-vector form , z Hu n  where 

H  is a Toeplitz matrix which is built according to the discrete PSF h . Assuming that the 

discrete image u  has m n  pixels, notation  N m n , then ,  u z  and n  are 1N  vectors 

arranged by row, and H  is a matrix of .N N  

Blurred image restoration has been referred in many works when the PSF is known [1, 3-

5]. One of the most successful regularization approaches is the TV regularization method 

[20], so the mathematical model can be stated as follows [23], 

2

21
min  ( ) ,

2



   u

E u Hu z u dx  
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where   is a positive constant. However, the disadvantage of the model leads to over-smooth 

and produce block-effect.  

Recently, many researchers have discussed the local minimization problem, or the global 

minimum [6-7, 10-11, 15-16, 18]. The minimal problem is 

2

21
min  ( ) ( ),

2
   

u
E u Hu z u  

where   is the Euclidean norm, : N
R R  is a piecewise qC  smooth regularization 

term,    
1

: ,


 
r

i

i

u G u  where : N N

iG R R  is a difference operator, :   R R  is an 

increasing function[1,3-4,13-15,19-21]. Especially, Geman, et al., [13] studied the cost 

function involving convex 
2
-norm data-fidelity term and 


-norm regularization term, that 

is,   ,


 t t 1 2.   We call the model as 
2   model, where 1 2.   

In 2004, Nikolova[17] offered another image restoration model, and proved the existence 

of solutions of the minimal functional model. The functional model is 

   1min    
u

E u Hu z u ,  

where   u  is a regular function, i.e.,    
1

: ,


 
r

i

i

u G u  iG  is a difference operator for 

each 1,2, , ,i r  and :   R R  is a potential function. The following potential functions 

are some smooth and convex edge-preserving [2, 4, 9, 17]. Especially, Bouman, et al., [4] 

thought the cost function involving non-convex 
1
-norm data-fidelity term and convex 


-

norm regularization term, i.e.,   ,


 t t  where 1 2  . We call the model as 
1   

model, where 1 2  . Afterwards, Li et al.[17] analyzed the case   2 ,  t t  where 

0.   

In 1998, Tomasi, et al., [22] first put forward the concept of bilateral filtering, the 

advantages of the bilateral filtering are not only to consider space distance between two 

pixels, but also to consider illumination distance between two pixels. In 2002, Based on the 

spirit of TV criterion, and a related the bilateral filter technique, Fariu, et al., [12] proposed 

the bilateral total variation(BTV) regularization, which is computationally cheap to 

implement, and preserves edges. The regularizing function looks like  
1 2

1

1 2

BTV ,
p p

k l k l

x y

k p l p

u S S u


 

     

where matrices operators 
k

xS  and l

yS  shift X  by k , and Y  by l  pixels in horizontal and 

vertical directions respectively, presenting several scales of derivatives. The scalar weight ,  

0 1  , is applied to give a spatially decaying effect to the sum of the regularization terms. 

After the above analysis, we will consider a cost function including non-smooth 
1
-norm 

data-fidelity term and non- smooth 
1
-norm regularization term based on the bilateral total 

variation in this paper. We call the model as 
1 1  model. 

The rest of the paper is organized as follows. In section 2, we will construct a novel image 

restoration model based on the bilateral total variation regularization term. In section 3, we 

will prove the existence of minimal solutions of our proposed model. In section 4, we will 

consider the convergence of discrete numerical algorithm by the mathematical induction 

method. In section 5, we show some experimental results. In section 6, we give some 

discussions and conclusions. 

dict://key.0895DFE8DB67F9409DB285590D870EDD/mathematical%20induction
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2. Bilateral Total Variation-Based Image Restoration Model 

Given R  degraded images, we describe as ,   1,2, , ,  r r rz H u n r R  where rn  is an 

additional noise, 1,2, ,r R . 

Using R  degraded images, and the advantages of BTV regularization preserving edges, we 

consider the following minimization functional model 

 
1 2

1 1

1 21

min  , 


  

     
p pR

k l k l

r r x y
u

r k p l p

E u H u z u S S u                                            (2.1) 

where ,     are positive constant, 1 20 1,  ,    p p  are two positive integers. The first term is 

called data-fidelity term, i.e., the residual error term. We adopted 
1
-norm, instead of 

2
-

norm, since when the error is slightly large, the growth rate of 
1
-norm is slower than that of 

2
-norm. Hence, the term is also robust. The second term is called the BTV regularization 

term, k

xS  and l

yS  can see the section 1. We call the model (2.1) as 
1 1  model.  

In order to simplify in the following section, we only consider the case 1,R  

   
1

min ,




  N

N
T

i i
u

i

E u b u z Q u
R

                                                                                      (2.2) 

where      1 1 1 2 2,  , , ,  , , ,  ,


         
s

s

s S

Q u G u S km l k p p l p p s k l  

1 1 2 2, , ,  , , ,    k p p l p p 1 1 2 2,  , , ,  , , ,        s km l k p p l p p , N N

sG R  

 , T

iH b sG u is a 1N  vector by rows of   . k l

x yI S S u  

Suppose 
1H  exists, put , y Hu z  so  1 u H z y , the functional (2.2) becomes 

   
1

min ,




 N

N

z i z
y

i

E u y Q y
R

                                                                                          (2.3) 

where          1

1

,

1

,  Q ,  : R R,   

  

      
N

s s T

z s s i

s S s S i

Q y Q H z y u G u g u  

  , t t ,

T

s ig  is the ith  row of ,  1, , .sG i N  For every , Ny R  zE y is 0-coercive, and 

  0zE y .  zQ y  is convex and continuous. Clearly,  E u  reaches its minimum at ˆ Nu R , 

if and only if,  zE u  reaches its minimum at ˆ ˆ . y Hu z  

 

3. Existence of Minimal Solutions of Energy Functional (2.3) 

Now, we construct a relaxation of the minimal energy functional 

   
1

min , 




 N

N

z i z
y R

i

E y y Q y                                                                                             (3.1) 

where        1 1

,

1

, 

  

 

    
N

s T

z s i

s S i

Q y Q H z y g H z y   2 ,  0.    t t Some 

notations can be referred in the section 2. 

According to equations (2.3) and (3.1), we can get the following propositions 

Proposition 1  

zE y  is uniformly convergent to  zE y  while 0 .   

Proposition 2 Suppose 
1H  exists, and given 0  , for every , Nz R  the functional  

zE y  

in (3.1) is 0-coercive, i.e.,   zE y , if .y  
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Proposition 3 The function  

zQ y  is convex and 1 C continuous about y , and that, for 

every    ,  0,  0, ,  , ,  1, , ,          Nz R y B t i N  there is 0   such that for every 

      2 ,  1, , ,  z i z i zQ y te Q y tDQ y t i N        where  

i zD Q y  is the ith  partial 

derivative of   .zQ y  

Proof: Since   0, t  then  

zQ y  satisfies the case in Remark 1 [18].  ▌ 

Proposition 4 Fixed ,  ,z y  the functional  

zE y  is an increasing function, i.e., for every 

1 2  , there is    1 2 , z zE y E y  and   0. zE y  

Lemma 1 [14, 17] Suppose 
1H  exists, and given 0,   then  

zE y  reaches its minimum at 

ˆ , 
Ny R  i.e.    ˆ ,    . 

    N

z zE y E y y R  

Proof: The function  

zE y  does admit a minimum for every . Nz R  This minimum is both 

local and global [14, 17]. We call the minimal point ˆ
y , and the minimum  ˆ .

zE y  ▌ 

Theorem 1 Suppose 
1H  exists, and for every , Nz R  then there is a minimal point 0ŷ , 

such that    0
ˆ ,    .   N

z zE y E y y R  

Proof: Taking a strict monotonically decreasing positive sequence  ,n  and 0 n  while 

.n  Taking 0 1  , and given 0, n  there are the following conclusions by Lemma 1, 

1
o
 For 0 ,   there are a minimal point 

0
ˆ
y  and  0M  only relevant with 0 ,  such that  

   0 0

0
ˆ ,   ,

 

    N

z zE y E y y R   0

0
ˆ0 .



 zE y M                                                                (3.2) 

2
o
 For 1,   there are a minimal point 

1
ˆ
y , such that 

   1 1

1
ˆ ,   .

 

    N

z zE y E y y R                                                                                               (3.3) 

and since 1 0  , according to Proposition 4, we have 

   01

0 0
ˆ ˆ ,



 z zE y E y                                                                                                             (3.4) 

   1 1

1 0
ˆ ˆ ,

 

 z zE y E y                                                                                                              (3.5) 

From the inequalities (3.2), (3.4) and (3.5), we can see  

     01 1

1 0 0
ˆ ˆ ˆ0 ,

 

     z z zE y E y E y M  

then,    01

1 0
ˆ ˆ0 .



   z zE y E y M  

In a similar way, we can get  

     01

1 0
ˆ ˆ ˆ0 .

 

       n

nz z zE y E y E y M                                                                (3.6) 

Therefore, we can conclude that the energy sequence   ˆ


n

nzE y  is uniformly bounded, i.e. 

   , ,

1 1

ˆ ˆ ˆ ˆ ,
 

   
 

    n n

n n n n

N N

i z i z

i i

y E y y Q y M  where M  is a generalized positive constant. 

Then, ˆ . 
n

y M  As we know, there are a subsequence  ˆ
nk

y  and a point 0ŷ , such that 

0
ˆ ˆlim .




nkk
y y  According to Lemma 1, there is    ˆ 

 n n

nz zE y E y  for each . Ny R  Then 

     0
ˆ ˆlim ,  .

  




   n n n

nk

N

z z z
k

E y E y E y y R  

dict://key.0895DFE8DB67F9409DB285590D870EDD/inequalities
dict://key.0895DFE8DB67F9409DB285590D870EDD/in%20a%20similar%20way
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By Proposition 1, we have        0 0
ˆ ˆlim lim ,  .

 

 
    n n N

z z z z
n n

E y E y E y E y y R   ▌ 

 

4. Convergence of Discrete Numerical Algorithm 

In section 3, we have proved that there is a minimal point 0ŷ  for the functional (2.3). In 

what follows, we will give a specific calculation of the minimal point. 

4.1 Minimal Solution of Relaxation Energy Functional (3.1) 

Given 0  , we can obtain that the functional  

zE y  reaches its minimum at ˆ
y  using 

Lemma 1. Here, we will get the minimal solution ˆ
y  using numerical iterative method. 

Lemma 2[17] Suppose 
1H  exists, and given 0,   then the functional  

zE y  reaches its  

minimum at ˆ
 

Ny R  if and only if  

 ˆ1 1,

  i zDQ y   if ˆ,i h                                                                                               (4.1) 

   ,
ˆ ˆ 0,

  i i zsign y DQ y  if ˆ . ci h                                                                                   (4.2) 

where   ,
ˆ ˆˆ1, , : 0 ,     c

ih i N y h  is its complement of ĥ . Moreover, for any ˆ ci h , we 

have 

if  ,
ˆ ˆ 1

    i z i iDQ y y e , then ,
ˆ 0 iy ,                                                                             (4.3) 

if  ,
ˆ ˆ 1

    i z i iDQ y y e , then ,
ˆ 0 iy ,                                                                             (4.4) 

Lemma 3[17] Suppose 
1H  exists, and given 0  , there is a constant 0   such that for 

every k N , 
                     1 1 1 1 1

,1 , 1 , , 1 , ,1 , 1 , , 1 ,, , , , , , , , , , , , 

         

    

   
k k k k k k k k k k

z i i i N z i i i NE y y y y y E y y y y y  

      
2

1

, , ,  1, , . 


   
k k

i iy y i N  

In the following, we will proceed to calculate the discrete form of the minimal point ˆ
y  of 

the functional (3.1). 

Fixed 0  , let  0

  Ny R  be a starting point. At every iteration 1,2,k , the new iterate 

 


k
y  is obtained from  1



k
y  by calculating successively each one of its entries  

,

k

iy  using one-

dimensional minimization: 

For any 1,2, ,i N , find  
,

k

iy  such that 

                   1 1 1 1

,1 , 1 , , 1 , ,1 , 1 , 1 ,, , , , , , , , , , , , ,  . 

        

   

     
k k k k k k k k k

z i i i N z i i NE y y y y y E y y t y y t R          (4.5) 

According to the inequality (4.5), the solution obtained at step 1i  of iteration k  is 
          1 1

,1 , 1 , , 1 ,, , , , , , .    

 

 

k k k k k

i i i Ny y y y y  

Then the function         1 1

,1 , 1 , 1 ,, , , , , ,

   

 

 
k k k k

z i i Nt E y y t y y  is strictly convex and 0- -coercive. 

Hence, 
 

,

k

iy  is well defined and unique [14]. 

Suppose 
1H  exists, and given 0,   the solution at step 1i  of iteration k , the entry 

 
,

k

iy  is determined using Theorem 1: 

1
o 
if  1,2, ,i N , calculate           1 1

, ,1 , 1 , 1 ,, , ,0, , , ,

     
 

 
k k k k k

i i z i i NDQ y y y y  
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2
o 
if  

,1 1  
k

i , then  
, 0. 
k

iy  otherwise  
,

k

iy  is the unique solution of  

           1 1

, ,1 , 1 , 1 ,, , ,0, , , 0

    
 

  
k k k k k

i i z i i Nsign y DQ y y y y , 

where if  
, 1  
k

i , then  
, 0 
k

iy ; if  
, 1  
k

i , then  
, 0 
k

iy . 

Theorem 2 Suppose 
1H  exists, and fixed 0  , for k , the sequence   

k
y  defined by 

(4.5) converges to a point ˆ
y , such that    ˆ ,  . 

    N

z zE y E y y R  And there is a positive 

M  such that  ˆ0 ,

 zE y M  where M  is only relevant with the fixed .  

Proof: To simplify the notation, let 
 

 
,

k

i
y  denote the intermediate solution at step i  of 

iteration k  for any 1, ,i N , 

 
            1 1

,1 , 1 , , 1 ,,
, , , , , ,    

 

 
k k k k k k

i i i Ni
y y y y y y .                                                                           (4.6) 

For 0i , put 
 

   1

, 0 




k k
y y . Notice that 

 
   
, 


k k

N
y y . For every k N , (4.5) shows that 

 
    

  , , 1
,  1, , .

k k

z zi i
E y E y i N 

  
    

Then      , . 

   
k k

z zE y E y k N  The sequence   



k

zE y  is monotonically decreasing and 

bounded below by  ˆ

zE y , i.e.     ˆlim  . 

 



k

z z
k

E y E y  Hence, we have 

       
    

   1 1

, 1 ,
1

   

   

 




  
N

k k k k

z z z zi i
i

E y E y E y E y                                                             (4.7) 

    
2

1

, ,

1

. 




 
N

k k

i i

i

y y                                                                        (4.8) 

for every .k N  The inequality in (4.8) is obtained by applying Lemma 3 to every term on 

the right side of (4.7). It follows that the sequence  


k
y  is convergent, i.e., 

  ˆlim , 



k

k
y y  and   ,

ˆ ˆ1, , : 0  ih i N y . 

And then, we will show that ˆ
y  satisfies the conditions given in Lemma 2. 

1
o
 if ĥ  is nonempty, for every ˆi h , the convergence of    , 0  

k

iy k  can be produced 

in two different ways. 

(I) If existing an integer in , for all  ik n , we have  
, 0,     
k

i iy k n , then 

          1 1

,1 , 1 , , 1 ,1 , , , , , , 1.

    
 

   
k k k k k

i z i i i NDQ y y y y y  

And because 


i zD Q  is continuous, we get (4.1) when .k  

(II) Otherwise, there is a subsequence, for simplicity denoted  
,

k

iy , such that 

 
, 0,  .   
k

iy k N  Then, any such 
 

,

k

iy  satisfies the equation 

           1 1

, ,1 , 1 , 1 ,, , ,0, , , 0,  .

    
 

    
k k k k k

i i z i i Nsign y DQ y y y y k N  

At this time, we will show that there is an integer in  and a constant  , 1,  1  i , such 

that   , ,    .   
k

i i ik n sign y  

Suppose the contrary: for each ,k  there is kj j  so that      . kj k

i isign z sign z  Then  
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there is a subsequence, denoted  
,

k

iy , such that     , 1  
kk

isign y for all k N ,  

k  is odd            1 1

,1 , 1 , , 1 ,  , , , , , , 1.

    
 

  
k k k k k

i z i i i NDQ y y y y y  

k  is even           1 1

,1 , 1 , , 1 ,  , , , , , , 1.

    
 

  
k k k k k

i z i i i NDQ y y y y y  

This result contradicts the fact that since  

zQ y  is 1C , that is 

            1 1

,1 , 1 , , 1 ,
ˆlim , , , , , , . 

     

 

 



k k k k k

i z i i i N i z
k

DQ y y y y y DQ y  

(III) If 1 i , we have  
, 0,  .   
k

i iy k n  For k , we have 

          1 1

,1 , 1 , , 1 ,1 , , , , , , 0.

    
 

  
k k k k k

i z i i i NDQ y y y y y  

(IV) If 1  i , you can similarly get           1 1

,1 , 1 , , 1 ,1 , , , , , , 0.

    
 

   
k k k k k

i z i i i NDQ y y y y y  

2
o
 If ˆch  is nonempty, for all ˆ,     ck N i h , we have 

           1 1

, ,1 , 1 , 1 ,, , ,0, , , 0.

    
 

  
k k k k k

i i z i i Nsign y DQ y y y y  

Put 
,ˆ

1
ˆ: min

2





c i
i h

y , there is n N  such that    ˆ ,  
k

y B y  for all .k n  Since for every 

ˆ ci h , the function  ,



   i i zy y DQ y  is continuous on  ˆ , B y , at the limit k , 

we get (4.2).  ▌ 

 
4.2 Minimal Solution of the Energy Functional (2.3) 

In this subsection, we first construct a minimizing sequence by using Lemma 2, and then 

use the mathematical induction method to prove the convergence of the minimal sequence, 

and get that the limit point of the minimal sequence is the minimum point of the minimal 

energy functional (2.3). 

Taking a strictly monotone decreasing positive sequence 0, n  and 0 1.   

For 0 1   , and given an initial point 
   

0

0 0

1 y y . At each iteration 1,2,k , the new 

iterate 
 

0

k
y  is obtained from 

 

0

1



k
y  by calculating successively each one of its entries 

 

0 ,

k

iy  

using one-dimensional minimization. 

For all 1,2, ,i N , find 
 

0 ,

k

iy  such that 

                   0 0

0 0 0 0 0 0 0 0 0

1 1 1 1

,1 , 1 , , 1 , ,1 , 1 , 1 ,, , , , , , , , , , , , ,  .
 

        

   

     
k k k k k k k k k

z i i i N z i i NE y y y y y E y y t y y t R   (4.9) 

According the inequality (4.5), the solution obtained at step 1i  of iteration k  is 
          

0 0 0 0 0

1 1

  ,1 , 1 , , 1 ,, , , , , , .    

 

 

k k k k k

i i i Ny y y y y  

Then the function         0

0 0 0 0

1 1

,1 , 1 , 1 ,, , , , , ,


   

 

 
k k k k

z i i Nt E y y t y y  is strictly convex and 0-coercive. 

Hence, 
 

0 ,

k

iy  is well defined and unique [14]. 

According to Theorem 2, we can get the following conclusion after calculating 

Proposition 5 Supposing 
1H  exists, and given 

   

0

0 0

0 11,       Ny y R as a starting point,  

for k , the sequence   
0

k
y  defined by (4.5) converges to a point 

0
ˆ
y , such that 

   0 0

0
ˆ ,  .

 

    N

z zE y E y y R  
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And there is a positive M  such that  0

0
ˆ0



 zE y M , where M  is only relevant with the 

fixed 0 . 

In a similar way, we can get some other conclusions 

Proposition 6 Supposing 
1H  exists, and given 

   

1

0 0

1 0 1,       Ny y R as a staring point, 

for k , the sequence   
1

k
y  defined by (4.5) converges to a point 

1
ˆ
y , such that 

   1 1

1
ˆ ,  .

 

    N

z zE y E y y R  

Proposition 7 Supposing 
1H  exists, and given 

   0 0

1 0 1,          
n

N

n n y y R  as a 

starting point, for k , the sequence   n

k
y  defined by (4.5) converges to a point ˆ

n
y , 

such that    ˆ ,  .
 

   n n

n

N

z zE y E y y R  

In what follows, we will prove the convergence of the constructed sequence  ˆ
n

y  using 

the mathematical induction method. 

Theorem 3 Suppose 
1H  exists, if the sequence  ˆ

n
y  are the minimal solutions of the 

corresponding relaxation energy functional sequence   n

zE y , for ,n  0,   there is a 

convergent subsequence  ˆ
nk

y  limiting to 0ŷ , and the energy functional (2.3) reaches to the 

minimum at the point 0ŷ , that is 0
ˆ ˆlim 




nkk
y y , and    0

ˆ ,  .   N

z zE y E y y R  

Proof: Here, we will prove the convergence of the sequence  ˆ
n

y  using the mathematical 

induction method. We only prove the case 1 0  , so proved other cases in the similar way. 

For any 1, ,i N , let 
 

,n

k

iy  be the intermediate solution at step i  of iteration k . 

According to the above notation, Notice 

 
            1 1

,1 , 1 , , 1 ,,
, , , , , , ,    

 

 
n n n n nn

k k k k k k

i i i Ni
y y y y y y   
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5. Numerical Experimental and Simulation Results 

In this section, we will provide some experimental results, which show that our proposed 

image restoration model based on the bilateral total variance regularization term works very 

well. To simplify the numerical calculation, we use the steepest descent method to find the 

minimal solution of the energy functional (2.1). So, the evolution equation 
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In our experiments, we adopt the normal Camera-man image with 256 256  pixels, 1p  

and 2p  are chosen as 1 or 2, and add Gaussian noise with zero-mean, 2 -variance, or 

Gaussian blurring. In what follows, signal-to-noise-ratio(SNR) is computing as follows 

 

 

2

, ,

2

,

,  .



 


 



ij ij ij

i j i j

ij ij

i j

u u u

SNR u
m nz u

 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.7, No.5 (2014) 

 

 

Copyright ⓒ 2014 SERSC  283 

where u  is an original image, z  is a noisy image. All codes are performed in Matlab. (Note 

that B/N means blurred and noisy.) 

 
(a)                                    (b)                                     (c)                                    (d) 

Figure 1. Restoration of Single Noisy Image, but without Blurring (a) Original 

Image, (b) Noisy Image Noise Variance 2 0.1,  but no Blurring (SNR=3.03 dB), 

(c)Result of ROF Model (SNR=4.46 dB), (d) Result of our Model (SNR=5.15 dB) 

In Figure 1, we denoise using single noisy image without blurring, and compare the 

restoration result of our model with that of ROF model. In Figure 1(c), using the ROF model, 

we can see that the whole image will become constant in the end, but in Figure 1(d), we can 

get that the local domain will be constant by using our proposed model. Through comparing 

the SNR in Figure 1(c) with that in Figure 1(d), we obtain that our proposed model works 

better than the ROF model does while employing only one noisy image.  

 
(a)                                     (b)                                    (c)                                    (d) 

Figure 2. Restoration of Three Different Noisy Images, but without Blurring (a) 

The 1st Noisy Image, Noise Variance 2 0.05  , but no Blurring(SNR=4.95 dB), 

(b)The 2nd Noisy Image, Noise Variance 2 0.1  , but no Blurring (SNR=3.05 dB), 

(c)The 3rd Noisy Image, Noise Variance 2 0.15  , but no Blurring (SNR=1.89 

dB), (d) Result of our Model (SNR=6.50 dB) 

In order to show the advantage of our proposed model, which can restore image by using 

multiple degraded images, we do two experiments in Figure 2 and Figure 4. Through 

comparing Figure 1(d) with Figure 2 (d), we can receive the fact that the effect of using 

multiple noisy images to restore is better than that of using only single degraded image. 
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(a)                                   (b) 

Figure 3. Restoration of Single Noisy Image with Blurring (a) B/N Image, Noise 

Variance 2 0.1,   with 1 3  Horizontal Motion Blurring (SNR=2.68 dB), (b) Result 

of our Method (SNR=4.57 dB). 

 
(a)                                     (b)                                    (c)                                    (d) 

Figure 4. Restoration of Three Different Noise Images with Three Different 

Blurring (a) The 1st B/N Image, Noise Variance 2 0.05  , with 1 3  Horizontal 

Motion Blurring (SNR=4.32 dB), (b)The 2nd B/N Image, Noise Variance 2 0.1  , 

with 3 1  Vertical Motion Blurring (SNR=2.66 dB), (c)The 3rd B/N Image, Noise 

Variance 2 0.15  , with 3 3  Gaussian Blurring, Gaussian Kernel Variance 0 3 

(SNR=1.59 dB), (d) Result of our Model (SNR=5.34 dB) 

In Figure 3, we use single noisy image with blurring to denoise and deblur. In Figure.4, we 

adopt multiple degraded images with different noise and different blurring to wipe off noise 

and restore deblurring. Comparing Figure 1(d) and Figure 3(b) with Figure 2(d) and Figure 

4(d), respectively, we conclude that our proposed model works better by using multiple 

degraded images than it does by only single degraded image, even if the degraded images 

include noise and blurring.  

 

6. Discussion and Conclusion 

Based on many variational models mentioned in Section 1, we present a unified method for 

image denoising and deblurring by using single or multiple degraded images. In our model, 

we use non-convex 
1
-norm data-fidelity term and 

1
-norm regularization term. Although we 

have proved the existence of discrete numerical form of the minimal functional (2.3), we 

don't adopt the discrete format to do our numerical experiments because of the complexity 

and difficulty of taking a strictly monotone decreasing positive sequence { }n  , then we 

employ the steepest descent method to find the minimal solution of energy functional(2.3). 

However, experiments show that firstly, our model works better that the ROF model when 

single degraded image is considered; Secondly, the restoration results with multiple degraded 

images yields better than with single degraded image. 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.7, No.5 (2014) 

 

 

Copyright ⓒ 2014 SERSC  285 

Acknowledgments 

R. Liu is supported by the Scientific and Technological Research Program of Chongqing 

Municipal Education Commission (KJ130824), National Science Foundation of China 

(11371386). 

 

References 

[1] D. Barash, “One-step deblurring and denoising color images using partial differential equations”, First SIAM 

Conference on Imaging Science, (2002) March 4-6, Boston, USA. 

[2] M. Black and A. Rangarajan, “On the unification of line processes, outlier rejection, and robust statistics with 

applications to early vision”, International Journal of Computer Vision, vol. 1, no. 19, (1996), pp. 57-92. 

[3] M. Black, G. Sapiro, D. Marimont and D. Heeger, “Robust anisotropic diffusion”, IEEE Transactions on 

Imaging Processing, vol. 3, no. 7, (1998), pp. 421-432. 

[4] C. Bouman and K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation”, IEEE 

Transactions on Image Processing, vol. 3, no. 2, (1993), pp. 296-310. 

[5] A. Chambolle and P. Lions, “Image recovery via total variation minimization and related problems”, 

Numerical Mathematics, vol. 2, no. 76, (1997), pp. 167-188. 

[6] R. Chan, T. Chan and C. Wong, “Cosine transform based pre-conditioners for total variation deblurring”, 

IEEE Transactions on Image Processing, vol. 10, no. 8, (1999), pp. 1472-1478. 

[7] T. Chan and S. Esedoglu, “Aspects of total variation regularization L1 function approximation”, SIAM 

Journal of Applied Mathematics, vol. 5, no. 65, (2005), pp. 1817-1837. 

[8] T. Chan and C. Wong, “Convergence of the alternating minimization algorithm for blind deconvolution”, 

Linear Algebra and its Applications, vol. 1, no. 316, (2000), pp. 259-285. 

[9] P. Charbonnier, L. Blanc, G. Aubert and M. Barlaud, “Deterministic edge-preserving regularization in 

computed imaging”, IEEE Transactions on Image Processing, vol. 2, no. 6, (1997), pp. 298-311. 

[10] S. Durand and M. Nikolova, “Stability of minimizers of least squares with a non-convex regularization”, Part 

I: Local behavior, Applied Mathematics and Optimization, vol. 2, no. 53, (2006), pp. 185-208. 

[11] S. Durand and M. Nikolova, “Stability of minimizers of least squares with a non-convex regularization”, Part 

II: Global behavior, Applied Mathematics and Optimization, vol. 3, no. 53, (2006), pp. 259-277. 

[12] S. Fariu, M. Robinson, M. Elad and P. Milanfar, “Fast and robust multi frame super resolution”, IEEE 

Transactions on Image Processing, vol. 10, no. 13, (2004), pp. 1327-1344.  

[13] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distribution and Bayesian restoration of images”, 

IEEE Transactions on Pattern Analysis and Machine intelligence, vol. 6, (1984), pp. 721-741. 

[14] J. Hiriart and C. Lemarechal, “Convex analysis and minimization algorithms”, Part I and II, Springer-Verlag, 

New York Berlin Heidelberg, (1996). 

[15] M. Nikolova, “Local strong homogeneity of a regularized estimator”, SIAM Journal of Applied Mathematics, 

vol. 2, no. 61, (2000), pp. 633-658. 

[16] M. Nikolova, “Minimizers of cost-functions involving nonsmooth data-fidelity terms”, SIAM Journal on 

Numerical Analysis, vol. 3, no. 40, (2002), pp. 965-994. 

[17] M. Nikolova, “A variational approach to remove outliers and impulse noise”, Journal of Mathematical 

Imaging and Vision, vol. 1-2, no. 20, (2004), pp. 99-120.  

[18] M. Nikolova, S. Esedoglu and T. Chan, “Algorithms for finding global minimizers of image segmentation 

and denoising models”, SIAM Journal of Applied Mathematics, vol. 5, no. 66, (2006), pp. 1432-1448. 

[19] P. Perona and J. Malik, “Scale space and edge detection using anisotropic diffusion”, IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. 7, no. 12, (1990), pp. 629-639. 

[20] L. Rudin, S. Osher and E. Fatemi, “Nonlinear total variation based noise removal algorithms”, Physical D, 

vol. 1, no. 60, (1992), pp. 259-268. 

[21] S. Teboul, L. Blane, G. Aubert and M. Barlaud, “Variational approach for edge-preserving regularization on 

using coupled PDE's”, IEEE Transactions on Image Processing, vol. 3, no. 7, (1998), pp. 387-397. 

[22] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images”, Processing of the 6th 

International Conference on Computer Vision, (1998), pp. 839-846, Washington, DC, USA. 

[23] C. Vogel and M. Oman, “Iterative method for total variation denoising”, SIAM Journal on Scientific 

Computing, vol. 1, no. 17, (1996), pp. 227-238. 

 

 

 

 

http://www.sciencedirect.com/science/journal/00243795


International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.7, No.5 (2014) 

 

 

286   Copyright ⓒ 2014 SERSC 

Author 
 

Ruihua Liu, he received his BSc degree in Mathematics from 

the Beijing Jiaotong University in 1999, his MSc degree in 

Mathematics from the South West China Normal University in 

2005, and his PhD degree in Mathematics from the East China 

Normal University in 2008. He was a teacher in Wuhan University 

of Science & Technology from 1999 to 2002, and worked in 

Chongqing University of Technology from 2008. Currently, He is 

Post Ph. D in Institute of Automation, Chinese Academy of 

Sciences, and works in Beijing ViSystem Co. LTD. His research 

interests are image processing based on PDEs methods, and 

3DMM reconstruction problems. 

 


