A Comparative Analysis of Impulse Noise Removal Techniques on Gray Scale Images

V. Murugan¹, T. Avudaiappan² and Dr. R. Balasubramanian³

Research Scholar¹, Department of Computer Science & Engg, Manonmaniam Sundaranar University, Tirunelveli – 627012, TamilNadu, India. Research Scholar², Professor³, Department of Computer Science & Engg, Manonmaniam Sundaranar University, Tirunelveli – 627012, TamilNadu, India. Email: vmurugan@msuniv.ac.in, ²Email: avudaiappanmecse@gmail.com ³rbalus662002@yahoo.com</sup>

Abstract

Various kinds of images and pictures are required as sources of information for analysis and interpretation. When an image is converted from one form to another such as scanning, transmitting, digitizing, storing etc., degradation occurs to the output image. Hence, the output image needs to be enhanced in order to be better analyzed. Denoising is the one of the pre processing technique in digital image processing. This paper investigates the performance of four denoising methods for removing the High Density Impulse Noise. They are Adaptive Bilateral Filter (ABF), Fuzzy Peer Group Filter (FPGF), Switching Bilateral Filter (SBF), and Boundary Discriminative Noise Detection Filter (BDND). The performance of the above four filters is compared by using five performance metrics. They are Peak-Signal-to-Noise-Ratio, Mean Square Error and Root Mean Square Error. The Experimental results show that the BDND filter based denoising method performs well than the other three methods.

Keywords: Impulse Noise, Enhancement, filters, PSNR, MSE, SSIM, MAE and MD

1. Introduction

Image Enhancement is a low-level process, which involves reducing the Noise from images. Digital images are often corrupted by Noise during their acquisition and transmission [1]. In particular, most commonly known of Noise are called additive Gaussian Noise and Impulse Noise. The need for efficient image denoising methods has been grown with the massive production of digital images and movies of all kinds, often taken in poor conditions. In recent years, a new concept in edge-preserving de-noising was proposed by Tomasi and Manduchi [2]. Most filters for Gaussian Noise suppression are designed to take advantage of the zero-mean property of the Noise and try to suppress it by locally averaging pixel channel values. To approach this problem, many nonlinear methods has been recently proposed, for instance: the bilateral filter [2, 3], the anisotropic diffusion [4], the chromatic filter [5], or the soft switching methods in [6], which motivate other fuzzy methods as the fuzzy directional derivative filter [7], the fuzzy bilateral filter [8], the fuzzy Noise reduction method [9], or the fuzzy-switching filter [10].

Impulse Noise (Salt & Pepper Noise):-

Salt and pepper noise is a form of noise usually seen on images. It uniquely represents itself as randomly occurring white and black pixels. An effective noise reduction approach for this type of noise involves the usage of a median filter or a contrast harmonic mean filter. Salt and pepper noise affects into images in situations where the image is transferred quickly. The aim of these methods is to detect edges and details by means of local statistics and smooth them less than the rest of the image to better preserve their sharpness. However, these methods commonly identify Impulses as details or edges to be preserved, and, therefore, they are not able to reduce that this present system evaluate the performance of the image denoising techniques namely Adaptive Bilateral Filter (ABF) [11]. Fuzzy Peer Group Filter (FPGF) [12] Switching Bilateral Filter (SBF) [13] and BDND filter [14].

This paper is organized as follows: Section II presents an Adaptive bilateral filter, Fuzzy peer group filter, switching bilateral filter, BDND filter of image denoising methods. The results of application of the schemes are presented in section III Section IV presents conclusion of this paper.

2. Algorithm

2.1. Adaptive Bilateral Filter [11]

The response at [m0, n0] of the proposed shift-variant ABF to an impulse at [m, n] is given shown at the bottom of the page, where [m0, n0] and $\Omega m0$, n0 are defined as before, and the normalization factor is given by

$$\gamma_{m0,n0} = \sum_{m=m0-N}^{m0+N} \sum_{n=n0-N}^{n0+N} \exp\left(\frac{(m-m0)^2 + (n-n0)^2}{2\sigma^2}\right) \times \exp\left(\frac{\left((g[m,n] - g[m0,n0] - \zeta[m0,n0])^2\right)}{2\sigma^2[m0,n0]}\right)$$
.....(1)

The ABF [11] retains the general form of a bilateral filter, but contains two important modifications. First, an offset ζ is introduced to the range filter in the ABF. Second, both ζ and the width of the range filter σ_r in the ABF are locally adaptive. If $\zeta =0$ and σ_r is fixed, the ABF will degenerate into a conventional bilateral filter. For the domain filter, a fixed low-pass Gaussian filter $\sigma_r =1.0$ with is adopted in the ABF. The combination of a locally adaptive ζ and σ_r transforms the bilateral filter into a much more powerful filter that is capable of both smoothing and sharpening. Moreover, it sharpens an image by increasing the slope of the edges. To understand how the ABF works, we need to understand the role of ζ and σ_r in the ABF.

2.2. Fuzzy Peer Group Filter [12]

This paper [12] uses a fuzzy similarity function, as the function above which, following the above terminology, is given by

$$\rho(F_i F_j) = e^{\frac{\|F_i - F_j\|}{F_{(i)}}}, i, j = 0 \dots n^2 - 1$$
Where $\|\cdot\|$ denotes the Euclidean norm and $F_{\sigma} > 0$
(2)

is a parameter.

2.3. Switching Bilateral Filter [13]

A noise detector is used in the SBF [13] filter to determine whether or not the current pixel is corrupted. This decision is made using the features of sorted quadrant median vector (SQMV), which can show the property of the background and is more reliable than only one median value. We obtain the reference median for noise identification from SQMV. If the reference median is improper, it can lead to lost detection or over detection. The lost noisy pixels have a great negative effect on the results and the undesired filtering removes the details. When a current pixel is very different from the reference median, it is identified as an impulse noise. When the difference between the current pixel and reference median is not too much, it may be a Gaussian noise or a noise-free pixel. Because the image background can give four different SQM values, the reference median can be selected from SQMV. The decision making mechanism is realized by employing a reference median and two thresholds The switching bilateral filter is defined by using the below formula

$$u_{i,j} = \frac{\sum_{S=-N}^{N} \sum_{t=-N}^{N} W_G(s,t) W_{SR}(s,t) x_{i+sj+t}}{\sum_{S=-N}^{N} \sum_{t=-N}^{N} W_G(s,t) W_{SR}(s,t)}$$
(3)

Where

$$W_G(s,t) = \exp{-\frac{(i-s)^2 + (j-t)^2}{2\sigma^2 S}}$$

(4)
$$W_{SR}(s,t) = \exp{-\frac{(I - x_{i+s,j+t})}{2\sigma^2 R}}$$

----- (5)

2.4 BDND Filter [14]

If the pixel is considered as the impulsive noise it is cleared by using the improved BDND filter [14]. The Efficient BDND Filtering Algorithm is calculated as below:

$$F_{mn} = medidan\{B_{m-p,n-u} | (p,u) \in V^{\wedge} B_{m-p,n-u} \in \mathbb{Z}_{c} \\ V = \{(p,u) | -(V_{Y}-1)/2 \le (p,u) \le (V_{Y}-1)/2 \}_{-----(6)}$$

If the pixel is considered as the Gaussian noise it is cleared by using the dynamic non local mean filter [11]. The dynamic non local mean filter is calculated as below

$$G(R_1, R_2) = S(R_1, R_2)R_2$$

U (R₁R₂) = { $\frac{O(R_1)}{O(R_2)}$ K1 \neq K2 and |O(R_1)-O(R_2)| -----(7)
{ 1 otherwise

3. Experiments & Results

3.1. Experimental Images:

The performance of the algorithm is evaluated on several real images shown in Figure 1.1. These pictures are the most widely used standard test images used for image retargeting algorithms. These are till in the industry standard for tests. It is a good test images. These images are used for many image processing researches.

Figure 3.1.1. Experimental Images (a) Image of Barbra (b) Image of Sail Boat (c) Image of Lena (d) Image of Pepper

3.2. Performance Metrics:

To evaluate the performance of the denoising techniques several performance metrics are available. We use the Peak Signal-to-Noise Ratio, Mean Square Error and Structural Similarity Index Measure

1. Peak Signal-To-Noise-Ratio - Peak signal-to-noise ratio (PSNR) to evaluate the quality between the attacked image and the original image. The PSNR formula is defined as follows:

PSNR=10xlog₁₀
$$\frac{255x255}{\frac{1}{HxW}\sum_{x=0}^{H-1}\sum_{Y=0}^{W-1}[f(x,y) - g(x,y)]^2}$$
------(8)

where H and W are the height and width of the image, respectively; and f(x,y) and g(x,y) are the grey levels located at coordinate (x,y) of the original image and attacked image, respectively.

2. Mean Square Error:

The mean square error or MSE of an estimator is one of many ways to quantify the difference between an estimator and the true value of the quantity being estimated. As a loss function, MSE is called squared error loss.

MSE =
$$\frac{\sum_{m=1}^{M} \sum_{n=1}^{N} [x(m,n) - x'(m,n)]^{2}}{M * N}$$
------(9)

3. Structural similarity Index Measure

The Structural similarity Index Measure (SSIM) is a method for measuring the similarity between two images. The SSIM is given by,

SSIM(x,y) =
$$\frac{(2\mu_x\mu_y + C_1)(2\mu_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_2)(\sigma_x^2 + \sigma_y^2 + C_2)}$$
-----(10)

4. Mean Absolute Error

The mean absolute error (MAE) is a quantity used to measure how difference between the original image and the noise free image. The mean absolute error is given by

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} |f_i - y_i|$$
 -----(11)

5. Max Difference Value

The max difference value (MD) is a quantity used to measure how difference between the original image and the noise free image. The MD is given by

$$MD = \max(|f_i - y_i|)$$
 (12)

3.2.1. Experimental Results

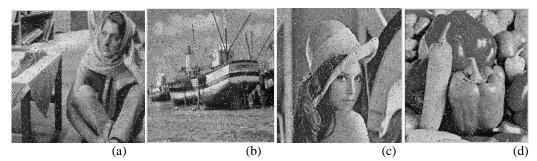


Figure 3.2.1.1. Impulse Noisy Images (a) Impulse Noisy Image of Barbara (b) Impulse Noisy Image of Sail Boat (c) Impulse Noisy Image of Lena (d) Impulse Noisy Image of Pepper

Figure 3.2.1.2. Noise Free Images using BDND Filter (a) Noise Free image of Barbara (b) Noise Free Image of Sail Boat (c) Noise Free image of Lena (d) Noise Free Image of Pepper

3.3. Performance Analysis:

The performance analysis of Impulse noise table has been evaluated, the Impulse noise ratio sigma=5% to 50% iterations are evaluated for Barbara Image. Table 1 shows the performance of all techniques for Barbara Image.

Table 1. PERFORMANCE ANALYSIS OF Impulse Noise Table for Barbara Image

Filte	Metric		Noise Ratio												
rs	s	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%				
	PSNR	21.65	20.18	19.05	18.15	17.427	16.786	16.16	15.71	15.25	14.8319				
		32	22	92	42	6	8	18	16	08					

ABF	MSE	28.61 32	29.97	30.41	31.53	34.289	36.915	39.66	41.77	44.05	46.2323
	CODI	-	06	60	79	4	0	88	93	57	0.5202
	SSIM	0.606	0.606	0.605	0.604	0.6029	0.6016	0.600	0.599	0.597	0.5392
	MAE	7	5	1	0	07.000	20.015	5	0	7	
	MAE	21.45	22.81	24.35	26.09	27.982	30.015	32.31	34.36	35.04	36.5766
		25	62	86	88	3	7	20	31	74	
	MD	235.1	235.3	235.8	236	239	240	243	243.7	244	244.2
	PSNR	24.42	24.38	23.95	23.85	22.983	22.272	21.57	21.06	20.54	20.0826
		84	76	2	77	0	2	43	65	12	
	MSE	26.18	27.73	28.63	29.08	32.126	34.908	37.82	40.13	42.60	44.9168
		38	51	90	40	7	3	89	41	71	
FPGF	SSIM	0.719	0.719	0.719	0.709	0.7071		0.621	0.609	0.608	0.6020
TFOF		8	6	5	9		0.6357	1	2	1	
	MAE	10.58	10.61	10.62	10.63	10.665	10.671	10.70	10.75	10.79	10.8592
		84	89	43	99	0	8	32	71	62	10.8392
	MD	230	230.3	230.8	231	233.2	234.1	235	235.8	236	239
	PSNR	22.41	21.46	21.42	20.62	20.006	19.428	18.92	15.42	15.01	14.6487
		85	16	95	93	5	6	14	15	61	
	MSE	24.30	27.13	30.55	33.50	35.992	38.469	40.78	43.19	45.26	47.2180
		04	07	38	25	8	0	20	83	20	
	SSIM	0.862	0.857	0.826	0.839	0.8276	0.7978	0.783	0.761	0.729	0.6771
SBF		1	2	0	4		0.7978	1	8	7	
	MAE	12.83	12.87	12.94	12.10	12.107	12.117	12.13	12.20	12.48	12.5103
		78	80	86	24	6	6	29	12	70	12.5105
	MD	233.9	234.3	235.8	235.2	236.2	237.8	238	239	241	243
					3						
	PSNR	32.32	32.15	31.00	30.19	30.432	29.267	29.89	28.18	27.73	27.0340
		49	28	37	56	5	4	43	22	21	
	MSE	20.30	21.13	23.55	23.28	24.912	25.461	27.28	28.12	30.16	32.1184
		24	12	31	25	8	6	20	09	21	
BDND	SSIM	0.918	0.918	0.907	0.902	0.9012	0.8990	0.899	0.898	0.898	0.8819
Filter		9	7	1	7			3	8	4	
	MAE	8.237	8.378	8.448	8.528	8.5576	8.6009	8.611	8.712	8.890	8.8988
		8	0	6	4			1	3	1	
	MD	226	226.4	225	224	224.8	225.2	227.4	228.1	229.3	230

International Journal of Signal Processing, Image Processing and Pattern Recognition Vol.7, No.5 (2014)

The performance analysis of Impulse noise Table has been evaluated, the Impulse noise ratio sigma=5% to 50% iterations are evaluated for Sail Boat Image. Table 2 shows performance of all techniques for Sail Boat Image.

Table 2. PERFORMANCE ANALYSIS OF Impulse Noise Table for Sail Boat
Image

Filter	Metric					Noise	Ratio				
s	s	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%
	PSNR	22.653 1	22.583 2	22.15 92	21.95 41	21.7674	20.7828	20.161 8	19.321 0	18.241 0	18.101 8
ABF	MSE	27.613 2	28.970 6	29.41 60	30.53 99	31.2104	32.9150	33.698 8	34.779 3	36.059 8	37.230 1
	SSIM	0.5067	0.5065	0.505 1	0.504 0	0.5029	0.5016	0.4915	0.4890	0.4877	0.4392
	MAE	23.452 5	23.816 2	23.35 86	23.09 88	23.9823	26.0157	27.312 0	28.363 1	29.047 4	31.576 6
	MD	238	239	239.8	239.9	240	240.6	243	243.7	244	244.2
	PSNR	26.128 4	25.773 2	25.35 21	24.85 00	24.1230	24.4561	23.198 7	23.123 5	22.871 2	22.081 2
FPGF	MSE	28.183 8	28.735 1	28.63 90	29.08 40	29.1267	30.9083	30.828 9	31.134 1	32.607 1	34.998 8
	SSIM	0.8901	0.8896	0.888	0.887	0.8861	0.8851	0.8751	0.8662	0.8081	0.6020

				5	9						
	MAE	11.588 4	11.618 9	11.62 43	11.63 99	11.6650	11.6718	11.703 2	11.757 1	11.796 2	11.859 2
	MD	231	231.3	231.2	232	232.6	233.4	234	235.9	236.5	237
	PSNR	23.418 5	22.461 2	22.42 91	21.62 32	21.0065	20.9286	19.111 4	18.421 1	17.098 7	16.128 7
	MSE	24.330 4	27.900 7	28.55 38	30.80 25	32.1201	33.1210	35.712 0	37.118 2	39.263 0	40.218 0
SBF	SSIM	0.8910	0.8771	0.866 3	0.859 0	0.8475	0.8372	0.8231	0.7623	0.7298	0.6712
	MAE	12.837 8	12.878 0	12.94 86	12.10 24	12.1076	12.1176	12.132 9	12.201 2	12.487 0	12.510 3
	MD	230	231.4	232	233.1	234.8	235.2	237.4	238.1	239.3	240.9
	PSNR	31.329 9	31.158 7	31.00 37	30.19 56	29.9325	29.7074	29.634 3	28.992 2	27.752 1	26.552 3
	MSE	21.302 4	21.131 2	22.55 31	22.38 25	23.9128	24.5016	26.120 9	28.120 9	30.162 3	32.784 3
BDND Filter	SSIM	0.9189	0.9187	0.907 1	0.902 7	0.9012	0.8990	0.8993	0.8988	0.8984	0.8819
	MAE	7.2378	7.3780	7.448 6	7.524 8	7.5567	7.6015	7.6101	7.8023	7.8918	7.8912
	MD	225	225.4	226	226.3	226.8	227.2	227.4	227.9	228.3	229

The performance analysis of Impulse noise Table has been evaluated, the Impulse noise ratio sigma=5% to 50% iterations are evaluated for Lena Image. Table 3 shows performance of all techniques for Lena Image.

Filter	Metric		Noise Ratio % 10% 15% 20% 25% 30% 35% 40% 45% 50%											
s	s	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%			
	PSNR	23.653	23.282	22.65	21.05	21.3275	20.7112	19.131	18.911	18.660	17.001			
		1	2	93	49		20.7112	8	1	8	9			
ABF	MSE	27.613	27.970	28.41	29.53	30.2895	31.9154	33.668	34.779	36.055	38.232			
		9	8	67	76		51.7151	3	2	0	1			
	SSIM	0.6967	0.8965	0.675 1	0.684 0	0.6429	0.6516	0.6905	0.5912	0.5910	0.5392			
	MAE	22.435	23.098	23.23	23.98	24.3315	25.1178	26.660	27.112	28.678	29.091			
		6	7	48	76			9	3	1	2			
	MD	235.1	235.3	235.8	236	239	240	243	243.7	244	244.2			
	PSNR	24.428	24.387	23.95	23.85	22.9830		21.574	21.066	20.541	20.082			
		4	6	2	77		22.2722	3	5	2	6			
	MSE	26.183	27.735	28.63	29.08	32.1267		37.828	40.134	42.607	44.916			
		8	1	90	40		34.9083	9	1	1	8			
FPGF	SSIM			0.719	0.709	0.7071			0.6092	0.6081	0.6020			
		0.7198	0.7196	5	9		0.6357	0.6211						
	MAE	10.588 4	10.618 9	10.62 43	10.63 99	10.6650	10.6718	10.703 2	10.757 1	10.796 2	10.859 2			
	MD	230	230.3	230.8	231	233.2	234.1	235	235.8	236	239			
	PSNR	25.918	25.861	25.62	25.32	25.1065	234.1	23.621	233.8	21.316	20.658			
	PSINK	23.918	23.801 6	23.62 95	23.32 93	23.1003	24.8286	4	5	1	20.638			
	MSE	21.921	21.671	21.55	22.90	23.9921	24.4694	25.780	26.118	27.138	29.006			
		0	0	38	25		2	01	7	7	1			
SBF	SSIM	0.8120	0.8373	0.857 1	0.869 7	0.8476	0.8078	0.7831	0.7618	0.7297	0.6771			
	MAE	11.817	11.828	11.94	12.14	12.1075	12.6176	12.872	13.201	13.387	14.445			
		8	0	36	24	12.1075	12.0170	9	2	1	6			
	MD	233.9	234.3	235.8	235.2 3	236.2	237.8	238	239	241	243			

Table 3. PERFORMANCE ANALYSIS OF Impulse Noise Table for Lena Image

International Journal of Signal Processing, Image Processing and Pattern Recognition Vol.7, No.5 (2014)

	PSNR	32.324	32.152	31.00	30.19	30.4325	29.2674	29.894	28.182	27.732	27.034
		9	8	37	56			3	2	1	0
	MSE	20.302	21.131	23.55	23.28	24.9128	25.4616	27.282	28.120	30.162	32.118
		4	2	31	25		23.4010	0	9	1	4
BDND Filter	SSIM	0.9189	0.9187	0.907	0.902	0.9012	0.8990	0.8993	0.8988	0.8984	0.8819
The	MAE			8.448	8.528						
	MAE	8.2378	8.3780		0.320	8.5576	8.6009	8.6111	8.7123	8.8901	8.8988
				6	4						
	MD	226	226.4	225	224	224.8	225.2	227.4	228.1	229.3	230

The performance analysis of Impulse noise table has been evaluated, the Impulse noise ratio sigma=5% to 50% iterations are evaluated for Pepper Image. Table 4 shows performance of all techniques for Pepper Image.

Filter	Metrics					Noise	e Ratio				
s		5%	10%	15%	20%	25%	30%	35%	40%	45%	50%
	PSNR	22.953	22.883	22.75	21.65	21.5677	20.1823	20.261	19.321	18.441	18.505
		9	1	98	42		20.1625	7	4	6	8
ABF	MSE	27.113	28.210	29.34	30.67	31.1004	32.6750	33.198	34.659	36.229	37.170
		2	6	60	99		52.0750	8	3	8	1
	SSIM	0.5167	0.5165	0.515 1	0.514 0	0.5129	0.5116	0.4215	0.4490	0.4677	0.4092
	MAE	23.123	23.091	23.56	23.87	23.1235	26.6753	27.128	28.345	29.213	31.987
		4	2	43	56		20.0755	0	6	4	1
	MD	238.5	239.2	239.8	239.9	240.3	240.6	241	242.7	243.2	244.1
	PSNR	26.128	25.773	25.35	24.85	24.1230		23.198	23.123	22.871	22.081
		4	2	21	00		24.4561	7	5	2	2
	MSE	28.183	28.735	28.63	29.08	29.1267	20,0002	30.828	31.134	32.607	34.998
	SSIM	8	1	90 0.888	40 0.887	0.8861	30.9083	9	1 0.8662	1 0.8081	8 0.6020
FPGF	22101	0.8901	0.8896	0.888	9	0.8801	0.8851	0.8751	0.8002	0.8081	0.0020
	MAE	10.588	10.618	10.62	10.63			10.703	10.757	10.796	10.859
	IVIT IL	4	9	43	99	10.6650	10.6718	2	10.757	2	2
	MD	230	230.3	230.8	231	233.2	234.1	235	235.8	236	239
	PSNR	23.418	22.461	22.42	21.62	21.0065	20.9286	19.111	18.421	17.098	16.128
	MOD	5	2	91	32	22 1201		4	1	7	7
	MSE	24.330	27.900	28.55	30.80 25	32.1201	33.1210	35.712	37.118	39.263 0	40.218
CDE	SSIM	4	7	38 0.866	0.859	0.8475		0	2 0.7623	0.7298	0 0.6712
SBF	~~~~	0.8910	0.8771	3	0		0.8372	0.8231			
	MAE	12.837	12.878	12.94	12.10	12 1020	12 1001	12.133	12.200	12.421	12.521
		1	2	89	21	12.1036	12.1091	1	0	0	5
	MD	231	232.4	232.8	233.5	234.1	234.7	235.4	236.1	237.3	239
	PSNR	33.114	33.101	33.00	32.91	234.1 32.1291	31.4614	235.4 31.994	30.982	30.732	239
	LOINU	33.114 9	2	33.00	52.91	32.1271	51.4014	51.994 6	2	1	29.034
	MSE	19.302	20.131	20.55	20.28	20.9328		21.209	21.341	22.109	23.111
	11151	4	20.131	31	20.20	20.7520	21.4646	1	0	8	0
BDND Filter	SSIM	0.9181	0.9182	0.907	0.902	0.9015	0.8999	0.8998	0.8987	0.8986	0.8815
	MAE	7.2318	7.3790	7.428 6	7.528 4	7.5536	7.6007	7.6141	7.7623	7.8501	7.8960
	MD	225	224.4	224	223	223.8	224.2	224.4	225.1	226.3	229

Table 4. PERFORMANCE ANALYSIS OF Impulse Noise Table for Pepper Image

From the above Table 1-4 it is shown that the BDND filter method is considered as the best method for High Density Impulse Noise Removal Techniques for all standard Images. Because it has higher PSNR (see Table 1-4) and SSIM value with lower MSE.

4. Conclusion

In this paper, High Density Impulse noise detection and reduction techniques were implemented and the results were compared by using five performance parameters. They are Peak-Signal-to-Noise-Ratio, Mean Square Error and structural similarity index measure, Mean Absolute Error, and Maximum Difference. The experimental results show that the BDND denoising method performed well than the other methods.

References

- [1] K. N. Plataniotis and A. N. Venetsanopoulos, "Color Image Processing and Applications," Berlin, Germany, Springer, (2000).
- [2] C. Tomasi and R.Manduchi, "Bilateral filter for gray and color images," in Proc. IEEE Int. Conf. Computer Vision, (**1998**), pp. 839–846.
- [3] M. Elad, "On the origin of bilateral filter and ways to improve it," IEEE Trans. Image Process., vol. 11, no. 10, (2002) October, pp. 1141–1151.
- [4] P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion," IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 7, (1990) July, pp. 629–639.
- [5] L. Lucchese and S. K. Mitra, "A new class of chromatic filters for color image processing", Theory and applications," IEEE Trans. Image Process., vol. 13, no. 4, (2004) April, pp. 534–548.
- [6] H. L. Eng and K. K. Ma, "Noise adaptive soft-switching median filter," IEEE Trans. Image Process., vol. 10, no. 2, (2001) February, pp. 242–251.
- [7] D. Van de Ville, M. Nachtegael, D. P. Van der Weken, W. I. Lemahieu and E. E. Kerre, "Noise reduction by fuzzy image filtering," IEEE Trans. Image Process., vol. 11, no. 4, (2001) April, pp. 429–436.
- [8] S. Morillas, V. Gregori and A. Sapena, "Fuzzy bilateral filtering for color images," in Proc. Int. Conf. Image Analysis and Recognition, Lecture Notes in Computer Science, vol. 4141, (2006), pp. 138–145.
- [9] S. Schulte, V. Witte, De and E. E. Kerre, "A fuzzy noise reduction method for colour images," IEEE Trans. Image Process., vol. 16, no. 5, (2007) May, pp. 1425–1436.
- [10] S. Morillas, S. Schulte, T. Mélange, E. E. Kerre and V.Gregori, "A soft-switching approach to improve visual quality of colour image smoothing filters," in Proc. Advanced Concepts for Intelligent Vision Systems, (2007), vol. 4678.
- [11] B. Zhang and J. P. Allebach, "Adaptive Bilateral Filter for Sharpness Enhancement and Noise Removal", IEEE Transaction on Image Processing, vol. 17, no. 5.
- [12] S. Morillas, V. Gregori and A. Sapena, "Fuzzy peer Groups Reducing Mixed Gaussian-Impulse Noise From Color Images," IEEE Transaction on Image Processing, vol. 18, no. 7, (2009) July.
- [13] C.-H. L. Jia-Shiuan, "Switching Bilateral Filter with a Texture/Noise Detector for Universal Noise Removal", IEEE Transaction on Image Processing, vol. 19, no. 9, (2010) September.
- [14] F. Iyad, A. J. Rami, "Efficient Improvements on the BDND Filtering Algorithm for the Removal of High-Density Impulse noise", IEEE Transaction on Image Processing, vol. 22, no. 3, (2013) March.

Authors

V. Murugan, he completed his M.C.A Degree from the Department of Computer Science and Engineering, Manonmaniam Sundaranar University, Tirunelveli in the year 2010.He has completed his M.E Degree from the Department of computer science and Engineering, Manonmaniam Sundaranar University, Tirunelveli in the year 2012. He is pursuing Research in the Department of Computer Science and Engineering, Manonmaniam Sundaranar University, Tirunelveli. His International Journal of Signal Processing, Image Processing and Pattern Recognition Vol.7, No.5 (2014)

research interests include Image Enhancement and Parallel Image Processing.

T. Avudaiappan, he completed his B.E Degree from the Department of Computer Science and Engineering, Jayaraj Annapackiam CSI college of Engineering from Anna University; Chennai in the year 2010.He has completed his M.E Degree from the Department of computer science and Engineering in Karpagam University, Coimbatore in the year 2012. He is a Research Scholar in the Department of Computer Science and Engineering, Manonmaniam Sundaranar University, Tirunelveli. His research interests include, Cloud Computing, Parallel Computing, Image Processing and Web Development.

R. Balasubramanian, he received his B.E [Hons] degree in Computer Science and Engineering, from Bharathidhasan University in the year 1989. He completed his M.E degree in Computer Science and Engineering, from Regional Engineering College, Trichy/Bharathidhasan University in the year 1992. He is working as a Professor in the department of Computer Science and Engineering, Manonmaniam Sundaranar University,

Tirunelveli, he received his Doctorate in Computer Science and Engineering, Manonmaniam Sundaranar University, Tirunelveli in the field of Digital Image Processing, in the year 2011.He has published papers in many National and International Level Journals and Conferences. His research interests in the field of Digital Image Processing, Data mining, and Wireless Network & Cloud Computing.