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Abstract 

The exposure fusion technique is very useful for directly fusing multi-exposure images into 

a high quality image, without the physically based high dynamic range (HDR) production 

step. In this paper, we present an improved method for multi-exposure images fusion using 

multi-resolution Laplacian pyramid weighted blending. We propose a Weight Modification 

Factor (WMF) to modify the original weight map for each image guided by contrast, 

saturation and well-exposedness of each pixel in the image, and to enhance the weight of the 

informative pixels in ultra-bright or ultra-dark areas. Compared with previous methods, our 

approach preserves more useful details for scenes with very large dynamic range and 

achieves no artifacts. Several objective quality metrics prove the advantages of our method.  
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1. Introduction 

Dynamic range of a real scene is extremely large, up to 10
8
:1 from the bright sun to the 

dark shadow. The dynamic range of human eyes perception is about 10
4
:1. However, the 

capacity of dynamic range of a low cost image capture or display device is very limited, 

typically only 10
2
:1. Thus, a single digital image cannot show the entire dynamic range of a 

real scene. Fortunately, under the development of HDR technologies [1, 2], high realistic 

images with a wide range of luminance information could be presented on low cost devices.  

Although some new specialized HDR capture devices have been developed [3-5], so far 

they are still far from popularity because of the high prices and hardware requirements.  In 

order to display more colors and detail information of the over-exposed and under-exposed 

areas on common home-use devices, the common approach is to capture sequential low 

dynamic range (LDR) images with a standard digital camera by setting different exposure 

levels, then estimate the camera response curve and recover a HDR radiance map [6], finally 

display the HDR radiance map on common LDR monitors by tone mapping algorithms [7] 

[8-10, 16]. 

However, these typical HDR imaging methods need the camera response curve calibration. 

Moreover, the generated HDR image could not be directly displayed on common devices 

unless a tone mapping algorithm running on it, this will increase the cost of computation time 

and memory requirement of the device when displaying an image. Due to these reasons, 

exposure fusion was proposed later. It directly fuses multi-exposure images into a single 

high-quality composite image which could be displayed on LDR monitors, with no 

intermediate HDR image acquisition and no tone mapping algorithms either. 

In this paper we propose an improved approach based on the multi-resolution exposure 

fusion method Mertens, et al., [12] to avoid the disadvantage of the method. We obtain 
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weight maps guided by quality measures and blend for each Laplacian pyramid level 

separately to eliminate seams introduced when using the direct weighted average. Unlike 

previous work, we propose a Weight Modification Factor (WMF) to modify the weight of 

Laplacian pyramid coefficients, making the weights of informative pixels dominant even if on 

the high level pyramid. We use the new weight computation method to extract more visual 

information without halos in ultra-bright and ultra-dark areas than previous methods. (Figure 

1) 

The organization of the paper is as follows. In Section 2 we summarize the related work 

about exposure fusion. In Section 3 we analyze the characteristic of the method in [12], and 

explain the reason why the method does not work in ultra-bright or ultra-dark regions. We 

explain our method in Section 4 and show some experimental results and comparisons with 

previous methods in Section 5. In Section 6, we make a conclusion for our method and 

propose our future work. 

  

Figure 1. Five Input Pictures of Different Exposures and the Fused Image 
by our Method (Right) 

2. Related Work 

Many exposure fusion methods have been proposed recently [11-15]. They simplify 

the conventional HDR imaging pipeline and directly fuse bracketed exposures into a 

high-quality LDR image. Goshtasby [11] proposed a fusion method that partitions the 

image domain into uniform blocks, then for each block selects the image that contains 

the most information within that block by computing the entropy of each input color 

image, and then fuses the selected images to a new image with Gaussian function. 

Unfortunately, the method may lead to artifacts near boundaries of regions with 

different brightness because one block may cross different regions. Raman and 

Chaudhuri [13] proposed an exposure fusion method with the technique of edge-

preserving bilateral filtering. The method is computationally efficient but with 

unsatisfactory results on color visibility. Zhao Ying, et al., [14] proposed a detail-

preserving multi-exposure image fusion approach using the subband architecture. The 

method preserves much more details than previous methods but the gain control maps 

increase the excess details by enhancing the contrast. Wei Zhang, et al., [15] composed 

multiple images with different exposures in both static and dynamic scenes with the 

gradient-based quality measures considering that the gradient magnitude implies 

exposure quality and decreases gradually as the image approaching over -exposure or 

under-exposure. But the result looks unnatural because light and shade effects of the 

original scene are ignored. The most attractive method was proposed by Mertens , et al., 

[12], which determines the weight map of each image according to contrast, saturation 

and well-exposedness. There are obvious seams by naive weighted average blending 

due to sharp variations in the weight map. Blurring the weight map using a Gaussian 

kernel or bilateral filtering removes the seams, but introduces halos around edges. 
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Therefore, on the basis of weight maps, they adopt multi-resolution Laplacian pyramid 

[17] weighted blending to eliminate seams and halos and achieved perfect results in 

most cases. However, when the dynamic range of the real scene is extremely large and 

contains ultra-bright and ultra-dark areas where only a small amount of details can be 

captured in spite of adjusting the camera exposure parameter, the method will lose the 

small amount of useful details in the final fused image. The reason for this problem is 

that the weights of informative pixels are not dominated anymore because of the weight 

map blurring. We will elaborate more details about this in Section 3.  

 

3. Analysis of Multi Resolution Exposure Fusion 

Based on the multi resolution theory, Mertens, et al., [12] proposed a method to 

decompose each input image into Laplacian pyramid, build the normalized weight Gaussian 

pyramid of each image, and collapse the fused Laplacian pyramid that is weighted average for 

each level separately by  

                                                    d

kyx

N

k

d

kyx

d

yx WGILFL ,,

1

,,, }{}{}{ 


                                                 (1) 

where d

kyxIL ,,}{  is the Laplacian pyramid of the k-th image on the d-th level, d

kyxWG ,,}{  is 

the normalized Gaussian pyramid of the corresponding weight map according to the 

weighted product of three quality measures by  
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where C, S and E are contrast, saturation, and well-exposedness, respectively with 

corresponding weighting exponents wC, wS and wE. Color images can be processed for each 

color channel separately. 

When the dynamic range of the scene is not very large, this method works well as the input 

picture sequences contain enough information for fusion. However, when the dynamic range 

of the scene is very large and contains ultra-bright or ultra-dark areas where only a small 

amount of details can be captured in spite of adjusting the camera exposure parameter, the 

method will loss details in such areas. The ultra-light or ultra-dark area is shown in Figure 

2(a). There are six input images captured in a real scene. In some areas of the scene, such as 

the area inside the garage, the light is so dim, then the corresponding areas in all captured 

images are almost darkness except that the last two images contain small amount of visual 

information inside the garage, we call the area ultra-dark area. Similarly, we call the area 

ultra-bright area when the light is strong. When blending the ultra-bright or ultra-dark area 

from the input images, one should give dominant weight values to the pixels of the images 

that contain the visual information of the area. Unfortunately, in this method the over-

averaging of weight leads to loss of the dominant pixels and thus loses the visual details in 

ultra-bright or ultra-dark areas. The weakness of the method is exposed more and more 

obviously as the increase of pyramid level as shown in Figure 2.  

When the pyramid level D is small, the high frequency information is fused, the Gaussian 

kernel of the weight map pyramid only affects pixels in a small local, the weights of pixels 

with more information are large enough for the details preserved well. Particularly, when D = 

0 as shown in Figure 2(b), fusion process is equivalent to the simple weighted average, the 

detail information for each pixel can be preserved but the seams are obvious. With the 
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increase of D, high-level pyramids blend the low frequency information; the Gaussian kernel 

involves larger areas by the recursive formula  
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where wd is the weight map of the d-th level and g(m, n) is a 5×5 Gaussian kernel window. 

Each weight value is more and more affected by the tremendously different adjacent pixel 

weights from itself, the weights of informative pixels become so smaller (the up part of 

Figure 2(d)) as to lose details as shown in the fourth image (D = 7) of Figure 2(b), the 

information inside the garage is almost lost compared with the last input image. It is not 

mentioned how to choose the appropriate pyramid level D in [12]. From the illustrations of 

Figure 2(b), we can see that there is a contradiction on selection of D. The smaller value of D 

produces more seams and halos while the larger value of D leads to loss of details. Let H and 

W are the height and width of the image, respectively. In this paper, we compute D by 

                                                            ),min(log2 WHD                                                      (5) 

to ensure no halos and introduce a novel mechanism to modify the weight map and preserve 

details as much as possible, which solves the contradiction above. The result of our method 

for this example is shown in Figure 2(c). 

 

(a) Input pictures 

 

(b) Results of Mertens, et al., with different D 

  

         (c) Our result            (d) Weight values comparison on the 6-th level of the sixth image 

Figure 2: (b) Shows the Results of Mertens, et al., with Different Pyramid Level 
D. From Left to Right: D = 0, D = 4, D = 6, D = 7, Respectively. When D = 0, 

Seams are Obvious. When D = 4, we can See the Obvious Halos Around the 
Iron Window. When D = 6 or D = 7, Halos Disappear but the Car Inside the 

Garage is not Clear. In (c) we Make the Car Visible without Halos after 
Introducing WMF with D = 7. (d) Shows Weight Comparison on the 6-th Level of 

the Sixth Image between the Weight of Mertens, et al., (up) and our Modified 
Weight (Bottom). The Red Point Signifies the Pixel at the Position (64, 256), 

with the Weight Modified from 0.491290 to 0.984297 (Marked with the Red Line) 
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4. Our Approach 

4.1. Overview of our Approach 

The input exposure images are captured from a static scene with no camera motion. Our 

approach is a multi-resolution method, blending for each Laplacian pyramid level separately 

according to weight maps. The weight maps are computed guided by quality measures and 

modified by WMF. Finally we collapse the fused Laplacian pyramid to obtain the final 

image. Figure 3 shows the pipeline of our algorithm. The main difference between the 

method of Mertens, et al., and ours is that we propose a nonlinear power function called 

WMF to manipulate weight maps, preserving color and details better than previous methods 

without halos and distortion. We construct the Laplacian pyramid of fused image by  
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where d

kyxWG ,,}{   is the normalized Gaussian pyramid of the modified weight map by 
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where d

kyxWG ,,}{   is the WMF map Gaussian pyramid of the k-th image. The construction 

of full resolution WMF yxkM ,, is discussed in Section 4.3. 

 

      

 

Figure 3. Pipeline of our Method 

4.2. Determination of Ultra-bright and Ultra-dark Areas 

The aim of this step is to detect the ultra-bright or ultra-dark areas where only a small 

amount of details exist in the input images. We find out that the average brightness of input 

images can reflect the luminance of the scene and meet our requirement perfectly (Figure 4, 

left). So we determine ultra-bright and ultra-dark areas according to the average brightness by  
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We modify the weight only for ultra-bright and ultra-dark areas and keep other normal pixels 

stable as much as possible. We regard pixels to be located in normal areas if   1,yxl . 

In this case we remain the weight of these pixels unchanged with Mk,x,y = 1. Otherwise, we 

modify the weight map with nonlinear adjustment. The ultra-bright and ultra-dark areas can 
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contain some normal pixels because this segmentation strategy is pixel-based. We deal with 

this situation by a constraint in Section 4.3.  

     Parameter λ is variable from 0 to 0.5. If λ = 0, no ultra-bright or ultra-dark areas exist and 

no weight is modified. If λ = 0.5, the whole scene is regarded as the ultra-bright and ultra-

dark area. This global manipulation can weaken and counterbalance the weight modification 

magnitude. Based on a large number of experiments, we have λ = 0.2 for all the scenes and 

the ultra-bright and ultra-dark areas where contain the small amount of details of the input 

images are well detected. (Figure 4, right) 

  

Figure 4. Average Brightness Map (left). From Dark to Bright the Brightness 
Value Gradually Increases. The Segmented Areas (Right) by the Average 

Brightness with the Threshold Value λ = 0.2, where Red Pixels Represent the 
Ultra-bright and Ultra-dark Areas 

4.3. Definition of WMF and Modification of Weight Maps 

We are committed to assign big weight for the pixels that contain more color and detail 

information in ultra-bright and ultra-dark areas. So we amplify these weight coefficients with 

WMF as follows:  

                                                    
)( ,,,, yxkyxk WNM                                                           (10) 

where the parameter β controls the degree of amplification. Based on Mk,x,y, we build 

the Gaussian pyramids of WMF maps in the similar way except that we should always 

apply the constraint 1}{ ,, d

kyxWG  if pixels are located in normal areas by the judgment 

statement   1
2,2 yx ddl , which avoids the modified weight values being 

counterbalanced and disturbed at each level. 

We determine the value of parameter β by solving an objective function. We adopt the 

image quality metric of [18] to construct our objective function. This metric generates a 

distortion map by comparing the fused image with a reference image. The reference image is 

the HDR image from the same bracketed exposures. The distortion map is obtained by three 

detection probability maps, including Ploss, Pampl and Prev, respectively for three types of 

distortions including loss of visible contrast, amplification of invisible contrast and reversal of 

visible contrast. We equally treat the three distortion detection probability by computing their 

average value as Px,y(β) to represent magnitude of distortion probability at (x, y) with the 

parameter β. We compute the average probability for all pixels to measure the distortion by 
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Figure 5(a) shows the function curves of )(P for Figure 2 and Figure 6. We can see that 

when β = 0, the magnitude of distortion probability is largest. With the increase of β, the 

magnitude of probability )(P  is decreased. It means that the distortion between the test 

image and the reference image is decreased gradually. However, it tends to approximate to 

constant when β increases to a certain value βm. We actually aim to search βm to ensure the 
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lowest distortion. In order to compute βm precisely, we compute the absolute value of first 

derivative of )(P ( )(P  ) as our objective function and find out the minimum β as βm to 

meet the condition   )(P , where ε is a very small value near 0 and we set ε = 0.001. We 

get βm = 8.5 for Figure 2 and βm = 5.0 for Figure 6 by iterative computation method. Their 

function curves of )(P   are shown in Figure 5(b). 

 

Figure 5. Function Curves of )(P  and )(P   for Figure 2 (blue, βm = 8.5) and 

Figure 6 (red, βm = 5.0) 

Based on the above parameter calculation for a large number of scenes, we find that for 

most scenes βm is less than 10, such as βm = 7.2 for Figure 1, βm = 3.5 for Figure 8, βm = 6.3 

for Figure 9 and so on. Figure 7 which shows different results under variations of β. 

Therefore, we set the parameter β large enough for β > βm with no need to calculate βm for 

every scene. (β = 15 is suitable for most scenes in this paper)  

With the weight manipulation by WMF, the pixels that contain more details information 

have an absolute advantage over other pixels. Even if under the weight smooth effect of 

Gaussian pyramid level by level, at the high-level pyramid these pixels can still keep the 

weight advantage. We pick out a single representative pixel weight value for better 

description of the problem. We choose the pixel at the position (64, 256) in the garage image 

sequence (Figure 2(d)). Because the detail information of this pixel is mainly embodied in the 

sixth garage image, we desire to keep the weight advantage over other five images at each 

pyramid level. When D = 0, the weights of 6 input images for this pixel are 0.000000, 

0.000000, 0.000000, 0.000215, 0.065051, 0.934734, where the sixth weight 0.934734 has 

reached the advantage large enough for details preserved. However, the weight advantage 

reduces gradually with the increase of D for the weight smooth of Gaussian kernel. We can 

compute the corresponding sixth weight when D = 6 at the position (1, 4), given by (64/2
6
, 

256/2
6
), equal to 0.491290 by Eq. 4. The weight advantage is not large enough and causes 

details lost. After the weight modification by our method, the corresponding normalized sixth 

weight when D = 6 at (1, 4) is increased to 0.984297 which achieves large enough weight 

advantage. Similarly, the four weight values in the red box of Figure 2(d) are greatly 

improved. 

 

5. Experiment Results and Comparisons 

We compute the pyramids based on a 5×5 kernel, on a 2.33GHz Intel core 2 Duo 

CPU, 1.96 GB memory. In the scene with very large dynamic range or the exposure 

adjustment range is narrow, only a small amount of details are captured in the ultra -
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bright and ultra-dark areas. Our method could preserve the details as much as possible 

in these areas while Mertens, et al., will lose these details, such as the ultra-dark garage 

(Figure 2(c)), and the details in the ultra-bright hall (Figure 9). Especially, for a large 

number of the multi-exposure input images, our method has larger advantage over [12] 

on the effect of details capture, for example, fusing 20 input exposures in Figure 10. In 

other words, our result image fused with fewer input pictures contains amount of detail 

information comparable to Mertens, et al., with more input pictures (Figure 6). We prove 

the effectiveness of our method by several quality assessment metrics.  

    

                 (a)                               (b)                                 (c)                                (d)  

Figure 6. (a) Five Exposures and Two Additional Exposures (Bottom). (b) 
and (d) are Results of Mertens, et al., by Five Exposures and by all Seven 

Exposures. (c) Is our Result by Five Exposures and Contains more Details 
than (b) and (d). The Distortion Map of (c) Contains Less Green Color on 

the Two Billboards than (b) and (d) 

 

Figure 7. Close-up of Figure 6 which shows Different Results Under 

Variations of β From Left to Right: β=1.5 ( )(P =0.383), β=3.5( )(P =0.329), 

β=5.0 ( )(P =0.306), β=10 ( )(P =0.302) and β=25 ( )(P =0.301), 

Respectively. The Distortion Decreases Dramatically when β<βm ( βm=5.0) 
but with Little Variation when  β>βm. 

5.1. Assessment by Distortion Maps 

We visualize the three types of distortion with three RGB color channels [18]. The 

saturation of each color indicates the magnitude of distortion probability. In all the distortion 

maps of this paper, we chose green for loss of visible contrast, blue for amplification of 

invisible contrast, and red for reversal of visible contrast. The parameters to generate the 

distortion map are as follows: All LDR images are shown in a typical display with maximum 

luminance 100 and gamma 2.2, the pixels per visual degree is 30 and the observer distance is 

0.5 meters. Our distortion map contains dramatically less green color than Mertens, et al., 

[12] in ultra-bright and ultra-dark areas without introducing more blue and red color (see 

Figure 6 and Figure 9). Figure 11 shows the comparison with several other exposure fusion 
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methods. The corresponding distortion maps manifest that our result causes less visible detail 

lost. 

 

5.2. Comparisons under Different Measure Exponents 

We use equally weighted quality measures with wC = wS = wE = 1 in Eq. 3 for all scenes of 

this paper unless noted otherwise. Adjusting the three quality measure exponents can lead to 

slight variation, but under the same measure exponents our method can preserve more details 

than Mertens et al. (Figure 8). 

 

(a) Seven input pictures 

 

(b) Comparisons of Mertens, et al., and our result with different weights setting 

Figure 8. (b) Shows Comparisons of Mertens, et al., (the Top Row) and our 
Result (the Bottom Row) by Setting Different Quality Measure Weights. From 
Left to Right: wC = wS = wE = 1 for the First Column, wC = 1; wS = wE = 0 for the 
Second Column, wS = 1; wC = wE = 0 for the Third Column, wE = 1; wC = wS = 0 

for the Fourth Column, Respectively. The Faraway Trees outside the Art 
Gallery Door in our Result are Clearer for Each Column 

5.3. Assessment by Average Quality Measures 

We also make quality assessment according to the average objective quality measure by 
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where Qx,y is one of the three quality measures including contrast, saturation and well-

exposedness defined in [12]. The value of quality assessment QA including average contrast, 

average saturation and average well-exposedness, have been improved as shown in Table 1, 

which further prove the high quality of our method by quantitative measurement. 

Table 1. Objective Quality Assessment QA Comparisons of Different 
Scenes between Mertens, et al., (M1) and our Result (M2) 

Quality measure Contrast Saturation Well-exposedness 

 M1 M2 M1 M2 M1 M2 

Figure 2 18.098   19.286 7.182  7.632  0.493  0.508 

Figure 11 17.986  19.261  23.589  25.034  0.178  0.210 

Figure 6 6.060   6.274 15.351  15.700  0.274  0.340 
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6. Conclusion 

In this paper, we obtain a detail-preserving and visually natural image in a multi-

resolution fashion by fusing a sequence of multi-exposure images directly. We propose 

WMF to modify weight maps, increasing the weight of informative pixels in ultra -

bright and ultra-dark areas and preserving detail information. Our approach has a wider 

adaptability to scenes with very large dynamic range. The quality of our method is 

superior to previous exposure fusion methods and existing tone mapping methods.  

We would like to deal with the fusion process with GPU implementation to further 

improve the efficiency for real-time display. We also would like to explore more 

effective weight modification strategies. Finally, we would like to make our work more 

adaptable to the scenes with noise and dynamic scenes with objects or camera motion. 

   

               (a) Six input pictures                         (b) Mertens et al.                           (c) Ours 

Figure 9. Our Result (c) Looks much Clearer Inside the Hall than (b). The 
Corresponding Distortion Maps show our Result Causes less Detail Lost 

(Green) 

 

(a) Twenty input pictures 

  

                         (b) Mertens, et al.,                                                         (c) Ours 

Figure 10. Only the First Several Input Pictures Contain useful Details on the 
Laptop Screen. Our Result (c) Preserves these Details as Many as Possible but 

(b) Loses them 
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     Input pictures            Goshtasby     Wei Zhang, et al.,    Raman, et al.,             Ours 

Figure 11. Comparisons of other Main Fusion Methods (top) with the 
Corresponding Distortion Maps (Bottom). The Results from Left to Right: 
Result of Goshtasby [11], Wei Zhang, et al., [15], Raman, et al., [13] and 

ours, Respectively Our Result causes Less Visible Detail Lost (Green) on 
the Cave Wall and not so much Contrast Amplification (Blue) and Reversal 

(Red) as [11, 15] 
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