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  Abstract 

A new algorithm is developed to detect cardiac cycle’s systolic phase from the underwater 

construction workersDopplerultrasound signal. The method is on the basis of empirical mode 

decomposition (EMD), in combination with the discrete Hilbert transform (DHT). The EMD 

combined with DHT constitutes the Hilbert spectrum (HS) which is a fine-resolution 

time-frequency-energy representation of a nonstationary signal. Here EMD is used to 

calculate the intrinsic mode functions (IMFs), and thenthe DHT is employed to the IMFs to 

obtain three instantaneous components- frequency, amplitude and phase. Therefore, the HS is 

constructed from the normalized instantaneous frequencies and weighted sum of 

instantaneous amplitudes of the IMFs at the frequency bins. A new representation and 

interpretation of high graded signal is given to the time-frequency-energy distribution using 

HS. Finally systolic phase detection performance is evaluated in terms of sensitivity and 

positive predictivity.  

 

Keywords: Systolic phase, Empirical mode decomposition, Hilbert spectrum, 
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1. Introduction 

Systolic phase detection is challenging if the signal contains decompression-induced gas 

bubbles. The sequence of mechanical and electrical events that repeats with every heartbeat is 

called the cardiac cycle. A single cycle of cardiac activity can be divided into two basic 

phases – systolic and diastolic phase. It is observed that decompression-induced gas bubble 

passes through the pulmonary artery during the systolic phase. The formation of gas bubbles 

in the blood stream are due to rapid changes in environmental pressure that could happen 

while carrying out construction work under water (caisson), flying or scuba diving. The 

bubbles remaining in the body could block many vessels or compress nerves and result in 

various functional disorders, including strokes and even death. Such disorders are called 

decompression syndromes (DCS) or caisson disease. The gas bubble monitoring relies upon 

the detection of individual systolic phase.  

The aim of this study is to detect systolic phase from Doppler ultrasound signal. Detecting 

systolic phase from Doppler ultrasound signal is challenging if the signal belongs to high 

grade in terms of gas bubble detection rate. Spencer and Johanson in [1] defined Doppler 

ultrasound signal grades according to the rate of bubble detection. In another study by 

Chappell and Payne in [2],where only two types of Doppler ultrasound signals are considered 

to detect systolic phase using EMD. However, the correspondence between the signals used in 

[2] and the signal grades defined by Spencer in [1] is not clear. Using EMD systolic phase can 

be detected from the electrocardiogram by the detection of QRS complex, is published in 

[3].It can also be detected from other types of signals, e.g. cardiac output and arterial pressure 
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signals are discussed in [11, 12]. The detection result from different signals could be different, 

since there is a time delay in the different signal types. This is due to the fact that the cardiac 

output and arterial pressure describe the vaso-mechanical properties of the heart while 

electrocardiogram and Doppler ultrasound describe the electrical activity and mechanical 

properties respectively. 

In this paper, an efficient algorithm is proposed for the purpose of systolic phase detection 

from the high graded Doppler ultrasound signal. In the literature, very often systolic phases 

are detected in time domain analysis. In the case of low graded signals, a simple time 

domain algorithm can be used to detect systolic phase. However, it cannot provide a 

description of how systolic phase energy evolves over time. Whereas, in the case of high 

graded signals, the analysis is not simple and identification of the systolic phase shape and the 

time when it occurs are difficult. Such an analysis is proposed in the current study using 

time-frequency-energy representation of the Doppler ultrasound signal. In this study, the 

signals are decomposed into a finite number and band-limited IMFs using EMD then the 

instantaneous frequency IF is derived for each component. All the IFs are scaled between 0 

and 0.5 and multiplied by a weighting factor and the bin spacing of the HS is selected. The 

overall HS is defined as the weighted sum of the instantaneous amplitudes of all the IMFs at 

the frequency bin. Therefore a new time-frequency-energy representation is determined from 

the IMFs using HS. This new representation offers a clue to the detection of systolic phase. 

The properly detection of the systolic phase is the most important task to detect gas bubbles 

associated DCS. Regarding the organization of this paper, the experimental setup is discussed 

in section 2, the EMD, DHT and HS are described in section 3.1, 3.2 and 3.3 respectively, the 

determination of the ratio between low frequency components energy and high frequency 

components energy from HS is described in section 3.4, systolic phase detection from the 

ratio is presented in section 3.5, in section 4result and discussions are illustrated in terms of 

sensitivity and specificity. Finally concluding remarks are given in section 5. 

Figure 1. The Underwater Construction Workers Doppler Ultrasound Signal 

2. Experimental Setup 

A pulsed wave (PW) Doppler system comprises a single transducer which emits short 

bursts of ultrasound and then “listens” from echoes. In our research, a PW Doppler system 

having 2 MHz carrier frequency is used. Doppler ultrasound signal is radiated targeting the 

0 0.2 0.4 0.6 0.8 1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time(s)

A
m

p
li

tu
d

e



International Journal of Signal Processing, Image Processing and Pattern Recognition 

 Vol.7, No.5 (2014) 

 

 

Copyright ⓒ 2014 SERSC  209 

pulmonary artery and the reflected signal is received. The reflected signal is a sound with 

frequency proportional to the velocity of the reflectors and amplitude according to their 

acoustic properties. Reflections from moving objects (blood, gas bubble) will have a Doppler 

shift and will be found in the output signal and the Doppler signal is obtained by bandpass 

filtering through hardware.  

 

3. Method of Systolic Phase Detection 

The Hilbert spectrum (HS) is a relatively new joint time-frequency representation 

introduced in [4]. Two phases are required to generate the HS. In the first phase, EMD is 

employed, which is an adaptive decomposition method [5]. Then DHT is employed in the 

second phase. HS is generated by the combination of EMD and DHT. This is an adaptive 

analysis method, especially useful for nonlinear and non-stationary signal analysis. 

At a normal heart rate (80 beats per minute), a period is considered to be 0.8 seconds. A 

trial systole, ventricular systole, and diastole take approximately 0.1 second, 0.3 seconds and 

0.4 seconds respectively. One period Doppler signal must contain 4000 samples (N) if the 

sampling frequency is 5000 Hz and heart rate is 80 beats per minute. Since heart rate of the 

Doppler signal during the recording time could not be at such rate, one period of the obtained 

signal could be longer or shorter than 4000 samples. Therefore, the sample duration 

considered in the study is one second and it is thought that within that limit there should be at 

best two systolic phases.  

 

3.1. EMD Basics 

Empirical mode decomposition (EMD) focuses on the level of local oscillations and 

decomposes the signal into a finite set of AM-FM oscillating components which are bases of 

the decomposition. The bases into which the signal is decomposed are obtained from the 

signal itself, and they are defined in the time domain. The principle of the EMD technique is 

to decompose a signal s(𝑡) into a sum of the band-limited functions 𝛼𝑚(𝑡)or bases called 

intrinsic mode functions (IMFs). Each IMF satisfies two basic conditions: (i) in the whole 

data set, the number of extrema and the number of zero crossings must be the same or differ 

at most by one, (ii) at any point, the mean value of the envelope defined by the local maxima 

and the envelope defined by the local minima is zero. The first condition is similar to the 

narrow-band requirement for a stationary Gaussian process and the second condition is a local 

requirement induced from the global one, and is necessary to ensure that the instantaneous 

frequency will not have redundant fluctuations as induced by asymmetric waveforms. 

3.1.1. Univariate EMD (uEMD): The univariate EMD (uEMD) is used to decompose the 

univariate signal into a finite set of IMFs. There exist many approaches of computing EMD 

[6]. The following algorithm is employed here to decompose signal s(𝑡) into a set of IMF 

components. The process of extracting an IMF from a signal is called “the sifting process”. 

1. Set 𝑢1(𝑡) = 𝑠(𝑡) 
2. Find the extrema (both maxima and minima) of 𝑢1(𝑡) 
3. Generate the upper and lower envelopes ℎ(𝑡) and 𝑙(𝑡) respectively by connecting the 

local maxima and local minima separately with cubic spline interpolation (e.g., linear, 

spline, piece-wise spline). In this paper the linear method is chosen. 

4. Calculate the local mean as : 𝜇1(𝑡) = [ℎ(𝑡) + 𝑙(𝑡)]/2 

5. IMF should have zero local mean; subtract 𝜇1(𝑡) from the original signal as: 𝑢1(𝑡) =
𝑢1(𝑡) − 𝜇1(𝑡) 

6. Decide whether 𝑢1(𝑡) is an IMF or not by checking the two basic conditions as 
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described above 

7. Repeat steps 2 to 6 until an IMF 𝑢1(𝑡) is found 

Once the first IMF is derived, we define𝛼1(𝑡) = 𝑢1(𝑡), which the smallest temporal scale 

is ins(𝑡). In order to find out the rest of the IMF components, the residue 𝜀1(𝑡) of the data is 

generated by subtracting 𝛼1(𝑡) from the signal s(𝑡)as𝑠(𝑡) − 𝛼1(𝑡) = 𝜀1(𝑡). The sifting 

process will be continued until the final residue is a constant, a monotonic function, or a 

function with only one maxima and one minima from which no more IMF can be derived. 

The subsequent basis functions and the residues are as 

𝜀1(𝑡) − 𝛼2(𝑡) = 𝜀2(𝑡), … , 𝜀𝑀−1(𝑡) − 𝛼𝑀(𝑡) = 𝜀𝑀(𝑡) where 𝜀𝑀(𝑡) is the final residue. At 

the end of the decomposition, the signal s(𝑡) is represented as: 𝑠(𝑡) = ∑ 𝛼𝑚(𝑡) + 𝜀𝑀(𝑡)𝑚  

where 𝜀𝑀(𝑡) is the final residue which can be either the mean trend or a constant, and 

functions 𝛼𝑚(𝑡) are not guaranteed to be mutually orthogonal, but often are close to 

orthogonal, and all have zero means [4]. The EMD (individual IMF) of Doppler signal is 

illustrated in Figure2. More specifically, the first component has the smallest time scale which 

corresponds to the fastest time variation of the data. As the decomposition process proceeds, 

the time scale increases, and hence, the mean frequency of the mode decreases [6]. Since the 

decomposition is based on the local characteristic time scale of the data to yield adaptive 

basis, it is applicable to nonlinear and non-stationary data in general and in particular. 

 

Figure 2. EMD of the Doppler Ultrasound Signal Showing the Selected (1st to 6th) 
IMF Components out of 13 

3.2. Discrete Hilbert Transform 

The notion of frequency and energy for each IMF is obtained by employing the concept of 

analytic signals. The discrete Hilbert transform (DHT) is used to compute the analytic signal 

for an IMF. The analytic signal 𝑍𝑚(𝑡) corresponding to the 𝑚𝑡ℎIMF 𝛼𝑚(𝑡) is defined as 

𝑍𝑚(t) = 𝛼𝑚(𝑡) + 𝑗𝐻𝐷[𝛼𝑚(𝑡)] = 𝛾𝑚(𝑡)𝑒
𝑗𝜃𝑚(𝑡)(1) 

where 𝛾𝑚(𝑡) and 𝜃𝑚(𝑡) are instantaneous amplitude and phase respectively of the 𝑚𝑡ℎIMF. 

The discrete Hilbert transform 𝐻𝐷[. ] is defined as 

𝐻𝐷[𝛼𝑚(𝑡)] =
1

𝜋
∑

𝛼𝑚(𝜏)

𝑡−𝜏
𝑇
𝜏=1,𝜏≠𝑡                                                 (2) 

The analytic signal is advantageous in determining the instantaneous quantities such as 
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energy, phase and frequency. The IF of 𝑚𝑡ℎ IMF is then given as the derivative of the phase 

𝜃𝑚(𝑡)–calculatedat t i.e., 𝑓𝑚(𝑡) =
𝜕�̃�𝑚(𝑡)

𝜕𝑡
(3) 

where �̃�𝑚(𝑡) represents the unwrapped version of instantaneous phase𝜃𝑚(𝑡). The derivative 

in Eq. (3) is evaluated at discrete instant of time t. It should be noted that such derivative 

introduces the abrupt fluctuations of IF and hence nonlinear smoothing is required. Here, the 

moving average smoothing filter is used to remove such fluctuations. The filtering scheme 

improves the effectiveness of computing IF using discrete derivative. The IF of individual 

IMF shown in Figure 2 is illustrated in Figure 3. The concept of IF is physically meaningful 

only when applied to mono-component signals. In order to apply the concept of IF to 

arbitrary signals it is necessary to decompose the signals into a series of mono-component 

contributions. In the recent approaches [4], EMD technique decomposes a time domain signal 

into a series of mono-component IMFs. Then the IF derived for each component provides the 

meaningful physical information. 

 

Figure 3. The IFs of the Selected (1st to 6th) IMF Components 

Although the IMFs may have frequency overlaps but at any time instant, the instantaneous 

frequencies represented by each IMF are different. This phenomenon can be well understood 

in Figure 3 which shows the instantaneous frequencies of the first 6 IMFs of the Doppler 

signal shown in Figure 2. Therefore, EMD is an effective decomposition of non-linear and 

non-stationary signals in terms of their local frequency characteristics. With such property, 

each frequency component of the signal is clearly identified and localized in both time and 

frequency scales yielding spectra at each sampling point. 

 

3.3. Hilbert spectrum 

Having obtained the IMFs as a result of the sifting process and IFs from each IMF, it is 

possible to generate the HS, or a three dimensional (3D) plot that represents the distribution 

of the signal energy as a function of time and frequency. In the Figure time, frequency and 

energy are plotted on the X-coordinate, Y-coordinate and the Z-coordinate respectively. All 

the IFs are scaled between 0 and 0.5 and multiplied by the equationλ = 0.5/(𝐼𝐹𝑚𝑎𝑥 −
𝐼𝐹𝑚𝑖𝑛)for simplifying the generation of HS, where 𝐼𝐹𝑚𝑎𝑥and 𝐼𝐹𝑚𝑖𝑛is the maximum and 

minimum IF calculated from all the IFs. The bin spacing of the HS is 0.5/B, where B is the 
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number of desired frequency bins. The overall HS is defined as the amalgamation of the 

spectra of each of the IMFs. Hence, each element 𝐻(𝑏, 𝑡) in the overall HS is defined as the 

weighted sum of the instantaneous amplitudes of all the IMFs at the 𝑏𝑡ℎ frequency bin. 

𝐻(𝑏, 𝑡) = ∑ 𝛾𝑚(𝑡)𝜔𝑚
(𝑏)𝑀

𝑚=1 (𝑡)(4) 

𝜑(𝑏, 𝑡) = ∑ 𝜃𝑚(𝑡)𝜔𝑚
(𝑏)𝑀

𝑚=1 (𝑡)(5) 

where the factor 𝜔𝑚
(𝑏)
(𝑡) is equal to 1 if λ × 𝑓𝑚(𝑡)lies between two consecutive frequency 

bins, otherwise is 0. After computing the elements over the frequency bins, H represents the 

instantaneous signal spectrum in time-frequency (TF) space [7]. Figure 4 illustrates the 

Hilbert spectrum of the Doppler ultrasound using 256 frequency bins. It is noted that the time 

resolution of H is equal to the sampling rate and the frequency resolution can be chosen up to 

the Nyquist limit [8]. During the construction of the Hilbert spectrum, the phase 

matrix𝜑(𝑏, 𝑡) representing the phase information corresponding to each time-frequency cell 

of H(b,t) is saved. In Figure4, only one color is plotted for all the levels of energy except the 

zero level. For zero level nothing is plotted. Low frequency components energy are 

contributing more and high frequency components energy are contributing less in the HS. 

 

Figure 4. Hilbert Spectrum of the Doppler Ultrasound Signal 

3.4. High Frequency Energy to Low Frequency Energy Ratio 

Our aim is to observe the synchrony between systolic phases in time domain with energy 

activities in the HS. With the intention of easing the interpretation of the HS, a threshold (TH) 

is determined to separate the HS into two regions, the region of low frequency components 

energy (RL) and the region of high frequency components energy (RH). The choice of the 

threshold is performed visually from the HS. It is observed that the RL is visually uniform 

throughout the spectrum. However in RH, two parabolic shapes are found (Figure 4) which 

corresponds to the approximate location of two systolic phases in time domain. The systolic 

phase could be detected within any location of the parabolic shape. This is due to the 

variation in timing between systolic phase sound and pulmonary valve opening sound. The 

region between two parabolic shapes is also visually uniform. In RL, the low frequency 

components energy is summed up over the frequency bins at every time instant as L(t) =
∑ 𝐻𝑆(𝑡)𝑇𝐻
𝑏=1 . Similarlyin RH,H(t) = ∑ 𝐻𝑆(𝑡)𝐵

𝑏=𝑇𝐻+1 .Ratio between L(t) and H(t) is defined 
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as RA(t)=H(t)/L(t) and plotted in Figure5.  

 

Figure 5. Ratio between High Frequency Energy and Low Frequency Energy 

3.5. Signal Reconstruction 

Systolic phase detection from RA(t) is obtained by signal reconstruction. Since RA(t) is 

derived from HS, distribution of RA(t) and HS is similar. Regarding the distribution of RA(t) 

and HS the main difference between those two terms is that one is represented by the energy 

ratio at every instant of time, whereas the other is represented by energy over all the 

frequency bins at every instant of time. The time domain signal representing systolic phase is 

calculated by element wise multiplication of RA(t) and the cosine of the phase vector𝜑(𝑏, 𝑡)as 

𝑠𝑝(𝑡) = 𝑅𝐴(𝑡) ∙ cos [𝜑(𝑏, 𝑡)](6) 

Where the signal containing systolic phase is designated by sp(𝑡). In order to obtain a 

unique maximum for each systolic phase, sp(𝑡)is filtered through the low pass Butterworth 

filter of order ten. Having detected the systolic phase from the first block (one second signal) 

of the Doppler ultrasound, the same detection method is repeated for all other blocks of the 

signal. The order of the detected systolic phases is maintained and all the blocks are 

concatenated. The result shows that the detected systolic phases are well represented and 

localized in the Figure. In Figure 6 two systolic phases are detected which appear to be 

correct as detected by medical specialist. 
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Figure 6. Two Systolic Phases are Detected 

4. Result and Discussions 

In the experiment, four levels (grades) of signal are considered to demonstrate the 

performance of the proposed method. In case of low graded signals very simple algorithm is 

required to detect systolic phase. On the other hand very efficient algorithm is required to 

detect systolic phase from high graded signals. Such algorithm could be used in the first 

phase to the detection of gas bubble. 

The studies in [2], there are two parts. In the first part systolic phases are detected from 

Doppler ultrasound but the performance of this detection algorithm is not discussed. This 

makes it difficult to compare the method with our proposed method. Some algorithms are 

proposed in [9, 12, 10] to detect systolic phase from ECG, cardiac output and arterial pressure 

signals but variation is found between the times of occurrence of successive systolic phase in 

the different signal types. Moreover, these signals are derived in an entirely different manner 

to the signal used here. Hence, again it is difficult to compare this to the method presented 

here. 

Therefore, the two most essential parameters used here for describing the overall 

performance of the systolic phase detection are: sensitivity SE and positive predictivity PP. 

The sensitivity reports the percentage of true systoles that are correctly detected. The positive 

predictivity reports the percentage of detected systoles which are in reality true systoles. The 

sensitivity and positive predictivity of the detection algorithms are computed by 

  ( ) =
𝑇 

𝑇 +  
  00                                                      (7) 

  ( ) =
𝑇 

𝑇 +  
  00                                                      (8) 

Where TP is the number of true positives, FN the number of false negatives, and FP the 

number of false positives. The systolic phase detection result is illustrated in Table 1. Over 97 

percent of the systolic phases are detected from grade 0 and grade 1 signal. In case of grade 2 

signals, over 97percent of the systolic phases are detected. However, for grade 3, the 

detection performance of our proposed algorithm is not as efficient as that for grade 2. All the 

grades of the signal are divided into two groups. In the first group first three grades are 

considered and the remaining grades are considered in another group. It should be noted that 

these results may be influenced by the choice of the TH values.  
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Table 1. Results of Evaluation of the Proposed Algorithm 

Grade 
Systolic 

phase 
TP FN FP SE(%) PP(%) 

0 20 20 0 0 100 100 

0 20 20 1 0 95 100 

1 20 20 0 0 100 100 

1 20 19 1 1 95 95 

2 20 20 0 0 100 100 

2 20 19 1 1 95 95 

3 20 14 3 2 83 88 

3 20 13 3 3 82 82 

4 20 0 0 0 0 0 

4 20 0 0 0 0 0 

 

5. Concluding Remarks 

The results presented in this study are based on Doppler ultrasound signals for the purpose 

of detecting systolic phase of cardiac cycle. For this investigation EMD, DHT and new 

representation of HS is very adequate. This study shows that how systolic phases are 

visualized in new time-frequency-energy representations. This representation illustrates the 

empirical relation between time, frequency and energy which is very advantageous to the 

detection of systolic phase. It is clear that the presence of parabolic shape in frequency 

domain corresponds to the systolic phase in time domain. Detecting gas bubble by utilizing 

proposed systolic phase detection algorithm is the main concern for our future works. 
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