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Abstract 

Brain image segmentation is one of the most important parts of clinical diagnostic tools. 

However, accurate segmentation of brain images is a very difficult task due to the noise, 

inhomogeneity and sometimes deviation in brain images. Wells model incorporates the brain 

image segmentation and inhomogeneity correction into one framework to overcome 

influences from the intensity inhomogeneity and obtain good segmentation performance. 

However, the classical Wells model did not take spatial information into account, so its 

segmentation results are sensitive to the noise. In order to overcome this limitation, the MRF 

theory and the nonlocal information are used to construct a nonlocal Markov Random Field. 

With this nonlocal MRF, the improved Wells method can obtain much better segmentation 

results. The experimental results show that our method is robust to the noise and is able to 

simultaneously keep the image edge and slender topological structure very well.  
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1. Introduction 

The application of image processing techniques has rapidly increased in recent years, 

especially in medical research fields. However, extracting the regions with abnormal tissue or 

shape from the whole data still depends on the manual segmentation by radiologists. The 

automatic image segmentation is a key task in many clinical applications such as surgical 

planning, tissue analysis, post-surgical assessment, and abnormality detection and so on [1]. 

However, the automatic image segmentation is hard to accurately extract the regions due to 

unknown noise, poor image contrast, in homogeneity and weak boundaries that are usual in 

medical images. One of such is brain image segmentation which is quite complicated and 

challenging but its accurate result can be used to characterize neurological diseases, such as 

dementia, multiple sclerosis, schizophrenia and even the Alzheimer’s disease (AD) [2]. 

Therefore, it is meaningful for us to develop new effective brain image segmentation methods 

to detect the satisfactory tissue regions for clinical applications. 

Magnetic resonance imaging (MRI) is a very useful medical imaging technique used in 

radiology to investigate the anatomy and function of the body in both health and disease. MRI 

scanners use strong magnetic fields and radio-waves to form images of the body. MRI 

acquisition parameters can be adjusted to give different grey levels for different tissues and 

various types of neuropathology [3-4]. In comparison to computerized tomography (CT), 

MRI does not use ionizing radiation, has a much greater range of available soft tissue contrast, 

and is more sensitive and specific for abnormalities. Due to these advantages, MRI is widely 

used for brain imaging in clinical diagnosis such as examining soft tissue, brain quantitative 

analysis and brain tumor inspection. However, it is hard to design an automated method only 
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based on the tissue contrast for brain MR image segmentation due to the corruption with a 

smoothly varying intensity in homogeneity or bias field. This bias is inherent to MR imaging 

and is caused by radio frequency coils or acquisition sequences and patient-induced 

electrodynamics interactions [5-6]. Although not always visible for a human observer, the 

distribution of signal intensities associated with these tissue classes is disturbed. Such a bias 

can cause serious misclassifications when intensity-based segmentation techniques are used 

[7-8]. 

In recent years, lots of in homogeneity or bias correction methods have been proposed [9-

14]. In general, all of these methods can be categorized in two groups: prospective methods 

and retrospective methods [15].The prospective methods consider bias field as an error of the 

imaging process that can be corrected by estimating bias field of MRI acquisition system. On 

the contrary, the retrospective methods don’t assume any information about acquisition 

methods and are more general. One classic model of such methods is segmentation based 

methods [15-18] which merge the tissue segmentation and bias field correction to benefit 

each other. The tissue classification results and bias field can be obtained simultaneously by 

using alternating iterative algorithm.  

Wells, et al., described an iterative method that interleaves classification with bias field 

correction based on maximum likelihood parameter estimation using the expectation 

maximization (EM) algorithm [16]. However, the classical Wells model did not take into 

spatial information account, so its segmentation results are sensitive to the noise. MRF theory 

provides a convenient and consistent way to model context-dependent entities such as image 

pixels and correlated features. However, in traditional MRF models, the influence of each 

pixel in the neighborhood on the pixel classification is the same; this will over smooth the 

segmentation of brain tissue which contains lots of special structures such as corners and 

slender topology regions. In order to overcome this limitation, we apply the MRF theory and 

nonlocal method to import the spatial information of the image. Different with using the local 

intensity in the neighborhoods, we use the patch information to measure the pixels’ 

correlation in the whole neighborhoods and build an adaptive spatial constraint term. By 

incorporating both the spatial constraint term and Wells’ method, an accurate and robust 

segmentation method can be achieved. 

 

2. Wells, et al., Method 

The observed MRI signal I is the product of the true signal J generated by the underlying 

anatomy and spatially varying field factor B :  

I B J  .                                                     （1） 

Given the observed signal I , the problem is to estimate the true image J . A group of 

techniques often take the logarithmic transform of both sides: 

log( ) log( ) log( )I B J  .                                                 （2） 

We set log( )I I ， log( )B B ， and log( )J J  respectively, Eq. (2) can be written 

as +I J B . After the preprocessing, the brain image only contains four regions: white matter 

(WM), gray matter (GM), cerebral spinal fluid (CSF), and background. Similar to other 

statistical approaches to intensity-based segmentation of MRI, Wells et al. modeled the 

distribution for observed values as a normal distribution with the incorporation of an explicit 

bias field. The probability density that class j has generated the pixel value iI at position i is: 

( | , ) ( ( ) )
i

i i i i i ip I j B G I j B
       ,                               （3） 
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where
i denotes the tissue class at position i , ( )i j   denotes the mean value of class j . 

i

G


is Gaussian distribution with variance
i

 : 

/2 1/2 11
( ) (2 ) | | exp( )

2j

n T

j XG x x x       .                              （4） 

According to very smooth and slowly varying characteristic of the bias field B , Wells et al. 

modeled it by a zero mean Gaussian prior probability density with variance
B : 

( ) ( )
B

p B G B ,                                                （5） 

where 1/2 1/2 1( ) (2 ) | | exp( / 2)
B

T

B BG x x x       . 

Assuming that the bias field and brain tissue classes are statistically independent and using 

the definition of conditional probability, the joint probability on intensity and tissue class 

conditioned on the bias field can be written as follows: 

( , | ) ( | , ) ( )i i i i i i ip I B p I B p    .                                （6） 

Then, the conditional probability of intensity alone can be obtained by calculating a 

marginal over tissue class: 

( | ) ( , | ) ( | , ) ( )
i i

i i i i i i i i ip I B p I B p I B p
 

      .                       （7） 

Assuming that the pixel intensities are statistical independent, the probability density for 

the whole image may then be written as: 

( | ) ( | )i i

i

p I B p I B .                                           （8） 

According to the Bayes’ rule, the posterior probability of the bias field given observed 

intensity data is able to be obtained as follows: 

( | ) ( | ) ( ) ( )p B I p I B p B p I .                                      （9） 

Then, the maximum-a-posteriori (MAP) principle was used to formulate the bias field 

estimation as the value of B  having the largest posterior probability: 

arg max ( | )B p B I


 .                                      （10） 

The EM algorithm then interleaved bias field calculation, class-conditional distribution 

parameter estimation and a statistical classification of the image pixels into classes. Using EM 

algorithm based on the statistical probability framework, Wells et al. method is able to obtain 

the tissue class and correct the bias field simultaneously and is especially useful for images 

derived from surface coils, where the large intensity variations make it difficult to 

accommodate the image data on films for viewing. However, this method does not exploit the 

information about spatial connectedness of neighboring pixels belonging to the same class, 

which leads the methods sensitive to noise. When the image is seriously corrupted by the 

noise, the segmentation results and bias field estimated by this method are not accurate 

enough. In order to reduce the effect of the noise, the spatial information needs to be taken 

into account during the brain tissue segmentation.  

In order to address this problem, we propose an improved method based on Markov 

random field and non-local mean theory. Firstly, the Markov random field theory is analyzed 

in next section. Then, under the MRF theory, we use the non-local mean theory to measure 

the similarity between the pixels in the neighborhood and build an adaptive spatial constraint 

term (we call it NLMRF). By incorporating both the spatial constraint term and Wells’ 

method, an accurate and robust segmentation method can be achieved, which is demonstrated 

in following section. 
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3. Our Method  

3.1. MRF Theory 

MRF theory provides a convenient and consistent way to model context-dependent entities 

such as image pixels and correlated features [17]. This is achieved by characterizing mutual 

influences among such entities using conditional MRF distributions. In an MRF, the label of 

one pixel is decided not only by itself but also the characteristics of other pixels in its 

neighborhood. According to MRF theory, setting ( )N i  as the set of sites neighboring i , we 

have ( )i N i and ( ) ( )i N j j N j   . According to Hammersley-Clifford theorem, an MRF 

can equivalently be characterized by a Gibbs distribution. Thus 

1
( ) exp( ( ))C

C

P x V x
Z

  ,                                                （11） 

where C is a clique, and ( )CV x  is the clique potential over C . In this paper, we only consider 

the clique potential of two pixels ： ( ) (1 ( ))i j i jV        .  is Dirac function, 

exp( ( ))C

x F C

Z V x


    is a normalizing constant called the partition function, and  is a constant. 

  

3.2. Nonlocal-MRF Wells’ Method 

With MRF theory, a prior of pixel i  belongs to class j is decided by the classes of all 

pixels in its neighborhood. Thus,  

1
( ) exp( (1 ( )))

i

i i k

k N

p j
Z

 
 

       .                             （12） 

From above equation, we can see that the traditional MRF theory uses all of pixels in the 

neighborhood to calculate the prior, that means the MRF model may be spatially dependent 

and is more flexible for image modeling in the sense that integrating the statistical and spatial 

properties. However, in traditional MRF models, the influence of each pixel in the 

neighborhood on the pixel classification is the same. This is not suit for segmenting the brain 

tissue which contains lots of special structures such as corners and slender topology regions. 

Besides this, it is also very hard to decide the size of the neighborhood to make it is adaptive 

to the noise and the brain structures. The effects on suppressing the noise is not good enough 

if we chose a small size, on the contrary, the edge or special structure may be over smoothed 

if the size is too large. Aiming to solve these problems, we add a similarity weight in Eq. (12) 

to improve the prior probability: 

1
( ) exp( (1 ( )))

i

i ik i k

k N

p j NL
Z

 
 

       .                   （13） 

where
ikNL is the structure similarity weight of pixel i and k . We can set

ikNL a big value when 

the structures of these two pixels are very similar and a small value in the opposite case. This 

weight is very well to adjust the influences of neighbor pixels on the classification. Inspired 

by non-local mean filter method [19-20], we use the patch to calculate the similarity weight in 

this paper. The non-local (NL) regularization is a strategy that has been proposed first as a 

denoising tool and named as NL Mean denoising. Essentially, it aims to take advantage of the 

redundancy present in natural structures; broadly speaking a small patch around a pixel may 

match patches around other pixels within the same scene. The weight ikNL for the 

pixel i and j is defined as: 
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2 2

2

1
exp( ( ( )) ( ( )) )ik

i

NL I N i I N k h
Z

   ,                      （14） 

where
iN is the neighborhood of pixel i , 

iZ is a normalization constant, and h is a smoothing 

parameter. The vector ( ( ))I N i contains the grey-level profile in the neighborhood of the 

pixel i and ( ( ))I N k is the k -th component of this vector. 

Compared to the Wells method, we use MRF to calculate the prior probability in this 

paper, so that the label of one pixel is decided not only by itself but also the characteristics of 

other pixels in its neighborhood. Beside this advantage, each point of the extended 

neighborhood in our method does not necessarily have the same influence, based on a specific 

non-local weight modeling the similarity between image patches. In particular, this weight 

penalizes the points k which are surrounded by a patch less similar to the patch around the 

current point i (
ikNL is low), allowing the points surrounded by the same kind of patches 

as k to have greater influence. Also, with this adaptive similarity weight, we do not need to 

adjust the size of the neighborhood to make it suit for different brain structures.  

 

3.3. NLMRF-Wells Algorithm 

In this paper, we firstly use the non-local weight to calculate the structure similarity and 

improve the traditional MRF approaches. Then, the non-local prior probability is applied to 

improve the Wells method for brain MR image segmentation (we can call it NLMRF-Wells 

method)，the final method using non-local MRF and Wells method can be summarized as 

follows:  

Step1: Taking the logarithmic transform of the bias corrupted image and using MAP method 

to segment the brain image as preprocessing step for providing the initial parameters； 

Step2: Estimating the bias field: 

B H R ,                                                    （15） 

where， 1 1 1[ ]BH      , is the mean variance of each label and 1[ ( )]i ij j i j

j

R W I   . 

Step3: Calculating the structure similarity weight of each pixel using Eq. (14); 

Step4: Using Eq. (13) to calculate the prior probability of each pixel belonging to each label;  

Step5: Calculating the probability of each pixel belonging to each label： 

( ) ( ) ( ) ( )
j sij i i j i i i s i

s

W p j G I B p s G I B           ；    （16） 

Step6: Calculating the parameters in Gaussian distribution: 

( ) ( )ij i i ij

i i

j W I B W                                    （17） 

2( )j ij i j ij

i i

W I W                                   （18） 

Step7:  Go to Step 2 if the result is not convergence, otherwise stop the iteration. 

 

4. Implementation and Results 

Our method was applied in MATLAB on a PC with Inter Pentium IV 2.4G processer and 

2048 RAM. In order to test the reliability and validity of the algorithm, we describe the 

segmentation on both synthetic images and brain MRIs.  
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4.1. Evaluation with Synthetic Data 

In order to show the advantage of non-local similarity weight, we use the MAP, MRF-

MAP and NLMRF-MAP methods to test a synthetic image which size is 128×128. This 

synthetic image is seriously corrupted by the noise and also contains some special structures. 

The segmentation result of the traditional MAP method is shown in Figure 1(b). Without any 

spatial information, this method is very sensitive to the noise. MRF-MAP method extended 

the MAP method by using local neighbor information to reduce the effect of the noise. 

However, this method is an isotropic method, which makes it unable to overcome all the 

noises. Furthermore, the special structures such as corner or slender region in the image are 

not segmented out very well. Compared with these two methods, the NLMRF-MAP method 

using non-local weight to improve the MRF can overcome the noise influences and segment 

the special structures very well. Therefore, our method can be considered as a superior 

approach. 

 

    
(a)                     (b)                      (c)                      (d) 

Figure 1. Segmentation Results on a Simulated Image: (a) Initial Image; (b) 
Segmentation Results of MAP Method; (c) Segmentation Results of MRF-MAP 

Method; (d) Segmentation Results of NLMRF-MAP Method 

4.2. Evaluation with Brain Image 

In order to compare the presentations of different segmentation methods, we use the brain 

images from open database generated by the McConnell Brain Imaging Center at the 

Montreal Neurological Institute, McGill University. This database contains lots of normal 

human brain images with different noise and bias field. The corresponding standard 

segmentation results are also given in this database for validation. The experiment can 

download the data as they want and apply their method to obtain the segmentation results and 

verify their results by using the standard segmentation. For comparative purpose, we use 0, 

90, 160, 240 to denote the intensities of background, CSF, GM and WM respectively in our 

segmentation results.  

The first line of Figure 2 demonstrates the brain MR image with 100% bias field and 0%, 

3% and 5% random noise. The images from the second line to the last line demonstrate the 

corresponding results of MAP, Wells, MRF-Wells and NLMRF-Wells methods respectively. 

From the results of the MAP method, we can see that without considering the effect of the 

bias field, this method misclassified some WM tissues into GM. Furthermore, it is sensitive to 

the noise without any spatial information. Compared to the MAP method, the Wells’ method 

reduced the effect of bias field, however, only using the intensity distribution information 

during tissue segmentation; this method is sensitive to the noise too. The MRF-Wells method 

extended the Wells method by using local neighbor information to reduce the effect of the 

noise and bias field. However, this method is an isotropic method, which make it unable to 
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reduce the effect of strong noise and usually loses some special structure information of brain 

tissues. Different from traditional MRF, NLMRF-Wells method uses non-local patch to 

calculate the weight, the neighborhoods of pixels belong to the same tissue will have higher 

weight and have higher probability that have a strong influence on the classification of current 

pixel, which make our method much less sensitive to the noise. 

 

 

Figure 2. Comparison of Segmentation Results using MAP, Wells, MRF-Wells, 
NLMRF-Wells Methods 

In order to demonstrate the adaptive ability of our method, we use different sizes of 

neighborhood to test top-left image with 100% intensity in homogeneity and 5% random 

noise in Figure 3. The images on the first line and second line demonstrate the segmentation 

results of MRF-Wells and NLMRF-Wells method by using neighborhood with the size 3×3, 

5×5, 7×7, 9×9. From the results, we can see that the size of neighborhood has a serious 

impact to the segmentation when using MRF-Wells method. The gray matter and CSF regions 

contain lots of slender structures, so that the edges of these tissues are over smoothed when 

neighbor size increase, which causes some tissue regions misclassification. Compared to 

MRF-Wells method, applying the patch information to calculate the weight of each pixel in 

the neighborhood, the neighborhoods of pixels belong to the same tissue will have higher 

weight and have higher probability that have a strong influence on the classification of current 

pixel, which make our NLMRF-Wells method contains not only spatial information but also 

the structure similarity. This advantage demonstrates that our method is self-adaptive, and a 

superior approach. 
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Figure 3. Comparison of Segmentation Results using MRF-Wells, NLMRF-Wells 
Methods with Different Neighbor Size 

4.3. Quantitative Analysis 

For comparison, we use Jaccard similarity (JS) coefficient as a metric to evaluate the 

performance of these methods. The Jaccard coefficient measures similarity between finite 

sample sets, and is defined as the size of the intersection divided by the size of the union of 

the sample sets: 1 2 1 2 1 2( , )J S S S S S S    where
1S and

2S demonstrate the segmentation 

result using each segmentation method and groundtruth respectively. Higher JS value denotes 

more accurate segmentation results and lower JS value denotes worse segmentation.  

Table 1. JS Coefficient for the Segmentation Results 

Brain tissue method 0% noise 3% noise 5% noise 

White 

Matter 

MAP method 0.55 0.51 0.42 

Wells method 0.90 0.81 0.78 

MRF-Wells method 0.89 0.85 0.82 

NLMRF-Wells method 0.90 0.89 0.89 

Gray 

Matter 

MAP method 0.52 0.47 0.41 

Wells method 0.87 0.76 0.74 

MRF-Wells method 0.86 0.82 0.81 

NLMRF-Wells method 0.88 0.87 0.87 

In this paper, we use MAP, Wells, MRF-Wells, NLMRF-Wells methods to test 20 images 

with 100% intensity in homogeneity and 0%, 3%, 5% random noise in McGill database 

respectively. The performances of these methods are shown in Table 1. We can see that 

without considering intensity in homogeneity affection the MAP method cannot obtain 

correct results. The results of Wells, MRF-Wells, and NLMRF-Wells methods are much the 

same when the images are not corrupted by the noise. However, with the increase of the noise 

strength, the performance of Wells method dropped rapidly, this because the Wells method 

http://en.wikipedia.org/wiki/Intersection_(set_theory)
http://en.wikipedia.org/wiki/Union_(set_theory)
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did not consider any spatial information during the tissue segmentation. Using spatial 

constraint, the results of MRF-Wells and NLMRF-Wells methods are both robust to the 

noise. Furthermore, considering the structure similarity between the pixels in the 

neighborhood, the performance of our NLMRF-Wells method is much better than that of 

MRF-Wells method. Also, our method is more stable and reliable to different noise intensity. 

This comparison demonstrates that our method has good performance and strong stability for 

brain tissue segmentation.  

 

5. Conclusions 

In this paper, we propose an improved method based on Wells method for simultaneous 

estimation of the bias field and segmentation of tissues in MRIs. The MRF theory and the 

nonlocal information are used to construct a nonlocal Markov Random Field. With this 

nonlocal MRF, the improved Wells method is robust and stable enough to the noise and is 

able to obtain much better segmentation results. The experimental results show that our 

method is robust to the noise and can solve the image edge and slender topological structure 

very well when segmenting brain images with intensity in homogeneities and noise. 
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