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Abstract 

In stereo vision, two images of a 3D scene are acquired from two viewpoints. One of the 

objectives of stereo vision work is to recover the 3D structure of the scene. Epipolar geometry 

describes the relationship between the images, and the essential and fundamental matrices 

are the algebraic representations of this geometry. The most important feature of these 

matrices that is emphasized in the literature is that they are independent of the scene 

structure.  

This article illustrates—empirically and theoretically—that the fundamental matrix 

depends on the scene structure and demonstrates that the matrix in 0lr Fmm  not only 

represents a relationship between corresponding points of the two views but also represents a 

relationship between other non-corresponding points. Furthermore, we show empirically that 

the equation 0lr Fmm  does not hold for any pair of corresponding points. In scenes with 

objects of different depths, the value of 
lr

Fmm  depends on the depths of the 3D points and 

increases proportionally with an increasing baseline.  

 

Keywords: Stereo vision, Epipolar geometry, Essential matrix, Fundamental matrix, Eight-

point algorithm 

 

1. Introduction 

During the 1980s and 1990s, a central problem in computer vision involved inferring 

three-dimensional information from views (images) taken from two viewpoints. In 

solving such a problem, researchers succeeded in defining the epipolar geometry that 

describes the relationship between 3D points and their projections onto 2D images.  

Cameras used to acquire these images are characterised by intrinsic and extrinsic 

parameters. The intrinsic parameters include the principal points' coordinates, the pixel 

aspect ratio, and focal lengths, whereas the extrinsic parameters include the position 

and orientation of the camera with respect to the world coordinate system.   

In the classical method, the intrinsic camera parameters are known, and this 

knowledge is used to determine the essential matrix E  and calculate the epipolar 

geometry. When neither intrinsic nor extrinsic camera parameters are availab le, the 

problem is classified as uncalibrated, and the fundamental matrix F  is the algebraic 

representation of the epipolar geometry.  

The epipolar geometry might be depicted as in Figure 1 and can be described as 

follows:  

A world point,  ZYXM ,, , is defined in a world coordinate system. Two pinhole 

cameras are placed at two different positions, 
l

C  and
r

C . Points 
l

C  and 
r

C constitute 

the origins of the coordinate systems of the two cameras. The point ),(
lll

yxm   is the 
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retinal image of point M acquired by the left camera; it belongs to the left camera plane 

l
  and is defined in the left camera coordinate system. Similarly, the point 

),(
rrr

yxm  is the retinal image of the point M captured by the right camera; it belongs 

to the right camera plane 
r

  and it is defined in the right camera coordinate system. 

The points 
l

m  and 
r

m  are called corresponding points.  

 

Figure 1. Epipolar Geometry 

The following terminologies are used in epipolar geometry [1]:  

1. The baseline is the line joining the camera centres.  

2. The epipole is the intersection of the line joining the camera centres with the 

image plane. Thus, the epipole is the image in one view of the camera cent re of 

the other view.  

3. The epipolar plane is a plane containing the baseline.  

4. An epipolar line is the intersection of an epipolar plane with the image plane. 

All epipolar lines intersect at the epipole. An epipolar plane intersects the left 

and right image planes in epipolar lines and defines the correspondence between 

the lines.  

5. The two camera centres and a given world point define the epipolar plane П 

(Figure 1).  

Longuet-Higgins [2] introduced the essential matrix to the computer vision 

community and proposed an eight-point algorithm for its calculation. Such a matrix 

associates the image points of the two views when the intrinsic parameters of the 

cameras are available. Faugeras [3] developed the fundamental matrix that encapsulates 

the geometric relations relating a world point to its images. The fundamental matrix is 

independent of the scene structure [1], i.e., it is independent of the depth of the world 

points in different parts of the scene.  

The relationship between points 
l

m  and 
r

m  through the essential matrix is expressed 

as 0
lr

Emm [2]. The relationship between the fundamental matrix and essential matrix 

is expressed as
lr

EKKF  , where 
l

K  and 
r

K  are the calibration matrices of the left and 

right cameras, respectively [1].  

The availability of eight pairs of corresponding points from the two views of the 

scene ensures the calculation of the fundamental matrix. Once the fundamental matrix 

is determined, the availability of an image point in one view leads to a determination of 

its corresponding point in the other view through the fundamental matrix equation  

    0
lr

Fmm       (1) 

l r 

M 

C l C 

r 

m l  

M l 

m r 

M r П π r 

π l 

e l e r 

l l 
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The eight-point algorithm is frequently cited as a method for computing the 

fundamental matrix from a set of eight or more point matches [4].  

This study reviews epipolar geometry theory and is motivated by potential 

applications of stereo vision. Some of these applications have limited or zero fault 

tolerance capability and include face recognition, robot-assisted surgical operations, 

and unmanned aerial vehicles. This study's contribution is to identify certain limitations 

of epipolar geometry theory and help avoid unpredicted consequences.  

The remainder of this study is organised as follows. Section 2 presents previous work 

questioning the effectiveness of epipolar geometry. Section 3 presents the experimental 

results of estimating the fundamental matrix for scenes that include objects with 

different depths. Sections 4 and 5 analyse, algebraically and geometrically, the 

effectiveness of the fundamental matrix equation in extracting the shape of 3D scenes. 

In section 6, we attempt to identify the causes behind the poor performance of 

fundamental matrix theory. Finally, the study concludes in section 7.  

 

2. Previous Work  

This section begins by introducing Longuet-Higgins’ method of deriving the 

essential matrix [2]. A world point is defined in the left camera coordinate syste m 

by  
llll

ZYXM ,,  and in the right camera coordinate system by  
rrrr

ZYXM ,, .  

Longuet-Higgins [2] defined the image points 
l

m  and 
r

m  of the world point M  in 

the coordinate systems of the two cameras as   

   










),(),(

),(),(

rrrrrr

llllll

ZYZXyx

ZYZXyx

     (2) 

Given the translation vector of the right camera with respect to the left camera 

][
zyx

tttt  and given the rotation matrix of the right camera coordinate system with 

respect to the left camera coordinate system R , the relationship between the three-

dimensional vectors representing the world point M  may be expressed as  

   )( tMM 
lr

R       (3) 

The rotation R  satisfies the relation   

   1 RRRR
TT  and 1)( Rdet      (4) 

Longuet-Higgins [2] defines the essential matrix as  

   RSE         (5) 

where S  is the skew-symmetric matrix  

   





























0

0

0

xy

xz

yz

tt

tt

tt

S       (6) 

and adopted the length of the vector t  as the unit of distance  

   1
2222


zyx
tttt       (7) 

Longuet-Higgins [2] then constructed the expression 
l

T

r
E MM  and used (3) to (7) to 

conclude 0
l

T

r
E MM . Dividing by 

rl
ZZ  establishes the equation for the essential 

matrix that relates image points 
l

m  and 
r

m   

   0
l

T

r
Emm        (8) 
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Three years later, Longuet-Higgins discovered configurations that defeat the eight-

point algorithm [5]. Similarly, the work of Hartley [4] in defense of the eight -point 

algorithm is the result of criticising the performance of the eight -point algorithm as 

extremely susceptible to noise and virtually useless for most purposes.  By preceding the 

algorithm with a very simple normalisation of the coordinates of the matched points, 

Hartley [4] challenged such criticisms and presented results that are comparable to the 

best iterative algorithms, claiming that the improved performance is justified by theory 

and verified by extensive experiments on real images. 

Two years after introducing the fundamental matrix, Luong and Faugeras [6] 

discovered that the general methods to compute the fundamental matrix are unstable 

when the points lie near planes.  

Zisserman, et al., [7] demonstrated that it is not possible to recover the epipolar 

geometry for a number of configurations.  

Marill [8] gave an example that should, at a minimum, cause scientists to consider 

recovering the three-dimensional scene that caused the image not as an axiom (as 

considered in vision literature) but as a theory that is subject to empirical verification or 

falsification. Marill further argued that if it held up under further examination, the 

example would be evidence that the theory is false.  

Most of these reviews attribute the failure of the fundamental matrix theory to the 

performance of the eight-point algorithm.  

 

3. Empirical Analysis  

The main objective of the empirical analysis in the current study is to demonstrate 

the effect of the depth of 3D points on the value of the expression 
lr

Fmm . To that end, 

we used three real images of a scene acquired from three different positions (view 1, 

view 2, and view 3). The distinguishing feature of these images is that the baseline of 

(view 1, view 2) is smaller than the baseline of (view 1, view 3).  

Figures 2, 3, and 4 show that the scene is composed of two building blocks that are 

positioned one behind the other. The three views show that the depth of the front block 

is smaller than the depth of the rear block.  

In the current study, two experimental cases are considered. The first case consists of 

view 1 and view 2. The second case consists of view 1 and view 3, where the baseline is 

larger than in the former case. Four sets of data are created from these two cases. Each 

set contains the coordinates of points from a pair of views.  

1. V21Rear contains coordinates of points from the rear block of the pair (view2, 

view1) 

2. V31Rear contains coordinates of points from the rear block of the pair (view3, 

view1)  

3. V21Mix contains coordinates of points from both blocks of the pair (view2, 

view1)  

4. V31Mix contains coordinates of points from both  blocks of the pair (view3, 

view1)  
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Figure 2. View1 of the 
scene 

 

Figure 3. View2 of 
the scene 

Figure 4. View3 of 
the scene 

In experiments involving the current work, we used the eight-point algorithm to 

calculate the fundamental matrix. This algorithm is a frequently cited method for 

estimating the fundamental matrix from a set of eight or more point matches [4].  

When assessing estimation methods for computing the fundamental matrix, scholars 

generally consider the following:  

1. The mean and standard deviation of the discrepancy between points and 

epipolar lines;  

2. Detecting outliers; and  

3. Satisfying one of the characteristics of F , where rank ( F ) is equal to two [9].   

The main focus of our experimental study is to check whether the fundamental 

matrix equation, 0
lr

Fmm , holds for any pair of corresponding points ),(
rl

mm , as 

claimed in [1- 4, 10-12].  

To calculate the fundamental matrix, we selected points on the two views, first from 

the rear block and from both blocks in the second phase. To evaluate the effect of the 

depth of points—and the baseline—on the value of the expression 
lr

Fmm , we computed 

lr
Fmm  for each pair of corresponding points in Tables 1 and 2. In these tables, points 1 

to 10 are arbitrarily selected from the rear block, and points 11 to 20 are selected from 

the front block.  

The program we used is coded in MATLAB and consists of the following 

components:  

1. The Harris corner detection algorithm [13] to detect points of the views.  

2. A piece of code to read the points detected by the Harris algorithm, which 

generates a matrix of four columns: two contain the coordinates of the right 

image points and two contain the coordinates of the left image points.  

3. The MATLAB Toolbox [14] includes many different methods for estimating the 

fundamental matrix using the eight-point algorithm [9].  

After generating the coordinates of corresponding points from the two views, we 

manually removed points that have no corresponding points in the opposite view. We 

run the program using the robust estimation method functions because they outperform 

the linear and iterative methods [9]. These robust methods include the following:  

1. M-Estimator using least squares;  

2. M-Estimator using least squares with an Eigen analysis;  

3. M-Estimator proposed by Torr; 
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4. LMedS using least squares; 

5. LMedS using least squares with an Eigen analysis; 

6. RANSAC; 

7. MLESAC implemented by Torr; and  

8. MAPSAC implemented by Torr [9].  

Each of these methods estimates a value for the matrix F . Tables 1 and 2 list the 

corresponding points from the two views that are used to calculate the values of 
lr

Fmm  

for each F  obtained by an estimation method.  

Table 1. Selected Pairs of Points from View2-view1 to Evaluate 
lr

Fmm  

point# view2 view1 area 

1 (618,313) (833,331) 

Rear 

2 (636,369) (853,389) 

3 (681,420) (901,443) 

4 (952,448) (1184,471) 

5 (953,341) (1183,360) 

6 (1076,181) (1306,193) 

7 (1078,555) (1319,582) 

8 (1303,526) (1551,548) 

9 (1577,263) (1833,278) 

10 (1581,474) (1841,497) 

11 (1010,925) (1490,961) 

Front 

12 (1116,1035) (1606,1079) 

13 (1145,1061) (1637,1105) 

14 (1214,1197) (1715,1248) 

15 (533,942) (907,983) 

16 (392,905) (727,948) 

17 (656,1014) (1068,1114) 

18 (1470,1022) (1983,1062) 

19 (1502,886) (2016,915) 

20 (863,890) (1328,924) 

Table 2. Selected Pairs of Points from View3-view1 to Evaluate 
lr

Fmm   

point# view3 view1 area 

1 (783,298) (833,331) 

Rear 

2 (800,353) (853,389) 

3 (844,403) (901,443) 

4 (1114,429) (1184,471) 

5 (1116,322) (1183,360) 

6 (1241,160) (1306,193) 

7 (1239,535) (1319,582) 

8 (1465,504) (1551,548) 

9 (1742,236) (1833,278) 

10 (1746,449) (1841,497) 

11 (1041,897) (1490,961) 
Front 12 (1146,1007) (1606,1079) 
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13 (1175,1033) (1637,1105) 

14 (1243,1170) (1715,1248) 

15 (607,917) (907,983) 

16 (484,882) (727,948) 

17 (712,1039) (1068,1114) 

18 (1503,993) (1983,1062) 

19 (1536,855) (2016,915) 

20 (897,862) (1328,924) 

First, in each case—(view2-view1) and (view3-view1)—we used nearly 450 pairs of 

corresponding points from the rear block to estimate the fundamental matrix. We then 

calculated 
lr

Fmm  for the points found in Tables 1 and 2, and the results are shown in 

Tables 3- 6.  

In the second phase, we combined points from both the rear and front blocks to 

estimate the fundamental matrix. We then calculated 
lr

Fmm  for the points of Table 1 

and Table 2. The results are shown in Tables 7-10. The latter phase is a response to 

requirements that specify that pairs of points used to estimate the fundamental matrix 

should be selected from all over the scene. Such a claim has no foundation in the theory 

of the fundamental matrix [2, 3], which specifically asserts that eight pairs of 

corresponding points are adequate to calculate the fundamental matrix without 

specifying from which region of the scene they come.  

Along with the values of 
lr

Fmm  presented in the tables mentioned above, Figures 5, 

6, 7, and 8 present the mean and standard deviation of the discrepancy between points 

and epipolar lines for each case.  

Table 3. Values of 
lr

Fmm  where the Corresponding Points are from the 

Rear Block of View2–view1 and the Fundamental Matrix is Estimated from 
the Rear Block 

         Points   

Methods  
1 2 3 4 5 6 7 8 9 10 

1 0.012 0.004 0.004 0.025 0.021 0.002 0.031 0.015 0.016 0.012 

2 0.008 0.002 0.005 0.015 0.010 0.010 0.025 0.009 0.008 0.005 

3 0.007 0.001 0.005 0.015 0.010 0.006 0.028 0.010 0.007 0.005 

4 0.013 0.005 0.004 0.029 0.025 0.001 0.034 0.017 0.019 0.015 

5 0.008 0.002 0.005 0.015 0.010 0.011 0.024 0.008 0.009 0.006 

6 0.008 0.002 0.005 0.015 0.010 0.011 0.024 0.008 0.009 0.006 

7 0.007 0.002 0.004 0.014 0.010 0.005 0.026 0.009 0.007 0.005 

8 0.007 0.002 0.005 0.015 0.010 0.005 0.027 0.009 0.008 0.007 
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Table 4. Values of 
lr

Fmm  where the Corresponding Points are from the 

front Block of View2–view1 and the Fundamental Matrix is Estimated from 
the Rear Block 

    Points    

Methods  

11 12 13 14 15 16 17 18 19 20 

1 0.946 0.925 0.916 0.876 0.565 0.417 0.682 0.917 0.957 0.923 

2 1.124 1.128 1.126 1.125 0.720 0.560 0.867 1.135 1.152 1.092 

3 1.161 1.175 1.175 1.190 0.753 0.588 0.911 1.180 1.185 1.125 

4 0.887 0.858 0.847 0.796 0.519 0.375 0.626 0.842 0.888 0.867 

5 1.110 1.110 1.107 1.099 0.705 0.547 0.848 1.118 1.139 1.079 

6 1.110 1.110 1.107 1.099 0.705 0.547 0.848 1.118 1.139 1.079 

7 1.172 1.187 1.188 1.204 0.752 0.584 0.913 1.197 1.202 1.134 

8 1.164 1.178 1.178 1.194 0.752 0.586 0.911 1.183 1.187 1.128 

Table 5. Values of 
lr

Fmm  where the Corresponding Points are from the 

Rear Block of View3–view1 and the fundamental Matrix is Estimated from 
the Rear Block 

       Points  

Methods  
1 2 3 4 5 6 7 8 9 10 

1 0.044 0.014 0.022 0.105 0.086 0.027 0.133 0.074 0.056 0.055 

2 0.066 0.012 0.041 0.103 0.054 0.085 0.168 0.073 0.054 0.046 

3 0.067 0.012 0.046 0.112 0.060 0.064 0.193 0.086 0.046 0.049 

4 0.041 0.015 0.020 0.105 0.090 0.043 0.129 0.074 0.056 0.058 

5 0.066 0.012 0.041 0.101 0.053 0.092 0.164 0.068 0.051 0.048 

6 0.066 0.012 0.041 0.101 0.053 0.092 0.164 0.068 0.051 0.048 

7 0.070 0.011 0.048 0.107 0.051 0.077 0.189 0.078 0.035 0.048 

8 0.059 0.010 0.038 0.084 0.048 0.005 0.120 0.043 0.038 0.046 

Table 6. Values of 
lr

Fmm  where the Corresponding Points are from the 

front Block of View3–view1 and the Fundamental Matrix is Estimated from 
the Rear Block 

       Points 

Methods  
11 12 13 14 15 16 17 18 19 20 

1 3.465 3.444 3.428 3.372 2.148 1.607 2.605 3.361 3.418 3.370 

2 7.686 7.704 7.687 7.668 5.031 3.968 6.009 7.664 7.747 7.490 

3 8.304 8.392 8.392 8.481 5.511 4.365 6.631 8.330 8.333 8.079 

4 2.924 2.902 2.887 2.833 1.787 1.313 2.180 2.809 2.858 2.843 

5 8.063 8.070 8.050 8.014 5.264 4.151 6.278 8.041 8.144 7.858 

6 8.063 8.070 8.050 8.014 5.264 4.151 6.278 8.041 8.144 7.858 

7 8.346 8.427 8.424 8.506 5.589 4.455 6.707 8.344 8.354 8.130 

8 4.027 4.018 4.001 3.986 2.863 2.339 3.398 3.800 3.834 3.970 
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Table 7. Values of 
lr

Fmm , where the Corresponding Points are from the 

Rear Block of View2–view1 and the Fundamental Matrix is Estimated from 
both Blocks 

       Points 

Methods   
1 2 3 4 5 6 7 8 9 10 

1 0.136 0.060 0.011 0.082 0.009 0.148 0.143 0.096 0.074 0.002 

2 0.981 0.256 0.374 0.499 0.327 1.337 0.845 0.363 0.211 0.324 

3 0.108 0.011 0.060 0.054 0.112 0.441 0.169 0.139 0.194 0.123 

4 0.189 0.055 0.062 0.151 0.050 0.426 0.289 0.236 0.246 0.107 

5 0.049 0.019 0.010 0.030 0.016 0.097 0.052 0.060 0.061 0.026 

6 0.111 0.048 0.002 0.040 0.075 0.315 0.137 0.133 0.173 0.110 

7 0.030 0.006 0.009 0.002 0.035 0.088 0.005 0.018 0.019 0.015 

8 0.138 0.035 0.059 0.111 0.097 0.421 0.331 0.280 0.250 0.201 

Table 8. Values of 
lr

Fmm , where the Corresponding Points are from the 

front Block of View2–view1 and the fundamental Matrix is Estimated from 
both Blocks 

           Points    

Methods   

11 12 13 14 15 16 17 18 19 20 

1 0.039 0.035 0.062 0.182 0.246 0.262 0.237 0.298 0.262 0.098 

2 2.705 2.580 2.630 2.501 2.746 3.934 3.066 6.010 6.804 1.935 

3 0.383 0.258 0.224 0.005 0.468 0.532 0.258 0.278 0.423 0.430 

4 0.021 0.113 0.146 0.352 0.173 0.221 0.125 0.287 0.230 0.026 

5 0.340 0.220 0.192 0.069 0.196 0.161 0.058 0.259 0.414 0.372 

6 0.367 0.280 0.259 0.091 0.188 0.159 0.041 0.388 0.506 0.362 

7 0.275 0.185 0.161 0.058 0.075 0.015 0.071 0.224 0.337 0.285 

8 1.615 1.874 1.934 2.246 1.374 1.216 1.654 1.950 1.661 1.501 

Table 9. Values of 
lr

Fmm , where the Corresponding Points are from the 

Rear Block of View3–view1 and the fundamental Matrix is Estimated from 
both Blocks 

     Points  

Methods   
1 2 3 4 5 6 7 8 9 10 

1 0.062 0.017 0.005 0.025 0.002 0.205 0.033 0.027 0.079 0.027 

2 0.046 0.011 0.002 0.005 0.010 0.195 0.099 0.082 0.059 0.058 

3 0.447 0.277 0.130 0.112 0.449 0.927 0.196 0.122 0.587 0.041 

4 0.081 0.037 0.007 0.075 0.023 0.093 0.110 0.077 0.107 0.018 

5 0.269 0.099 0.054 0.124 0.213 0.701 0.453 0.402 0.357 0.321 

6 0.269 0.099 0.054 0.124 0.213 0.701 0.453 0.402 0.357 0.321 

7 0.014 0.008 0.001 0.029 0.068 0.241 0.184 0.276 0.096 0.378 

8 0.329 0.130 0.059 0.186 0.271 0.980 0.656 0.589 0.786 0.371 
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Table 10. Values of
lr

Fmm , where the Corresponding Points are from the 

front Block of View3–view1 and the Fundamental Matrix is Estimated from 
both Blocks  

      Points  

Methods   
11 12 13 14 15 16 17 18 19 20 

1 0.837 0.350 0.220 0.543 0.148 0.029 0.176 0.375 0.973 0.930 

2 1.067 0.450 0.286 0.672 0.156 0.000 0.248 0.502 1.266 1.184 

3 1.732 1.439 1.367 0.986 0.340 0.070 0.409 1.560 1.985 1.706 

4 0.354 0.248 0.217 0.039 0.157 0.074 0.135 0.154 0.262 0.369 

5 0.683 0.348 0.266 0.144 0.218 0.455 0.290 0.362 0.802 0.730 

6 0.683 0.348 0.266 0.144 0.218 0.455 0.290 0.362 0.802 0.730 

7 0.365 0.077 0.007 0.344 0.528 0.509 0.481 0.496 0.242 0.545 

8 1.787 1.211 1.061 0.363 0.728 0.432 0.656 0.980 1.718 1.950 

The values of 
lr

Fmm  in Table 3 are close to zero because the baseline in this case is 

quite small, and because the depths of the world points whose images are used to 

estimate the fundamental matrix and the points used in computing 
lr

Fmm  are roughly 

similar. The values of 
lr

Fmm  in Table 5 are ten times larger than the values in Table 3 

because of the effect of the increased baseline, although the depth of the points used to 

estimate F  and the points used to evaluate 
lr

Fmm  are in the same range. The increased 

baseline deepens the differences in depth.   

The values of 
lr

Fmm  in Table 4 are in the range 0.4 to 1.19 because the points used 

to estimate the fundamental matrix are from the rear block, whereas the points used to 

compute 
lr

Fmm  are from the front block, and their depths are different.  

Similarly, the values in Table 6 are approximately 100 times the values in Table 5 

because of the differences in the depths of the points.  

Comparing Table 4 to Table 6, it appears that the latter values are roughly ten times 

the magnitude of the former, which is also due to the effect of increasing the baseline.  

The values of 
lr

Fmm  are calculated from the same set of points in both Table 7 and 

Table 9, and on the same set of points in Table 8 and Table 10. However, the baseline 

in Table 7 and in Table 8 is smaller than the baseline in Table 9 and in Table 10. 

Comparing the values in Table 7 to Table 9, and the values in Table 8 to Table 10, it 

appears the values in the tables with smaller baselines are smaller than the values in the 

Tables with larger baselines.  
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Figure 5. The Mean and Standard Deviation of the Discrepancy between 
Points and Epipolar Lines of View2-view1; the Fundamental Matrix is 

Estimated from the Points of the Rear Block 

 

Figure 6. The Mean and Standard Deviation of the Discrepancy between 
Points and Epipolar Lines of view2-view1; the Fundamental Matrix is 

Estimated from the Points of both Blocks 
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Figure 7. The Mean and Standard Deviation of the Discrepancy between 
Points and Epipolar Lines of View3-view1; the Fundamental Matrix is 

Estimated from the Points of the Rear Block 

 

Figure 8. The Mean and Standard Deviation of the Discrepancy between 
Points and Epipolar Lines of View3-view1; the Fundamental Matrix is 

Estimated from the Points of both Blocks 

Table 11. Outliers Computed Following [9]. In V21Rear and V31Rear F  is 
Estimated from the Rear Block and in V21Mix and V31Mix F  is Estimated 

from both Blocks  

       Views 

Methods 

V21Rear V31Rear V21Mix V31Mix 

1 46/442 27/453 130/672 191/690 

2 67/442 51/453 215/672 236/690 

3 61/442 58/453 98/672 229/690 

4 0/442 0/453 230/672 237/690 

5 0/442 0/453 144/672 142/690 

6 0/442 0/453 137/672 46/690 

7 14/442 25/453 257/672 222/690 

8 1/442 39/453 236/672 172/690 

The mean and standard deviation of the distances between points and epipolar lines 

in all the cases considered hereunder are shown in Figures 5-8.   

In Figures 5 and 7, where the depths of all points involved are within a small range, 

the mean and standard deviation in most methods are bounded by 2. In Figures 6 and 8, 

where the corresponding points used to estimate F  belong to two different categories 

regarding their depth; the mean and standard deviation are more than 20 for most 

methods and are above 100 for some methods.  

Although all points involved in estimating the matrix F  are given along with their 

correspondences, Table 11 indicates that the number of outliers increased dramatically 

for most methods when these points are selected from regions with different depths.  
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4. Algebraic Analysis of the Fundamental Matrix Equation  

For each point 
l

m  in the left retina, the epipolar constraint indicates that its 

corresponding point 
r

m  on the right view lies on its epipolar line 
r

l [6], which reduces 

the search for the corresponding point from an entire image to merely a line.  

Equation (1) is linear and homogeneous in the nine unknown coefficients of 

matrix F . Thus we know that, in general, if we are given eight matches we will be able 

to determine a unique solution for F  [3].  

The extraction of the 3D shape of the scene under study requires selecting a set of 

points from one view and computing their corresponding points in the other view. Once 

the fundamental matrix and an image point in one view are available, equation (1) 

generates its corresponding point in the other view. Let us ascertain whether (1) is 

adequate to determine the corresponding points.  

Given an image point  1,,
lll

yxm   from the left view, substituting in (1) yields: 

     0

1

1

987

654

321











































l

l

rr
y

x

fff

fff

fff

yx     (9) 

Equation (9) is equivalent to 0 cbyax
rr

 

where   

 
321

ffyfxa
ll

 , 
654

ffyfxb
ll

 , and 
987

ffyfxc
ll

             (10) 

Equation (10) is a single equation in two variables, 
r

x and
r

y , and has many 

solutions; for any value
r

x , there is a value
r

y .  

Algebraically, knowledge of the fundamental matrix and an image point in one view 

generates unlimited corresponding points in the other view that satisfy (1). Thus, 

knowledge of the fundamental matrix does not ensure that an accurate 3D shape of the 

scene under study will be extracted.  

This finding appraises the worth of the epipolar constraint. Reducing the search 

space of each corresponding point to a single line is not a major achievement, 

considering that a line may contain more than one corresponding point.  

  

5. Geometric Analysis of the Fundamental Matrix Equation  

5.1. Projective Points  

By definition, a projective point ],,[ zyx  is considered to be equal to an equivalence 

class of 3D points that belong to the 3D line passing through the Cartesian point 

),,( ZYX  and the origin )0,0,0( [15].  

The projective point 
l

m  in Figure 9 is equal to the class of 3D points  PMN ,, .  

These 3D points are all projected (i.e., imaged) onto the point 
l

m  in the left camera 

plane. Simultaneously, these points are projected onto different points in the right 

camera plane. Thus, the following equalities hold simultaneously:  















0

0

0

rl

rl

rl

Fpm

Fmm

Fnm

 

Therefore, the knowledge of point 
l

m  does not ensure the computation of its 

corresponding point. Although researchers and practitioners have named this 
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phenomenon the occlusion problem, they do not exclude any type of scene and they do 

not report any conditions for occlusion when they set the epipolar geometry theory .  

 

Figure 9. 3D Points Projected Onto One Point in the Left Camera Plane and 
Onto Many Points in the Right Camera Plane 

5.2.  Coplanar World Points 

Let us consider two world points, M  and N , on the same epipolar plane П, as in 

Figure 10.  

Hartley and Zisserman [1] assert: “The mapping from a point in one image to a 

corresponding epipolar line in the other image may be decomposed into two s teps. In 

the first step, the point 
l

m  is mapped to some point 
r

m  in the other image lying on the 

epipolar line 
r

l . This point 
r

m  is a potential match for the point 
l

m .  

In the second step, the epipolar line 
r

l  is obtained as the line joining 
r

m  to the 

epipole 
r

e .  

Step 1: Point transfer via a plane. Consider a plane П in space not passing through 

either of the two camera centres. The ray through the first camera centre corresponding 

to the point 
l

m  meets the plane П in a point M . This point M  is then projected to a 

point 
r

m  in the second image. This procedure is known as transfer via the plane П. 

Since M  lies on the ray corresponding to
l

m , the projected point 
r

m  must lie on the 

epipolar line 
r

l  corresponding to the image of this ray.  

The points 
l

m  and 
r

m  are both images of the 3D point M   lying on a plane. The set 

of all such points 
l

m  in the first image and the corresponding point 
r

m  in the second 

image are projectively equivalent, since they are each projectively equivalent to the 

planar point set M . Thus, there is a 2D homography 


H  mapping each 
l

m  to 
r

m .  

Step 2: Constructing the epipolar line. Given the point
r

m , the epipolar line 
r

l  

passing through 
r

m  and the epipole 
r

e  can be written as  
rrrrr

memel


 . Since 

r
m  may be written as

lr
mHm  , we have  

llrr
FmmHel 

   where we define 

n r 

p r 

m r 

M 

C l 
C r 

π r 

π l 

m l  

N 

P 
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 
HeF

r 
  as the fundamental matrix. The point 

r
m  lies on the epipolar 

line
lr

Fml  , 0
lr

Fmm .”  

In Figure 10, the points 
l

n  and 
r

n are the image points of world point N .  

By definition, an epipolar line is the intersection of an epipolar plane with the image 

plane. The points N  and M  belong to the same epipolar plane П. This epipolar plane 

intersects the left and right image planes in the epipolar lines 
l

l and
r

l , respectively, and 

it follows that the points 
r

n  and 
r

m  lie on the same epipolar line, 

 
llrr

FmmHel 
 

. Simultaneously, we thus have 0
lr

Fmm , 0
lr

Fmn , 0
lr

Fnn , 

and 0
lr

Fnm .  

 

Figure 10. World Points on the Same Epipolar Plane 

6. Pointing Out the Causes  

The secret behind the poor performance of the estimation methods is not a flaw in the 

eight-point algorithm as some researchers anticipated.  

Longuet-Higgins [2] divided 0
l

T

r
E MM  by

rl
ZZ  and used the relationships 

between the world points M  and their projective counterparts 
Z

Mm   to conclude the 

essential matrix equation 0
l

T

r
Emm .  

1. By definition, a projective point m  is considered to be equal to an equivalence class 

of 3D points that belong to the 3D line passing through points M  and the origin of 

the coordinate system [15], excluding the origin. There is no one-to-one 

correspondence between world points M  and projective points m , i.e., 0
l

T

r
E MM  

implies 0
l

T

r
Emm , but 0

l

T

r
Emm  does not imply 0

l

T

r
E MM  because 

l
Z  and 

r
Z  

are missing.  

2. An epipolar plane intersects the left and right image planes in epipolar lines and 

defines the correspondence between the lines. Let niM
i

,,1,   be a set of world 

points belonging to the same epipolar plane. As we concluded in the previous 

section from the assertion in [1], the images of these 3D points 

njnimm
j

r

i

l
,,1,,,1),,(    satisfy 0

i

l

j

r
Fmm .  

π r 

π l 

M 

C l C r 

П 

N 

m l  

n l  n r 

m r 

l l l r 
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Given a sufficient number of point matches (at least eight), the equation 0
l

T

r
Fmm  

can be used to compute the unknown matrix F [4].  

In particular, writing the image points in homogeneous coordinates )1,,(
lll

yxm   

and )1,,(
rrr

yxm  , each point match gives rise to one linear equation in the unknown 

entries of F. The coefficients of this equation are easily written in terms of the known 

coordinates 
l

m and
r

m  

  
0

33231332

2221312111





ffyfxfy

fyyfxyfxfyxfxx

rrl

rlrllrlrl
          (11) 

From all the point matches, we obtain a set of linear equations of the form  

    0Af                            (12) 

where f  is a nine-vector containing the entries of the matrix F, and A is the equation 

matrix.  

It is possible to find a solution to the system (12) with as few as eight point matches. 

With more than eight point matches, we have an over specified system of equations  [4].  

Let us now consider eight world points,   8,,1,,,  iZYXM
i

l

i

l

i

l

i

l
, in the left 

camera system; their coordinates in the right system are   8,,1,,,  iZYXM
i

r

i

r

i

r

i

r
, and 

their image points in the left and right coordinate systems will be 

  8,,1,1,,  iyxm
i

l

i

l

i

l
 and   8,,1,1,,  iyxm

i

r

i

r

i

r
, respectively.  

Assuming that 
1

l
M  and 

2

l
M  are on the same epipolar plane, 

3

l
M  is on the same arrow 

coming from the left camera centre toward point
4

l
M (i.e., 

43

ll
mm  ).  

In this case, we have a set of exactly eight equations: 

   8,,1,0  iF
i

l

i

r
MM                     (13) 

However, 0
i

l

i

r
Fmm  will be equivalent to a set of ten equations were the single 

point 3

l
m  is related to two different points 

3

r
m  and 

4

r
m :  

  


















8,,5,0

,0,0

,0,0,0,0

3433

12212211

iFmm

FmmFmm

FmmFmmFmmFmm

i

l

i

r

lrlr

lrlrlrlr

          (14) 

The question now is whether the matrix F , calculated from (14), is the same as F  

obtained from (13), The answer is no; whereas F  calculated from (13) is a one-to-one 

correspondence between the vectors representing the 3D point M  in the left and right 

coordinate systems, F  calculated from (14) is no longer only a relationship between 

pairs of corresponding points; it is also a relationship between other points that are not 

correspondents.  

The equation 0
l

T

r
E MM  is defined in the domain )},{(

lr
MMD  where r

M  is the 

vector representative of the point M  in the right coordinate system and 
l

M  is the 

vector representative of the point  in the left coordinate system. However, 0
l

T

r
Emm  is 

defined in a different domain   
lr

mmd ,  where there is no one-to-one 

correspondence between ),(
lr

MM  and  
lr

mm , .  
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When the 3D point’s depths are different, it will frequently be the case that many 

points will belong to the same epipolar plane and, therefore, F  will be a loose 

relationship between correspondent and non-correspondent points. This finding 

confirms that F  is dependent on the scene structure, i.e., it depends on the depth of the 

world points.  

To sum up, a 3D point M  is represented in the two cameras coordinate systems by 

exactly two vectors 
r

M and
l

M . The matrix F  is calculated from the equation 

0
l

T

r
Fmm  where the pair of points  

lr
mm ,   is available and can be in one of the 

following cases:  

1.
r

m  and 
l

m  are corresponding points; the ideal case,   

2.
l

m  is a correspondent to more than a point 
r

m ; occlusion in the left image,  

3.
r

m  is a correspondent to more than a point 
l

m ; occlusion in the right image,  

4.
r

m and 
l

m  are not corresponding points at all; they are images of different 3D 

points belonging to the same epipolar plane.  

It is noteworthy to remember that one of the main uses of the fundamental matrix is 

the extraction of the 3D structure of the scene through the recovery of the 3D points. 

However, the matrix F  calculated from 0
l

T

r
Fmm  does not always 

satisfy 0
l

T

r
F MM ; in other words, the availability of a pair of corresponding points 

 
lr

mm ,  and F  does not guarantee the recovery of the right 3D point.  

 

7. Conclusions 

Epipolar geometry consists of the relationships between the image points in two 

views of a scene. Simultaneously, it relates a world point from the scene to its pair of 

image points in the two views. The fundamental matrix F  is the algebraic 

representation of such geometry. In addition, it is claimed that matrix F  is independent 

of the scene structure [1].  

The experimental results of the current study demonstrate that F , in fact, depends on 

the depth of the 3D points of the scene. Algebraic and geometric analyses emphazised 

that the fundamental matrix equation does not define a one-to-one correspondence 

between the corresponding points of a 3D point.  

The fundamental matrix equation is linear and can be solved stra ightforwardly; 

however, it is misleading to assert that having knowledge of F  and an image point in 

one view ensure that its corresponding image point can be determined in the other view.  

An image point is not a scalar value; instead, it is a pair of two coordinates, 

 yxm , , i.e., a pair of scalars. Regardless of whether the matrix F  is singular, the 

knowledge of one image point, 
l

m , and the matrix F , 0
l

T

r
Fmm  is nothing more than 

a single linear equation in two unknowns, 
r

x  and 
r

y . Therefore, 0
l

T

r
Fmm  holds for 

many values of 
r

x  and
r

y , i.e., for every point
l

m , 0
l

T

r
Fmm  is satisfied for more than 

one point
r

m .    

Geometrically, 3D points that lie on the same ray from one camera centre are 

projected to the same image point on the plane of such camera. The same 3D points are 

projected to different image points on the other camera plane. Furthermore, 3D points 

that belong to the same epipolar plane are projected to the left on the same left epipolar 
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line and projected to the right on the same right epipolar  line. The right epipolar line is 

defined by any of the left image points, 
l

p , as
l

Fp . All the right image points,
r

p  lie on 

the same epipolar line
l

Fp . Thus, all 
r

p  satisfy 0
l

T

r
Fpp  for all

l
p , where 

l
p  and 

r
p  

are the image points of any 3D point belonging on the same epipolar plane. Similarly 

all the left image points,
l

p  lie on the same epipolar line
r

Fp . Thus, all 
l

p  satisfy 

0
l

T

r
Fpp  for all

r
p , where 

l
p  and 

r
p  are the image points of any 3D point belonging 

on the same epipolar plane.  

On the one hand, the matrix F  in 0
l

T

r
F MM  is a one-to-one correspondence 

between the vectors 
r

M  and 
l

M , which are the right and left vectors coordinates of the 

3D point M  in the right and left coordinate systems, respectively. However, the matrix 

F  in 0
l

T

r
Fmm  is a relationship between image points on the two views that are not 

necessarily correspondents of one another.  

The experiment reported in this study indicates that the matrix F , which is 

calculated from the equation 0
l

T

r
Fmm , is not independent of the scene structure. In 

particular, such experiment is not an isolated case; instead, it represents a class of 

scenes that contain objects at many different depths.  
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