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Abstract 

Semi-supervised constraint scores, which utilize both pairwise constraints and the local 

property of the unlabeled data to select features, achieve comparable performance to the 

supervised feature selection methods. The local property is characterized without considering 

the pairwise constraints and these two conditions are introduced independently. However, the 

pairwise constraints and the local property may contain conflicting information. In this 

paper, we utilize the conflicting information to improve the local property. Instead of 

characterizing the local property by all neighbors, samples which do not appear in the 

cannot-link constraints can be used. A performance indicator, called neighborhood-cannot-

link (NC) coefficient, is proposed to measure the improvement of the local property. We use 

the improved local property and the pairwise constraints to perform semi-supervised 

constraint scores algorithm. Experiments on several real world data sets demonstrate the 

effectiveness of the methods. 
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1. Introduction 

The class label and the pairwise constraints [1-3] are two kinds of user supervision 

information which are utilized in supervised learning and semi-supervised learning. The 

pairwise constraints contain the must-link constraints and the cannot-link constraints. 

Compared with the class label, considering the pairwise constraints is more practical, because 

the true labels may be unknown a priori, while it is easier for a user to specify whether some 

pairs of examples belong to the same class or not [4]. Constraint scores [4, 5], which utilizes 

the pairwise constraints to select features, have been widely studied in recent years. In order 

to make use of the substantial unlabeled samples, the semi-supervised versions [6, 7] of 

constraint scores have also been proposed. These semi-supervised methods utilize both 

pairwise constraints and the local property of the unlabeled data to select features, and 

achieve comparable performance to the supervised methods. 

In the semi-supervised methods, the pairwise constraints are utilized as an independent 

component, as well as the local property. However, the pairwise constraints and the local 

property may contain conflicting information. In other words, the relationship between two 

samples contained in the pairwise constraints and the local property may be different. For 

example, if two samples are neighbors, they can be utilized to characterize the local property. 

If these two samples appear in the cannot-link constraints at the same time, they cannot be 

utilized to describe the local property, because they belong to the different classes. Thus, one 

of the known conditions should be modified according to another known condition. In 

practice, the local property is characterized by the neighbors in the sense of Euclidean 

distance [8-10]. The ideal neighbors of a sample should have the same label. Unfortunately, 
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due to the similarity among the samples which are going to be classified, the phenomenon 

that the neighbors have different labels is quite common. Take Yale face database [11] for 

example, we characterize the local property by calculating the k-nearest neighbor on the first 

three individuals. The parameter k  is set to 3. The result shows that the first, the fourth and 

the seventh sample have one, two and three neighbors with different labels, respectively. 

When the number of nearest neighbors increases to 7, every sample in the first individual has 

at least one neighbor with different labels. For two samples ix  and jx , if the pairwise 

constraints indicate that ix  and jx  belong to the different classes, ix  should not appear in the 

neighborhood of jx , even though ix  is one of the k-nearest neighbors of jx . If we do not 

consider the pairwise constraints when we calculate the local property, the local property may 

contain incorrect information. 

In this paper, we consider how to improve the known conditions before we perform a 

learning task. Since the pairwise constraints are gives as supervision information, while the 

local property is calculated from all of the samples, we modified the local property according 

to the cannot-link constraints. Instead of characterizing the local property by all neighbors, 

samples which do not appear in the cannot-link constraints can be used in our method. To 

measure the improvement of the local property, we propose a performance indicator, called 

neighborhood-cannot-link (NC) coefficient. Then, we perform the constraint scores by using 

the improved local property and the pairwise constraints for semi-supervised feature selection. 

We name our method as Modified Constraint Scores (MCS). Several experiments were 

performed to demonstrate the efficacy of our method. 

The remainder of the paper is organized as follows. In Section 2, we review the related 

work. Our proposed method is presented in Section 3. In Section 4, we perform several 

experiments on UCI database, Yale face database and millimeter wave radar high resolution 

range profile (HRRP) to demonstrate the effectiveness of the methods. Finally, we provide 

some concluding remarks in Section 5. 

 

2. Related Work 

2.1. Laplacian Score 

Laplacian Score (LS) [12-14] is a “filter” method for feature selection. The basic 

assumption of LS is that, in many real world classification problems, data from the same class 

are often close to each other. The importance of a feature is evaluated by its power of locality 

preserving. For each feature, the locality preserving power can be reflected by its Laplacian 

score. 

Given a set of samples ],...,,[ 21 nxxxX  . Let irx  denote the rth feature in the ith sample. 

LS first construct a nearest neighbor graph G  with n  nodes. If nodes i  and j  are connected, 

put 
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      (1) 

where t  is a suitable constant. Otherwise, put 0ijS . The weight matrix S  of the graph 

models the local structure of the data space. Then, for the rth feature, define the graph 

Laplacian matrix: 

SDL       (2) 

where 
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2.2. Constraint Scores 

Constraint scores [4, 5] are also filter methods for feature selection. They utilize pairwise 

constraints as the supervision information. Pairwise constraints simply mention for some 

pairs of samples that they are similar (must-link constraints), or that they are dissimilar 

(cannot-link constraints). The must-link constraints M  and the cannot-link constraints C  can 

be defined as 

}class same  the tobelong  and |),{( jiji xxxxM          (7) 

}classesdifferent   the tobelong  and |),{( jiji xxxxC             (8) 

We construct two graphs MG  and CG  by using the pairwise constraints in M  and C . For 

each graph, we put an edge between node i  and j  if there is a constraint between samples ix  

and jx . Once the graphs are constructed, their weight matrices can be defined as 
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Then, the two kinds of constraint scores can be expressed as 
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where   is a regularization parameter whose function is to balance the contributions of the 

two terms in Eq. (12). 
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3. NC Coefficient and MCS 

3.1. NC Coefficient 

Semi-supervised constraint scores use both pairwise constraints and the local property to 

select features. The local property can be obtained without considering the pairwise 

constraints. Thus, some given class information may not be utilized when we characterized 

the local property. To improve the local property by using the class information contained in 

the cannot-link constraints, we define the neighborhood constraints N  as 

} of neighborsnearest -  the tobelong |),{( jiji xkxxxN    (13) 

Then we construct the k-nearest neighbor graph NG , where a connection is established 

between two nodes ix  and jx  if ix  belongs to the k-nearest neighbors of jx . The weight 

matrix of graph NG  can be defined as 



 
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),( if   1 Nxx
S
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ij      (14) 

For two samples ix  and jx , if the corresponding N
ijS  and C

ijS  satisfy 

1 C
ij

N
ij SS      (15) 

ix  should be discarded form the neighbors of jx . In other words, N
ijs  should be set to 0. Then, 

we recalculate the k-nearest neighbors of jx  until there is no sample satisfies Eq. (15). The 

final neighborhood weights are stored in matrix NNS . Obviously, samples which have 

different labels in the neighborhood can be found through this method. 

We define the NC coefficient as the following: 
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The meaning of the NC coefficient is obvious: the larger the NC coefficient, the greater the 

local property will be changed. It is easy to demonstrate that 10  p . In the case of 0p , 

the original neighbors of a sample contains no samples which have different labels and the 

traditional semi-supervised constraint scores do not need to modify. It is noteworthy that all 

known labels mentioned here are given by the cannot-link constraints. Since the rest labels 

are not known, there may still be samples with different labels in the neighborhood. In the 

case of 0p , we have to discard these nearest neighbor samples and recalculate the 

neighborhood matrix to make sure 0p . If 1p , all the samples in the cannot-link 

constraints appear in the neighborhood. In this case, the cannot-link constraints contain the 

most class information, and the performance of algorithms can be best improved. 

 

3.2. Modified Constraint Scores 

Zhao, et al., [6] proposed semi-supervised constraint score which uses both unlabeled data 

and pairwise constraints. Kalakech, et al., [7] provided another semi-supervised version, 

which is simple product between the laplacian score processed with the unlabeled samples 

and the constraint score 1
rC  defined in Eq. (11). Now, let us consider these two semi-

supervised constraint scores. They are described as the following: 
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For the given pairwise constraints, we first calculate the neighborhood weight matrix NS  

and NC coefficient p . If 0p , we execute the algorithms (11) and (12) directly. If 0p , 

we discard the samples which satisfy Eq. (15) from the neighborhood matrix and recalculate 

the neighborhood matrix until 0p . Then, we execute the algorithms with the new 

neighborhood weight matrix NNS . We summarize the MCS algorithm in Table 1. 

Table 1. MCS Algorithm 

Input: the sample set X , the pairwise constraints M  and C , the number of nearest 

neighbors k , the number of selected features nf . 

Output: the selected features sf . 

Algorithm: 

1: calculate the neighborhood matrix NS ; 

2: calculate the NC coefficient p ; 

3: if 0p , execute step 4; if 0p , discard the samples which satisfy Eq. (15) from the 

neighborhood matrix and recalculate the neighborhood matrix until 0p , store the new 

neighborhood weight in matrix NNS ; 

4: calculate Eq. (17) or Eq. (18) with NNS . The features corresponding to the nf  smallest 

scores are the selected features. 

 

4. Experimental Results 

4.1. Experimental Setting 

For convenience, we denote the algorithm using (17) as SSCS-1, denote the algorithm 

using (18) as SSCS. The corresponding modified algorithms are denoted as MCS-1 and 

MCS-2, respectively. In the following experiments, we use Yale face database [15], ‘Wine’ 

and ‘Vehicle’ data set from the UCI repository [16] and millimeter wave radar high resolution 

range profile (HRRP) to test the performance of these methods. We randomly select pairs of 

samples from the data set and create must-link and cannot-link constraints. In order to 

demonstrate the improvement of the modified methods, we perform experiments with 

different NC coefficient (0.25, 0.50, 0.75, 1.00). We first randomly select pairs with different 

labels from neighborhood weight matrix as a part of cannot-link constraints, the rest part of 

cannot-link constraints are obtained by random selection from the whole data except pairs 
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which are contained in neighborhood weight matrix. The ratio of these two parts of cannot-

link constraints is determined by NC coefficient. The number of must-link constraints is as 

same as the cannot-link constraints for each data set, respectively. For each NC coefficient, 

we repeat 50 runs to obtain the average classification accuracy. The classifier used here is 

nearest neighbor classifier. 

 

4.2. Yale Face Database 

The Yale face database is constructed at the Yale center for computational vision and 

control. It contains 165 grayscale images of 15 individuals. Each individual has 11 images. 

The images demonstrate variations in lighting condition (left-light, center-light, right-light), 

facial expression (normal, happy, sad, sleepy, surprised, and wink) and with/without glasses. 

All the face images are manually aligned and cropped. The size of each cropped image is 32 

× 32 pixels, with 256 gray levels. Figure 1 shows some sample images from the Yale face 

database. Before we perform the experiment, each image is represented as a 1024-

dimensional vector. 

 

Figure 1. Sample Images from the Yale Face Database 

We create 20 must-link and cannot-link constraints. The recognition accuracy versus 

different number of selected features on Yale face database is shown in Figure 2. The average 

recognition accuracy and stand deviations are shown in Table 2. 

 
(a)      (b) 

 
(c)      (d) 

Figure 2. Accuracy vs. Different Number of Selected Features on Yale Face 
Database with NC Coefficient (a) p = 0.25 (b) p = 0.50 (c) p = 0.75 (d) p = 1.00 
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Table 2. Classification Accuracy and Stand Deviations (Percent) on Yale Face 
Database with Different NC Coefficient 

NC coefficient 
Accuracy(%) 

SSCS-1 SSCS-2 MCS-1 MCS-2 

0.25 84.76 ± 4.81 84.83 ± 4.25 84.93 ± 3.83 84.71 ± 3.59 

0.50 84.80 ± 4.75 84.80 ± 4.23 85.32 ± 3.07 84.84 ± 2.71 

0.75 84.75 ± 4.74 84.79 ± 4.23 85.99 ± 2.27 86.58 ± 1.77 

1.00 84.71 ± 4.74 84.84 ± 4.25 86.48 ± 1.63 86.73 ± 1.42 

From Figure 2 and Table 2, we see that the performance of SSCS-1 and SSCS-2 is similar 

in the case of four different NC coefficients. While that of MCS-1 and MCS-2 improves 

when the NC coefficient increases. This increasement is remarkable when the number of 

selected features is small. Moreover, in the task of race recognition, the recognition accuracy 

does not always increase with the increasement of the number of selected features. For Yale 

face database, the most suitable number of selected features is between 250 and 400. 

 

4.3. UCI Database 

We utilize ‘Wine’ and ‘Vehicle’ database from the UCI repository to test the performance 

of our methods. The wine data are the results of a chemical analysis of wines grown in the 

same region in Italy but derived from three different cultivars. It contains 178 instances and 

13 attributes for each instance. These instances are from three classes. Each class contains 59, 

71 and 48 instances, respectively. The vehicle data 846 instances from four classes and 18 

attributes for each instance. The four classes of vehicles are Opel, Saab, bus and van, 

respectively. Each class has 212, 217, 218 and 199 instances, respectively. 

We create 50 must-link and cannot-link constraints for both wine data set and vehicle data 

set. The recognition accuracy versus different number of selected features is shown in Figure 

3 and Figure 4. The average recognition accuracy and stand deviations are shown in Table 3 

and Table 4. 

 
(a)      (b) 
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(c)      (d) 

Figure 3. Accuracy vs. Different Number of Selected Features on Wine Data Set 
with NC Coefficient (a) p = 0.25 (b) p = 0.50 (c) p = 0.75 (d) p = 1.00 

 
(a)      (b) 

 
(c)      (d) 

Figure 4. Accuracy vs. Different Number of Selected Features on Vehicle Data 
Set with NC Coefficient (a) p = 0.25 (b) p = 0.50 (c) p = 0.75 (d) p = 1.00 
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Table 3. Classification Accuracy and Stand Deviations (Percent) on Wine Data 
Set with Different NC Coefficient 

NC coefficient 
Accuracy(%) 

SSCS-1 SSCS-2 MCS-1 MCS-2 

0.25 93.37 ± 9.23 94.08 ± 7.28 93.21 ± 8.49 95.03 ± 5.60 

0.50 93.36 ± 9.22 94.07 ± 7.27 94.62 ± 5.95 95.51 ± 4.56 

0.75 93.08 ± 9.24 93.86 ± 7.42 95.23 ± 4.92 96.17 ± 4.03 

1.00 93.29 ± 8.81 94.01 ± 7.39 95.50 ± 4.55 96.62 ± 3.32 

Table 4. Classification Accuracy and Stand Deviations (Percent) on Vehicle 
Data Set with Different NC Coefficient 

NC coefficient 
Accuracy(%) 

SSCS-1 SSCS-2 MCS-1 MCS-2 

0.25 63.58 ± 8.75 65.10 ± 7.10 65.11 ± 6.81 66.78 ± 4.60 

0.50 64.13 ± 7.81 66.07 ± 5.76 66.48 ± 5.26 67.55 ± 3.73 

0.75 63.56 ± 8.42 65.42 ± 6.53 66.80 ± 4.87 68.06 ± 3.08 

1.00 63.65 ± 8.23 65.88 ± 5.89 67.24 ± 4.16 68.67 ± 2.09 

From Figure 3, Figure 4, Table 3 and Table 4, we see that the performance of the four 

methods is similar with that on Yale face database. The performance of SSCS-1 and SSCS-2 

on wine data set and vehicle data set is similar in the case of four different NC coefficients. 

While that of MCS-1 and MCS-2 improves when the NC coefficient increases. Different from 

the result of the face recognition, the recognition accuracy increases with the increasement of 

the number of selected features. If more features are selected, the performance becomes better. 

 

4.4. HRRP Data Set 

For high range resolution radar, in a resolution cell, the target can be seen as an assembly 

of many scatterers, which usually locate on the position where the curvature is large, such as 

corner and vertex. In this experiment, we use corner reflectors with different position to 

simulate three different targets. The experimental environment is as follows. The background 

is cement floor. The bandwidth of transmit signal is 400MHz, thus the range resolution is 

0.375m. For each target, we obtain a 256-point HRRP every 1° from azimuth 0° to 179°. 

Thus each target has 180 HRRPs, and each HRRP is a 256-dimensional vector. Figure 5 

shows 8 HRRPs (azimuth 0°, 25°, 50°, 75°, 100°, 125°, 150° and 175°) for each target. 

 
(a) target 1                            (b) target 2                            (c) target 3 

Figure 5. Sample HRRP for Each Target with Azimuth 0°, 25°, 50°, 75°, 100°, 
125°, 150° and 175° 
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We create 50 must-link and cannot-link constraints. The recognition accuracy versus 

different number of selected features is shown in Figure 6. The average recognition accuracy 

and stand deviations are shown in Table 5. 

 
(a)      (b) 

 
(c)      (d) 

Figure 6. Accuracy vs. Different Number of Selected Features on HRRP Data 
Set with NC Coefficient (a) p = 0.25 (b) p = 0.50 (c) p = 0.75 (d) p = 1.00 

Table 5. Classification Accuracy and Stand Deviations (Percent) on HRRP Data 
Set with Different NC Coefficient 

NC coefficient 
Accuracy(%) 

SSCS-1 SSCS-2 MCS-1 MCS-2 

0.25 76.73 ± 5.41 77.55 ± 4.05 77.96 ± 3.78 78.60 ± 3.27 

0.50 76.81 ± 5.12 77.32 ± 4.39 78.20 ± 3.46 78.88 ± 2.59 

0.75 76.78 ± 5.04 77.31 ± 4.34 78.64 ± 3.05 79.38 ± 2.58 

1.00 76.57 ± 5.60 77.63 ± 3.90 78.96 ± 2.88 79.61 ± 2.17 

From Figure 6 and Table 4, we see that the performance of SSCS-1 and SSCS-2 is similar 

in the case of four different NC coefficients. While that of MCS-1 and MCS-2 improves 

when the NC coefficient increases. The recognition accuracy increases with the increasement 

of the number of selected features. When the number of selected features is larger than 30, the 

performance tends basically to steady. 
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5. Conclusion 

In this paper, we propose a performance indicator, called NC coefficient, to indicate 

whether the cannot-link constraints are good or not, which are widely used in pairwise 

constraints based algorithms. On this basis, we make use of the class information 

introduced by cannot-link constraints to improve the local property and proposed two 

modified constraint scores for semi-supervised feature selection. Experimental results 

on several data sets demonstrate the effectiveness of our method. 
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