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Abstract 

Traditional radar target recognition algorithms utilize balance data set to train the 

classifier and achieve a satisfactory result on a balance test data set. However, in the case of 

non-cooperative target recognition, we only obtain a small amount of non-cooperative target 

samples, while we can obtain a larger number of cooperative target samples easily, which 

leads to an imbalance training data set. In this paper, we consider the imbalance data 

classification problem in radar target recognition. We utilize the cost-sensitive approach and 

assume that different kinds of mistakes lead to different losses. Based on this assumption, a 

novel radar target recognition algorithm, called isometric cost-sensitive Laplacian 

eigenmaps (ICSLE), is presented. The basic idea of ICSLE is that the larger the 

misclassification cost is, the further the distance between two classes is, and vice versa. 

Moreover, in order to effectively utilize the cost information and local property of 

observation samples, we use the geodesic distance as the edge weight, instead of the local 

Euclidean distance. Experiments on millimeter wave radar high-resolution range profile 

(HRRP) demonstrate the effectiveness of our method. 

 

Keywords: cost-sensitive, class imbalance problem, Laplacian eigenmaps, geodesic 

distance, high-resolution range profile 

 

1. Introduction 

In the past decade, many manifold-based radar target recognition algorithms [1, 2] have 

been proposed. These methods attempt to achieve a low recognition error rate while 

preserving the local structure of observation samples and they achieve better performance 

than traditional methods. Both these novel methods and traditional methods train the classifier 

with a balance data set, in which the number of training samples from each class is the same. 

However, in the real world, the data set we obtained is often imbalanced. In other words, the 

number of training samples from each class is not equal. For example, we want to detect a 

military aircraft, but it is not common to obtain the military aircraft sample, most of the 

aircrafts we detected are the commercial ones. How to find out the small amount of the 

interested samples from the large number of irrelevant samples is a novel problem. Moreover, 

some binary-class classification algorithm will face up the imbalance data problem when they 

are generalized to multi-class classification algorithm by using one-vs-rest technique [3]. 

Actually, the imbalance data classification problem appears frequently in the field of medical 

diagnosis [4], financial fraud [5], identification [6], and so on. In this paper, we only consider 

the imbalance data classification problem in radar target recognition. 

Cost-sensitive learning [4-13] is an effective method to deal with the imbalance data 

classification problem. In recent year, cost-sensitive learning has been studied widely and 
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become one of the most important topics in the field of machine learning. Several cost-

sensitive learning algorithms have been proposed, such as cost-sensitive boosting [7], cost-

sensitive support vector machine [8], cost-sensitive multilayer perceptron [9] and cost-

sensitive neural networks [10]. Many cost-blind methods have also evolved the cost-sensitive 

versions, such as cost-sensitive semi-supervised discriminant analysis [11], cost-sensitive 

Laplacian score and cost-sensitive constraint score [12, 13]. The basic assumption of cost-

sensitive learning is that different kinds of mistakes lead to different losses. This assumption 

is more reasonable in many applications. The aim of cost-sensitive learning is to minimize the 

total cost rather than the total error. Generally, there are two kinds of misclassification cost. 

The first is class-dependent, where the costs of misclassifying any example in class A to B are 

the same. The second is example-dependent, where the costs of classifying examples in class 

A to class B are different [6]. We focus on the former one because radar target recognition is 

generally a class-dependent cost-sensitive problem. 

In order to deal with the cost-sensitive radar target recognition problem, we propose a 

novel algorithm, called isometric cost-sensitive Laplacian eigenmaps (ICSLE). The 

framework of ICSLE is inspired by Laplacian eigenmaps (LE) [14]. The basic idea of ICSLE 

is that the larger the misclassification cost, the further the distance between two classes. Since 

the edge weight in LE is sparse, some distance information may be discarded, and the 

corresponding cost information will also be discarded if we introduce the cost matrix directly. 

In ICSLE, we use geodesic distance [15] instead of local Euclidean distance. Since the 

geodesic distance matrix is not sparse, we can introduce the cost matrix directly. Using 

geodesic distance cannot only make full use of the cost information, but also utilize the local 

property of observation samples. 

The remaining parts of this paper are organized as follows. Related work is briefly recalled 

in Section 2, followed by our proposed method in Section 3. The experimental results are 

presented in Section 4. Finally, contributions are concluded in Section 5. 

 

2. Similarity Measurement and Geodesic Distance 

In the field of pattern recognition, one of the basic problems is the measurement of the 

similarity between two samples. To overcome this problem, the cluster assumption is 

proposed. It assumes that: (1) nearby samples are likely to have the same label; (2) samples 

on the same structure are likely to have the same label [16]. A following problem is how to 

determine whether two samples are nearby samples or not. Euclidean distance which is 

utilized widely can be seen as the simplest method to address this shortcoming. Two samples 

which have the shortest Euclidean distance are nearby samples. Many classic algorithms 

utilize the Euclidean distance to measure the similarity and achieve good performance. 

However, in the nonlinear space, Euclidean distance does not perform well in globally. Take 

two-moon data set for example. As seen in Figure 1, there are two moons and each moon 

belongs to a class. For convenience, we define the Euclidean distance between sample ix  and 

jx  as ),( jiE xxd .Since sample B is close to sample A, the similarity between A and B can be 

presented by ),( BAd E . Sample C is far from A, ),( CAd E  is not suitable to present the 

similarity between A and C. 
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Figure 1. Example of Euclidean Distance and Geodesic Distance 

The geodesic distance indicates the shortest path between two samples which lie on the 

manifold. It can be used to measure the distance in the nonlinear space if the samples are 

sufficiently sampled. A successful application of the geodesic distance is Isomap [15]. 

Isomap is a nonlinear dimensionality reduction algorithm. The framework of Isomap is as the 

same as the multidimensional scaling (MDS), just replace the Euclidean distance with the 

geodesic distance. 

Similar with ),( jiE xxd , we define the geodesic distance between sample ix  and jx  as 

),( jiG xxd . Given a data set ],...,[ 1 nxxX  , the geodesic distance can be calculated by the 

following two steps. 

1) Construct the neighborhood graph: Define the graph G  over all samples by connecting 

samples ix  and jx  if ix  is one of the k  nearest neighbors of jx . Set the edge lengths as 

),( jiE xxd ; 

2) Compute the geodesic distance: Initialize ),(),( jiEjiG xxdxxd   if ix  and jx  are linked 

by an edge, ),( jiG xxd  otherwise. Then for each value of nt ,...,1  in turn, replace all 

entries ),( jiG xxd  by )},(),(),,(min{ jtGtiGjiG xxdxxdxxd  . 

From the above description, we can see that the geodesic distance is parameter sensitive. If 

we set different numbers of nearest neighbors, the geodesic distance may be different. The 

geodesic distance characterizes the nonlinear property of the samples. The nonlinear sample 

structure can not be well presented if only a few samples are known. 

 

3. Isometric Cost-Sensitive Laplacian Eigenmaps 

Given n  points ],...,[ 1 nxxX   in D
R , we want to find ],...,[ 1 nyyY   in )( DdR

d
 , 

which have a minimum misclassification cost. We first provide a simple review on LE. LE is 

a cost-blind dimensionality reduction algorithm. It implicitly assumes that the losses of all 

misclassifications are the same when it is applied in the classification task. In LE, it is assume 

that if ix  and jx  are close, then iy  and jy  should also be close. Thus, a reasonable criterion 

[14] for choosing a good embedding is to solve the following objective function. 

 
ij

ijji Wyy
2

  min             (1) 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.7, No.4 (2014) 

 

 

96   Copyright ⓒ 2014 SERSC 

where ijW  is the edge weight, and 
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Now, we consider the cost-sensitive problem. Assume that there are c  classes in X  and 

each class is denoted by ),...,1( cil i  . We define the cost matrix C  as follow 
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where ijC  indicates the cost of misclassifying the samples from the ith class to the jth class. 

The diagonal elements in the cost matrix are zero because there is no loss for a correct 

classification. In order to minimize the total cost of classification, a naturally idea is that the 

larger the misclassification cost is, the further the distance between two classes is, and vice 

versa. We define the cost edge weight matrix C
W  by introducing the cost information. The 

cost weight can be expressed as )exp( ijC . Then, the cost edge weight can be expressed as 

)exp( ijij
C

ij CWW             (4) 

It is noteworthy that the edge weight matrix W  in LE is sparse. If ix  is not one of the k  

nearest neighbors of jx , the corresponding edge weight ijW  is 0. In this case, the cost edge 

weight C
ijW  equals to 0, which means the cost information between ix  and jx  is lost. In order 

to overcome this shortcoming, we discard the neighborhood information in W  and redefine 

the edge weight as 

 )/exp(
2

txxW jiij      (5) 

In the field of pattern recognition, the similarity between two samples is usually presented 

by the distance between these two samples. The edge weight defined by Eq. (5) is suitable for 

linear sample because the Euclidean distance can truly reflect the similarity between two 

samples in linear space. However, in most occasions of pattern recognition, such as radar 

target recognition, the samples are nonlinear. In order to present the similarity between two 

nonlinear samples, we substitute geodesic distance [15] for Euclidean distance. The geodesic 

distance contains the neighborhood information, thus the local structure of observation 

samples can be well preserved. Let ),( jiG xxd  be the geodesic distance between ix  and jx , 

then the new cost edge weight can be expressed as 

)exp()/),(exp( ijjiG
IC

ij CtxxdW          (6) 

Finally, we obtain the objective function of ICSLE as follow 

 
ij

IC

ijji Wyy
2

  min              (7) 

The optimization scheme of Eq. (7) is similar with LE. We rewrite Eq. (7) as 
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where 

 j
IC

ij

IC

ii WD         (9) 

In the matrix form, the objective function can be write as 

YLY
ICT

  min      (10) 

where IC
L  is the cost Laplacian matrix, and 

IC

ij

IC

ii

IC

ij WDL         (11) 

In order to remove the arbitrary scaling factor in Y , we introduce a constraint 

1i
IC

ii

T

i yDy      (12) 

Then, the optimal solution of Eq. (7) can be obtained by solving the following generalized 

eigenvalue problem 

YDYL
ICIC        (13) 

The low dimensional embedding Y  is given by the eigenvectors corresponding to the d  

smallest non-zero eigenvalues of Eq. (13). 

We summarize the ICSLE algorithm in Table 1. 

Table 1. ICSLE Algorithm 

Input: the original sample matrix X , the label of X , the number of nearest neighbor k , 

the dimension of the low dimensional embedding d , the cost matrix C , the distance 

weight parameter t  in Eq. (6). 

Output: the low dimensional embedding Y . 

Algorithm: 

1: Construct neighborhood graph: Define the graph G  over all data points by connecting 

samples ix  and jx  if ix  is one of the k  nearest neighbors of jx . Set edge lengths equal to 

),( jiE xxd ; 

2: Compute geodesic distance: Initialize ),(),( jiEjiG xxdxxd   if ix  and jx  are linked 

by an edge, ),( jiG xxd  otherwise. Then for each value of nm ,...,1  in turn, replace 

all entries ),( jiG xxd  by )},(),(),,(min{ jmGmiGjiG xxdxxdxxd  ; 

3: Calculate the cost Laplacian matrix: Calculate the matrix IC
D , the cost Laplacian 

matrix IC
L  by using (9) and (11), respectively; 

4: Calculate the low dimensional embedding: Solve the generalized eigenvalue equation in 

(13). The low dimensional embedding Y  is given by the eigenvectors corresponding to 

the d  smallest non-zero eigenvalues. 
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4. Experiment 

4.1. Experiment Settings 

We utilize millimeter wave radar high-resolution range profile (HRRP) test our method. 

For high-resolution range radar, in a resolution cell, the target can be seen as an assembly of 

many scatterers, which usually locate on the position where the curvature is small, such as 

corner and vertex. In this experiment, we use corner reflectors with different position to 

simulate three different kinds of targets. The experimental environment is as follows. The 

background is cement floor. The bandwidth of transmit signal is 400MHz, thus the range 

resolution is 0.375m. For each simulate target, we obtain a 256-point HRRP every 1° from 

azimuth 0° to 89°. Thus each target has 90 HRRP samples, and each HRRP sample is a 256-

dimensional vector. Figure 2 shows 6 HRRP samples (azimuth 0°, 17°, 34°, 51°, 68° and 85°) 

for each target. 

 
(a)  Target 1  (b)  Target 2  (c)  Target 3 

Figure 2. HRRP Samples (azimuth 0°, 17°, 34°, 51°, 68° and 85°) for Three 
Targets 

In order to test the influence of the cost and the imbalance degree of samples, we perform 

experiments on four settings with different cost matrix and different number of samples. 

These four settings are listed in Table 2 in detail. The cost matrix is specified as follow 
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Table 2. Experiment Settings 

setting Cost matrix 
Number of training samples Number of test samples 

Target 1 Target 2 Target 3 Target 1 Target 2 Target 3 

C1N1 C1 45 45 45 45 45 45 

C1N2 C1 45 35 25 45 35 25 

C2N1 C2 45 45 45 45 45 45 

C2N2 C2 45 35 25 45 35 25 

From the cost matrix, we see that the cost of misclassifying samples in Target 3 to Target 1 

or Target 2 is the largest; the cost of misclassifying samples in Target 1 to Target 2 or Target 

2 to Target 1 is the smallest. The difference between cost matrix C1 and C2 is that the cost of 

misclassifying samples in Target 1 or Target 2 to Target 3 in C2 is much larger than that in 

C1. Both the training samples and test samples are obtained by random selection from the 

whole HRRP samples.  

In order to demonstrate the effectiveness of our proposed algorithm, we compare ICSLE 

with supervised LE (SLE) [17], cost sensitive principal component analysis (CSPCA) [18, 
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19] and cost sensitive locality preserving projections (CSLPP) [18, 19]. We applied the 

nearest neighbor classifier in the Euclidean space to perform recognition. All experiments 

repeat for 20 times. The average cost, average recognition error rate and three kinds of 

misclassification errors (Err1, Err2 and Err3) are compared. Let 1ErrN  indicates the number of 

samples which are classified from Target 1 to Target 2 or Target 2 to Target 1, 2ErrN  

indicates the number of samples which are classified from Target 1 or Target 2 to Target 3, 

3ErrN  indicates the number of samples which are classified from Target 3 to Target 1 or 

Target 2, )3,2,1( iN ti  indicates the number of test samples. Then, the three kinds of 

misclassification errors can be expressed as 

%NN tErr 100/Err1 11               (15) 

%NN tErr 100/Err2 22               (16) 

%NN tErr 100/Err3 33               (17) 

4.2. Experimental Results and Discussion 

Figure 3 to Figure 6 shows the cost versus different feature dimension of SLE, CSPCA, 

CSLPP and ICSLE on the 4 different experiment settings, respectively, as well as the error. 

Table 3 to Table 6 lists the comparison of average cost, average recognition error and three 

kinds of misclassification error on the 4 different experiment settings in detail, respectively. 

 
(a)      (b) 

Figure 3. Performance Comparison of SLE, CSPCA, CSLPP and ICSLE on 
Experiment Setting C1N1: (a) Cost vs. Dimension, (b) Error (%) vs. Dimension 

 
(a)      (b) 

Figure 4. Performance comparison of SLE, CSPCA, CSLPP and ICSLE on 
Experiment Setting C1N2: (a) Cost vs. Dimension, (b) Error (%) vs. Dimension 
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(a)      (b) 

Figure 5. Performance Comparison of SLE, CSPCA, CSLPP and ICSLE on 
Experiment Setting C2N1: (a) Cost vs. Dimension, (b) Error (%) vs. Dimension 

 
(a)      (b) 

Figure 6. Performance Comparison of SLE, CSPCA, CSLPP and ICSLE on 
Experiment Setting C2N2: (a) Cost vs. Dimension, (b) Error (%) vs. Dimension 

Table 3. Comparison of Average Cost, Average Recognition Error and Three 
Kinds of Misclassification Error on Experiment Setting C1N1 

Algorithm cost Error(%) Err1(%) Err2(%) Err3(%) 

SLE 143.60 28.04 28.22 29.78 26.11 

CSPCA 107.00 27.93 34.89 31.78 17.11 

CSLPP 100.70 23.59 26.67 27.11 17.00 

ICSLE 93.55 23.63 29.33 26.33 15.22 

Table 4. Comparison of Average Cost, Average Recognition Error and Three 
Kinds of Misclassification Error on Experiment Setting C1N2 

Algorithm cost Error(%) Err1(%) Err2(%) Err3(%) 

SLE 123.3 31.71 29.22 29.00 40.00 

CSPCA 95.3 30.33 32.22 29.43 28.20 

CSLPP 84.85 28.10 30.67 27.29 24.60 

ICSLE 74.45 26.76 29.11 28.14 20.60 
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Table 5. Comparison of Average Cost, Average Recognition Error and Three 
Kinds of Misclassification Error on Experiment Setting C2N1 

Algorithm cost Error(%) Err1(%) Err2(%) Err3(%) 

SLE 222.95 27.70 21.56 28.33 33.22 

CSPCA 159.35 27.37 39.67 22.00 20.44 

CSLPP 140.45 24.74 35.44 22.22 16.56 

ICSLE 134.30 24.22 36.22 20.44 16.00 

Table 6. Comparison of Average Cost, Average Recognition Error and Three 
Kinds of Misclassification Error on Experiment Setting C2N2 

Algorithm cost Error(%) Err1(%) Err2(%) Err3(%) 

SLE 147.10 31.71 31.89 32.43 30.40 

CSPCA 126.25 30.95 37.22 27.43 24.60 

CSLPP 113.85 28.29 34.67 24.43 22.20 

ICSLE 107.90 27.43 34.22 23.71 20.40 

From the Figures, we see that our method always obtains the smallest cost in the 4 settings. 

The cost of CSLPP is slightly larger than that of ICSLE and is smaller than that of CSPCA. 

The cost of SLE is always the largest. This result is reasonable, because SLE is cost blind, the 

other three methods are cost sensitive. Moreover, CSPCA is a linear cost sensitive algorithm 

and it can be seen as the cost sensitive version of PCA. CSLPP is the cost sensitive 

generalization of LPP [20]. Although LPP is a linear dimensionality reduction algorithm, the 

weight matrix utilized by LPP contains the nonlinear structure information of the samples. 

Our method can be seen as the cost sensitive version of LE. To enhance performance of our 

method, we utilize the geodesic distance to measure the similarity. This approach is 

significant. The geodesic distance is not sparse so that the cost information contained in the 

training samples can be utilized. Although LPP is the linear version of LE, the weight matrix 

is sparse, which leads to the loss of cost information. 

Then, we discuss the recognition error. Although the average recognition error is not the 

primary performance indicator in cost sensitive learning, the recognition error of a specific 

target which has a small number of samples is what we concern. From Figure 3 to Figure 6, 

we see that in the case of C1N2 and C2N2, the average recognition error of our method is the 

smallest. While in the case of C1N1 and C2N1, the average recognition error of our method is 

similar with that of CSLPP. Table 3 to Table 6 gives a comparison of each kind of error in 

detail. Err3 of the cost sensitive methods in each table is the smallest in most cases (the 

exception is the Err3 of CSPCA in the case of C2N1), while Err3 of SLE does not satisfy this 

tendency. That means the error has some relationship with the cost. Then, we compare Err2 in 

Table 3 and Table 5. The difference between C1N1 (the experiment settings of Table 3) and 

C2N1 (the experiment settings of Table 5) is that the cost of Err2 on C1N1 is 1 while the cost 

of Err2 on C2N1 is 5. From Table 3 and Table 5, we see that Err2 in Table 5 is smaller than 

Err2 in Table 3. The similar result can be obtained form Table 4 and Table 6. From these 

comparisons, we find an empirical law: for the cost sensitive learning, the larger the cost, the 

smaller the recognition error. 

Finally, we discuss the influence of the imbalance degree of samples. We compare Table 3 

and Table 4, in which the cost is the same while the number of samples is different. The 

number of samples from target 3 and target 2 in Table 4 is smaller than those in Table 3. Err3 

and Err2 in Table 4 are larger than those in Table 3 in most cases (the exception is the Err2 of 

CSPCA). The similar result can be obtained form Table 5 and Table 6. From these 
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comparisons, we find the second empirical law: for the cost sensitive learning, the larger the 

number of samples, the smaller the recognition error. 

From the above experiments and discussion, we demonstrate the effectiveness of our 

method on HRRP data set. Moreover, we obtain two empirical law of the cost sensitive 

learning: the larger the cost, the smaller the recognition error; the larger the number of 

samples, the smaller the recognition error. 

 

5. Conclusion 

In this paper, we propose a novel cost-sensitive learning method, called ICSLE, for 

radar target recognition. The basic idea of ICSLE is that the larger the misclassific ation 

cost is, the further the distance between two classes is, and vice versa. Since the feature 

of HRRP is usually sampled from the nonlinear space, we use the geodesic distance to 

measure the similarity between two samples. The edge weight matrix in LE is sparse, 

while the geodesic distance is not sparse, so we can introduce the cost information 

directly. Moreover, the local property can be well preserved by using the geodesic 

distance. Experimental results on millimeter wave radar HRRP demonstrate the 

effectiveness of our method. In addition, we obtain some empirical law of the cost 

sensitive learning: the larger the cost, the smaller the recognition error; the larger the number 

of samples, the smaller the recognition error. 
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