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Abstract 

Stereo matching is one of the key technologies in stereo vision system due to its ultra high 

data bandwidth requirement, heavy memory accessing and algorithm complexity. To speed up 

stereo matching, various algorithms are implemented by different software and hardware 

processing methods. This paper presents a survey of stereo matching software and hardware 

implementation research status based on local and global algorithm analysis. Based on 

different processing platforms, including CPU, DSP, GPU, FPGA and ASIC, analysis are 

made on software or hardware realization performance, which is represented by frame rate, 

efficiency represented by MDES, and processing quality represented by error rate. Among 

them, GPU, FPGA and ASIC implementations are suitable for real-time embedded stereo 

matching applications, because they are low power consumption, low cost, and have high 

performance. Finally, further stereo matching optimization technologies are pointed out, 

including both algorithm and parallelism optimization for data bandwidth reduction and 

memory storage strategy. 
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1. Introduction 

The common ground of stereo vision systems is to model three-dimensional (3D) space 

and to render 3D objects, using depth information that is the most important element of stereo 

vision systems [1]. Stereo matching is one of the most active research topics concerning on 

the depth information processing capability. It is an important stereo vision technique to 

extract depth or disparity information from stereo images obtained from slightly different 

viewpoints, by calculating every pixel’s depth information from stereoscopic images. It is 

widely used in different applications, such as stereo & feature tracking [2], industrial 

informatics [3], free-viewpoint video synthesis [4-5], three-dimensional video processing [6], 

multi-view video coding [7], intelligent robots [8], autonomous vehicles [9] and medicinal 

image processing [10]. It is forecasted that in 2015 more than 30% of all High Definition 

(HD) panels at home will be equipped with 3D capabilities [11].  

Stereo matching quality is restricted by real-time processing capability, high computation 

and algorithm complexity, high processing bandwidth requirement and high algorithm 
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accuracy. Especially for embedded systems, low power consumption, high processing 

performance, high resolution, and high flexibility are all required, as well as various duration, 

frequency, viewing distance, screen size, ambient light, etc., Although the stereo matching 

problems have been extensively studied during the past decades, it is still difficult to 

automatically predict high quality depth map because of image noise, textureless regions, 

consistency and occlusions that are inherent in the captured images or video frames.  

Because of the reasons mentioned above, stereo matching is still in developing stage. To 

keep up with consumer electronic development trends, there are two research directions: 

software optimization and hardware acceleration. In this paper, we present a general 

comparison survey about software and hardware processing algorithms based on algorithm 

inherent characteristic, implementations, and architectures. Section II presents an algorithm 

overview. Section III gives out the software and hardware implementation analysis based on 

Central Processing Units (CPU), Digital Signal Processors (DSP), Graphic Processing Unit 

(GPU), Field Programmable Gate Array (FPGA) and Application-Specific Integrated Circuits 

(ASIC) accelerators. Section IV illustrates the optimization methods. By comparing software 

and hardware processing method results, section V and VI points out future prospects of 

stereo matching implementation research direction and conclusion. 

 

2. Stereo Matching Algorithms Overview 

In the past two decades, many stereo matching algorithms have been proposed [12]. 

Categorizes all methods into sparse stereo and dense stereo matching [13]. Categorizes all 

methods into explicit matching, hand-designed filters and network learning models. The most 

popular classification till now is global & local method [14]. 

Global approach defines constrained energy models to resolve disparity maps 

uncertainties. It can be formulated as an energy minimization problem of a Markov Random 

Field (MRF), simultaneously considering labeling smoothness. Graphic Cut (GC) and Belief 

Propagation (BP) are two well-known methods. Five of up-to-date top-10-ranked algorithms 

(with default error threshold equals to 1) are based on the optimized global energy function 

[15]. Although global methods can reach a high quality level with VGA@30 frames per 

second (fps) performance [16-17], it is still hard for real-time and high resolution application 

cases because of its computation complexity. Local approach is based on color or intensity 

patterns within a finite window to determine the disparity. It has less computational 

complexity and acceptable processing quality, and is more preferred by real-time 

implementations. That is why the up-to-date real-time stereo applications still largely rely on 

local methods. The main disadvantages of local methods are noisy results in large un-textured 

regions and foreground fatting issues at object borders.  

Besides global and local methods, Semi-Global Matching (SGM) [18] is based on pixel 

wise matching of Mutual Information (MI). A 2D global smoothness constraint is deduced by 

combining many 1D constraints. SGM performs an energy minimization in a Dynamic 

Programming (DP) fashion on multiple 1D path crossing each pixel. Its quality and execution 

time are in the middle of global and local methods. 

 

2.1. BP Method 

BP defines a message passing update process to iteratively refine the belief labels for every 

pixel. A message sent from one pixel to another is updated according to the neighboring 

messages and energy functions using the simple arithmetic operations. BP algorithm has 

calculation matrix regularities, but requires a great amount of memory to store messages. The 
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total message size scale is on the order of O(n×L
2
×T), where n is the number of pixels in the 

image, L is the number of possible labels (disparity range), and T is the iteration count. 

Basically it takes O(L
2
) time to compute each message and there are O(n) messages per 

iteration. Besides, since each message is processed hundreds of times, the load/store of 

messages consumes huge memory bandwidth. For example, 1920×1080 image @ 30fps, 300 

disparity levels, 8bits every pixel, the BP message storage requirement is about 2.3 GBytes, 

the processing bandwidth requirement is around 33.9 TB/s for 100 iterations. Even by 

reducing disparity level to 32, the message passing computation still needs about 8100 billion 

operations per second. Therefor, message storage, data bandwidth, and computation 

complexity is the bottleneck of BP algorithm [19]. That is why BP is hard to work on 

embedded electronic devices, which have limited memory and calculation capability. 

Different methods are proposed to reduce BP computation complexity and improve 

processing quality as shown in Table 1. Tree-Re-Weighted message passing (TRW) 

algorithms [20] is also a message-passing algorithm similar to LBP. The difference is that it 

computes a lower bound on the energy, and can be implemented using half memory 

compared with BP. 

Table 1. BP Algorithm Overview 

Method Optimization Technique 

Traditional (Loopy) BP [32] 

(2003) 

Formulates depth estimation as an energy-minimization problem in NP-hard MRF to 

obtain MAP estimation 

Hierarchical BP (HBP) [33] 

(2004) 

Proposes a min-convolution algorithm and a hierarchical structure reducing 

computation complexity from O(L
2
) to O(L) 

Iterative BP [34] (2005) 
Achieves an optimal parameter configuration by iteratively estimate disparity map and 

corresponding MRF parameters 

Fast-converging HBP [35] (2006) 
Proposes fast-converging BP algorithm to adaptively update pixel cost to reduce 

iteration cost 

EPT BP [36] (2007) 
Envelope Point Transform (EPT) BP supports flexible choice of both message 

compression ratio and smoothness cost 

Blocks BP [37] (2007) 
Simply splits image into small blocks and performing optimization for each block 

independently 

Max-product BP [38] (2008) 
Proposes Iterated Conditional Modes (ICM) method to find a local minimum by a 

deterministic ”greedy” strategy 

Tile-based BP [16] (2009) 
Splits MRF into tiles, only stores messages across neighboring tiles, reducing internal 

message processing traffic 

Node-plane BP [17] (2010) 
Proposes spinning-message and sliding-bipartite node plane methods to reduce 

memory storage cost to O(4HWL) 

Constant-Space HBP [39] (2010) Hierarchically reduces disparity search range with coarse-to-fine manner 

Generalized BP (GBP) [40] (2012) 
Proposes a min-sum messaging scheme, a caching technique and a direction set 

method to improve message accessibility 

 

2.2. GC Method 

GC minimizes pair wise MRF energies by solving min-cut/max-flow problems on graphic 

constructions. A graph G = (V; E) is given by a set of vertices V and a set of edges E 

(sometimes, V is called nodes, E is called links). V usually corresponds to pixels or features 

extracted from an image, while E encodes spatial relationships. GC also has heavy 

computational complexity and memory requirements. It takes O(L
3
) calculation iterations, 

which increases fast with the number of labels increases. That is why even with the state-of-

the-art numerical optimizers, GC is hard to produce in an acceptable real-time processing 

manner. GC method yields competitive results, and is proved to be able to handle occlusion 

reasoning well, but its min-cut technique is used to minimize sub-modular energy that is 

prone to be a partial labeling problem. Some GC based methods are summarized in Table 2. 
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Table 2. GC Algorithm Overview 

Method Optimization Technique 

Traditional GC [41] (1998) 
Finds a minimum multi-way cut on a graph, gives out a greedy method for computing a 

multi-way cut 

Local-minimum GC [42] (2001) Finds a local minimum with respect to expansion moves and swap moves 

Plane based GC [43] (2004) Scene structure is represented as a set of planes in the disparity space 

Smoothness GC [44] (2007) 
Develops optimal expansion and swap algorithms for truncated convex priors, only two 

labels for each pixel 

ST-mincut GC [45] (2007) 
Introduces a st-mincut approach to speed up the inference process with slightly different 

energy terms 

Template based GC [46] (2011) 
Non-overlapping templates are derived from reference image to represent current scene 

with assigned disparity value 

 

2.3. DP Method 

DP decomposes a problem into a set of sub-problems, then efficiently solves them 

recursively. It lies in the middle of the spectrum with reasonably matching performance at the 

expense of relatively large storage memory. Algorithm complexity is O(K×D
2
), where K is 

the number of pixels per scan-line, and D is the disparity range. The major problem of DP is 

that inter-scanline consistency cannot be well enforced, leading to the well-known “streaking” 

artifacts. Table 3 gives out an overview of various DP based stereo matching methods. 

Table 3. DP Algorithm Overview 

Method Optimization Technique 

Traditional DP [47] (1985) 
Employs inter-scanline search for possible connected edges and intra-scanline search 

for edge-delimited intervals 

Tree-based DP [48] (2005) 
Proposes a minimum spanning tree on the adjacency-graph of an over-segmented 

image instead of individual scan-lines 

Two-pass DP [49] (2005) 
Employs a two-pass DP combined with generalized ground control scheme, optimizing 

along and across the scan-lines 

Reliability DP (RDP)[50] (2005) 
Introduces a reliability DP based on the cost difference between the best alternate path 

and the path under use 

ORDP [51] (2005) 
Orthogonal Reliability DP (ORDP) generates semi-dense disparity maps using only 

two DP passes based on [50] 

Adaptive DP [52] (2006) Introduces an adaptive aggregation step in the vertical direction based on [50] 

Tree-based DP (TDP)[53] (2006) Proposes a tree structure DP, one pixel disparity estimate depends on other tree pixels 

Liner Model DP [54] (2007) Apples truncated linear model to both horizontal and vertical line dependence function 

TDP [55] (2009) 
Employs geodesic distance transformation for multiple tree construction according to 

image geodesic distance 

Combined DP [56] (2009) Combines vertical aggregation and DP scheme to produce disparity maps 

Multi-resolution DP [57] (2010) Uses inter scan-line consistency and scene constraints directly into disparity calculation 

Rank Transform DP [1] (2011) 
Uses rank transform based matching function, and uses adaptive interaction among 

neighboring disparities 

Hybrid DP [58] (2012) Combines cross-based adaptive window aggregation and basic dynamic programming 

 

2.4. Window Based Matching 

Window based stereo matching algorithm belongs to local matching category. It aggregates 

matching cost over a given support window. Local window should be large enough to include 

sufficient intensity variation for matching operation, and be small enough to avoid disparity 

variation inside the window. Properly designed cost function and selected window type are 

fundamentals of window based stereo matching method. Fixed window, rectangular window 

[21], multiple windows [22], adaptive weight (AW) [23], and epipolar geometry-based 

window [24] and adaptive shape window [25] are proposed in the stereo algorithm.  
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Cost functions designs, such as SAD, rank [26], census [27] transform, are all valid for 

cost calculation. Rank and census transforms are two nonparametric transforms, depending on 

the relative order of pixel values rather than the pixel values them. The differences between 

rank and census method are that rank method counts the number of pixels in a window which 

is less than the center pixel, while census maps a pixel window to a bit string. Both methods 

have an algorithmic structure suitable for hardware implementation, and are invariance to 

certain types of image distortion and noise. Combined with other optimization technique, 

window based matching algorithms can reach to reasonable quality and performance [23]. 

computes pixel-wise adaptive support-weights based on proximity and color distances to 

center pixel. [28] Uses spatio-temporal correlation and temporal variation of the disparity 

field [29]. Limits search range around the basic line for fast search [30]. Replaces disparity 

estimation with planes in texture less regions [31]. Introduces partial sum method based on 

AW to reduce pixels information in a large window. 

 

2.5. Affine Transformation Method 

Scale Invariant Feature Transform (SIFT) method [59] can extract distinctive invariant 

features from images that are invariant to image scale, rotation, 3D viewpoint, noise, 

illumination change, and match densely pixel-wise SIFT features between two images while 

preserving spatial discontinuities [60]. Affine-SIFT (ASIFT) [61] can identify features that 

undergo very large affine distortions. However, the huge amount of computations required by 

multiple cascaded transformations makes SIFT difficult to achieve real-time performance 

[62]. Presents an overview of SIFT approaches based on general purpose multi-core 

processors, customized multi-core processor and FPGA implementation.  

Phase Singularity (PS) represents to a point where a complex signal equals to zero. In 

stereo matching, PS is estimated by convolving images with complex filters. Compared with 

SIFT method, PS-based approaches have the advantage of robustness against variations in 

luminance and imbalance between stereo image sensors at the cost of higher computing 

resource requirements [63, 64]. Combines PS with SIFT, which can get higher repeatability 

rates. 

 

2.6. Other Intelligence Method 

Neural based method can also reach a reasonable stereo matching quality [15]. Its most 

distinct characteristic is that it does not require matching between left and right elements. 

Instead, the binocular stimuli with a specific disparity are matched with binocular neurons in 

the form of neuronal responses. Different neurons with different preferred weights patterns 

can indicate the spatial left and right receptive fields. Thus, the response of a neuron indicates 

a matching degree of two receptive fields [13]. Firstly presents a neurotrophic and spatio-

temporal regression model of the laminar cortex architecture for stereo that is able to perform 

stereo disparity detection competitively with sub-pixel precision. In [65], a multi-layer in-

place learning network was used to detect binocular disparities. Fuzzy set theory also can be 

used to deal with stereo matching [66]. Proposes a threshold-based segmentation to build 

interval-valued fuzzy sets [67]. Adapts biologically Disparity Energy Model to separate stereo 

populations, then trains these populations, and extracts disparity values in entire scenes. 
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3. Software and Hardware Processing of Stereo Matching Methods 

In the past decades, with stereo consumer application market flourishing, researchers are 

devoting more efforts to real-time software and hardware system design for stereo matching. 

Although High Performance Computing (HPC) can provide considerable computational 

power, there are still many implementation challenges of stereo matching: 

 Ultra high computation complexity: searching all pixel candidacies within an area space 

needs tens of iterations to find the best matching point, calculates all candidacies 

matching cost with matrix multiplication or addition. Sub-pixel or higher dynamic 

disparity range case is even worse. These factors lead to ultra high computation 

complexity cost. 

 Ultra high data bandwidth and on-chip SRAM size requirement: are caused by massive 

temporary data exchanging required by algorithms. However, memory is always the 

bottleneck for all systems. Optimized data reuse, parallelization, or hierarchical schemes 

should be researched for memory related issues. 

 Real time processing and low power consumption requirement: needs advanced 

accelerator processing schemes with both power consumption and high processing 

performance. The real-time and power issue will be existing for a long time because 

processing requirement is increasingly faster than processing capability. 

 Irregular algorithm parameter selection and additional pre-/post-processing steps: needs 

to be carefully considered to resolve occlusion, inconsistent, or irregular issues in stereo 

matching algorithm.  

To resolve the above requirement and bottlenecks, strives needed in three directions: 

algorithms optimization, software acceleration and hardware acceleration. Software 

accelerator evolves in parallel optimization on CPU, DSP, and GPU. Hardware accelerators 

are based on FPGA or ASIC. 

 

3.1. CPU Implementation 

CPU has the highest flexibility for stereo matching algorithms, but it has a limited 

acceleration for real-time calculation of dense disparity map because CPU has less specific 

acceleration processing unit. Early research work [50] only achieves non-video rate 

performance due to limited computing power [68]. Firstly implements software processing 

with low bit depth motion estimation algorithms for outdoor robot navigation [69]. Proposes a 

real-time stereo depth extraction method for an intelligent home assistant robot. [70] is able to 

achieve approximately 17fps on 640 × 480 images with 25 disparity range on a 2 GHz dual-

core processor. 

 

3.2. DSP Implementation 

DSP has better signal processing capability because of better data processing architectures, 

lower cost and less power consumption than CPU. Although DSP can reach reasonable stereo 

matching performance, it has inherent disadvantages, such as data word alignment, bandwidth 

throughput issue, etc. Consequently, high quality algorithm is seldom realized by a DSP 

system and is only limited to window based algorithms. With powerful multimedia 

accelerators, high system clock frequency, optimized cache usage and interconnections 

between cores, multi-core processor is an effective way to increase stereo matching 

performance [71]. However, simply increasing the number of processing elements comes 

with the cost of higher power consumption. In addition, there is no linear relationship 
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between the number of processor cores and the processing performance. As a result, the GPU 

architecture appeared. 

 

3.3. GPU Implementation 

GPU integrates hundreds of extremely powerful computation stream Processing Elements 

(PE) simultaneously, emphasizing coherent memory access, memory locality, and efficiency 

of data parallelism, with powerful floating-point arithmetic intensity and high memory 

bandwidth. For example, nVidia Tesla S1070 contains four GT200 processors, each has 240 

PEs, and each processor provides about one Tera Flop (TF) of single-precision throughput 

over 100 GB/s memory bandwidth. As a comparison, 3.2 GHz Intel Core 2 Extreme can only 

operate at roughly 51.2 Gega Flops per second (GF/s). Some other GPU processing system, 

such as AMD FireGL, Qualcomm Snapdragon, and ST Ericsson’s U8500 are also widely 

used in PC or embedded systems.  

Software programming models, such as CUDA, OpenGL, and DirectX, are also developed 

by NVidia/AMD/Intel to assist General-Purpose Computation on GPU (GPGPU) 

programming for a broader community of application developers. Most stereo matching tasks 

perform the same computation on a number of pixels in parallel. So GPU stereo matching 

implementations are drawn much attention and obtained desirable speedup, which is benefited 

from GPU’s hundreds of PEs and high-level software development platform. It is crucial to 

design application-specific GPU stream kernels and exploit the inherent parallelism of 

algorithms to adapt GPU’s parallel computation core. Tradeoff should be sufficiently 

considered between accelerating speed and accuracy. With the rapid development of GPU 

architecture, there should be sufficient potential margin for GPU based stereo matching 

optimization. 

 

3.4. FPGA/ASIC Implementation 

Besides previously discussed software methods, dedicated FPGA/ASIC hardware 

approaches have more computation capability, and their costs are relatively lower. FPGA or 

ASIC is very suitable for pixel-wise operations, especially for the intensive complexity 

computational requirement of stereo matching methods. Differences between FPGA and 

ASIC implementations are that ASIC implementation needs IC design and implementation 

technology such as IC foundry United Microelectronics Corporation (UMC) and long 

development cycles, while FPGA implementation has reconfiguration capability with 

requiring more power and area consumption than dedicated ASIC chip. Thanks to increased 

hardware calculation capability, the performance of some FPGA or ASIC implementations 

are close to real-time processing for high quality stereo algorithms (GC, DP, or BP) with 

limited image resolution [72]. Gives a hardware processing comparison for FPGA and ASIC 

design, and presents powerful real-time vision engine in a single chip which integrates optical 

flow (with 1810 parallel PEs), stereo (with 1145 parallel PEs) and several local image feature 

extraction methods together FPGA or ASIC implementations have the following features. 

 Parallel PE arrays: integrated into a signal chip. Each of the PE works parallel, focusing 

on specific algorithm execution to speed up the whole algorithm execution. 

 Dedicated pipeline architecture: based on corresponding calculation progresses, 

dedicated pipeline architecture can improve chip clock frequency and execution 

efficiency, but with higher system design complexity. So there is a trade-off between 

execution performance and architecture complexity. 
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 Data reuse and memory allocation technique: heterogeneous processor’s bottleneck is 

data exchanging for both off/on-chip memory. Data reuse strategy is tightly related with 

memory reuse and allocation method. It is critical to reduce system internal storage size, 

computation resource, and bandwidth requirement. 

From the bandwidth’s point of view, a high-end SoC with a fairly wide 128-bit bus can 

only support about 4GB/s bandwidth even with 50 percent bus utilization and 500MHz bus 

frequency. That is far below the maximum memory requirement of stereo matching. From 

processing performance’s point of view, parallel data reuse method can increase performance 

and decrease memory bandwidth requirements, but it increases on-chip SRAM size and 

system cost. Therefore, the implementation of FPGA or ASIC calls for much attention on 

smart strategies for the selection between on-chip memory size and memory bandwidth. 

 

4. Software and Hardware Processing Method Comparison 

From CPU, DSP, GPU, to FPGA, ASIC, the processing performance increases 

sequentially, while cost and power consumption decreases correspondingly. Software 

methods have more flexibility and shorter development cycle, while hardware 

implementation needs longer design cycle with less design flexibility because of simultaneous 

consideration of algorithm optimization and hardware mapping issues. From the point view of 

practicality, hardware stereo processing system should be more acceptable for a real-time 

stereo vision system because of its lower cost and lower power consumption.  

Stereo matching accuracy and speed evaluation are two critical points for stereo matching 

methods. Accuracy can be evaluated by the error rate, which is the average percentage of bad 

pixels of four benchmark data sets (Tsukuba, Venus, Teddy, and Cones). Speed is measured 

by system throughput, mainly including Millions of Disparity Estimations per Second 

(MDE/s), number of GF/s, and fps. To clearly indicate the differences between algorithms 

and processing platforms, software and hardware implementation comparisons for BP, DP 

and local stereo matching algorithms are shown in Table 4-6.  

Although GC has higher quality, it is hard to reach the real-time requirement, and is 

seldom implemented by GPU, FPGA or ASIC accelerator. [104] proposes an early 

termination rule and prioritizing swap pair search order, and can reach 24.73s for Tsukuba 

image on Intel Core2Quad Q6600, 4G RAM [105]. Implements a reduced GC method where 

only some potential values in the disparity range are selected for each pixel, and can reach 

83s for Tsukuba image on Intel 3.2 GHz P4 processor, 512 MB RAM. 

Based on above comparisons, CPU and DSP are not suitable for real-time embedded 

applications. GPU, FPGA or ASIC have more advantages compared to CPUs, DSPs for their 

low power consumption and low cost embedded application systems. BP-based algorithms 

perform high image quality, but suffer from high computational complexity and memory 

storage requirement. They are more suitable to be accelerated by hardware. BP searches for 

an optimal solution of the entire image and requires multiple iterations; however DP uses a 

single pass to calculate the global optimal solution for each scan-line independently. As a 

result, DP-based approaches are faster and can generate disparity maps more quickly, but 

estimation results are prone to error with horizontal streaks in the generated disparity maps 

because of the difficulties in enforcing inter scan-line consistency by 1-D scan line process. 

Window based algorithms have higher processing speed because of lower data bandwidth and 

less computation complexity, but matching errors are higher. For the same algorithm, 

generally, the processing speed, quality and power consumption of FPGA or ASIC can 
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outperform GPU accelerator generally, as proved by [80-91]. The disadvantages of FPGA or 

ASIC are longer developing time and less processing flexibility compared with GPU. 

Table 4. Software and Hardware Processing Overview of Optimized BP 
Algorithms 

Method (time) 
Stereo 

Algorithm 

Image size 
(Disparity 

Level) 

Error Rate (%) 

Technology 

Per- 

formance Tsukuba  Venus Teddy Cones 

non-

occ  
all occ  

non

-

occ  

all occ  
non-

occ  
all occ  

Non

-occ  
all occ  

fps(

@M

Hz) 

MDE/

s 

GPU [33](2004)  HBP  384 × 288(16)  1.9  3.8  10.1 1.2  2.2  15.6 23.1  30.9 33.8 20.6  27.6 29.0     

GPU [35](2006)  
Converge-

HBP  
384 × 288(16)  1.5  3.4  7.9  0.8 1.9  9.0  8.72  13.2 17.2 4.61  11.6 12.4 

nVidia GeForce 

7900GTX 
12.8  22.2  

GPU [73](2006)  
Multi-scale 

BP  
384 × 288(16)   3.6            

nVidia GeForce 

6800GT  
1.6   

GPU [16](2009)  Tile-based BP  450 × 375(32)              
nVidia GeForce 

8800GTX 
1.68   

GPU [74](2009)  
Sub-pixel 

HBP  
584 × 388(5)   10.8    2.02         nVidia 8600M GT  3   

GPU [39](2010)  
ConstSpace 
BP  

800 
×600(300)  

 2.00    1.48    11.1    5.98   
nVidia GeForce 
8800GTX  

  

FPGA [75] 

(2006)  
Phase BP  256 × 360(20)  19.6  37.6    10.5 31.5        

Xilinx Virtex-4 

2000E  
30.3  55.2  

FPGA [76] 

(2007)  
Mem-opt BP  320 × 240(32)   1.9     0.8        

Xilinx VirtexII pro-

100  
30  

94014 

LUTs  

FPGA [77] 

(2009)  
Truncated BP  

1280 

×720(96)  
            

Xilinx Virtex-5 330 

VLX  
2.5  

23709 

LUTs  

ASIC [16] 

(2009)  
Tile-based BP  640 × 480(32)              UMC 90nm  8.04  

69.6 

Kgates  

ASIC [17] 

(2010)  

Node-plane 

BP  
320 × 240(32)              UMC 90nm   

256.6 

Kgates  

 

Table 5. Software and Hardware Processing Overview of Optimized DP 
Algorithms 

Method (time) 
Stereo 

Algorithm 

Image size 

(Disparity 

level) 

Error Rate(%) 

Technology 

Perfo-

rmance Tsukuba  Venus Teddy Cones 

non

-occ  
all occ  

non-

occ  
all occ  

non

-occ  
all occ  

Non

-occ  
all occ  

fps(
@M

Hz) 

MD

E/s 

CPU [78] (2004)  
TwoStep 

DP 
1024×1024(16)   2.9    15.6    6.4    25.3   

AMD AthlonXP 

2800+  
6.14  100  

GPU [79] (2004)  RealDP 384×288(100)   2.85    6.42         AMD AthlonXP 2800  18.9  209  

GPU [51] (2005)  ORDP 320×240(16)   1.4    7.4    2.4    13.5     20.0  

GPU [52] (2006)  
Adaptive 

DP 
320×240(16)  2.1  4.2  10.6 1.9  3.0  20.3 7.2  14.4 17.6 6.4  13.7 16.5 ATI Radeon XL1800  43  52.8  

GPU [48] (2006)  
Region-
TreeDP 

384×288(16)  1.39  1.64 6.85 0.22  0.57 1.93 7.4 11.9 16.8 6.31  11.9 11.8   67.9   

GPU [55] (2009)  TDP 384×288(16)  1.52  2.28 7.53 0.58  0.82 3.06 5.2 8.45 11.6 4.24  9.9  1.52 nVidia GT-9800  5.9   

GPU [57] (2010)  
Multi- 
Resolution 

1280×1024(256)             nVidia GTX 295 GPU  16   

GPU [80] (2010)  
Symmetric 

DP 
1024×768(128)              

nVidia GeForce GTX 

280 
20  1760  

GPU [1] (2011)  Rank DP 384×288(16)  19.6  27.2 34.0        13.5  22.6 22.0   30  1252  

GPU [58] (2012)  Hybrid DP 384×288(16)  1.23  3.31 6.23 0.80  1.73 3.79 5.1 12.3 12.8 3.77  11.2 9.25 
NVidia Quadro FX 

4800  
6.3   

FPGA [54](2007)  Trellis DP 320×240(128)   2.63       3.44      
Xilinx Virtex II pro-

100  
30   

FPGA [80](2010)  
Symmetric 

DP 
1024×768(128)              Altera Stratix III  30  2600  
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Table 6. Software and Hardware Processing Overview of Optimized Window 
Based Algorithms 

Method (time) 
Stereo 

Algorithm 

Image size 

(Disparity 

level) 

Error Rate(%) 

Technology 

Per- 
formance Tsukuba  Venus 

Ted

dy 
Cones 

non

-occ  
all occ  

non-

occ  
all occ  

non

-occ  
all occ  

Non

-occ  
all occ  

fps(@M

Hz) 

MDE

/s 

CPU [81](2008)  
Effect-

Aggr  
463 × 370(75)   2.11    4.75    15.2    12.6   2.14GHz Intel Core  1.67  18.9  

DSP [82](2007)  jigsaw  384 × 288(16)  20.4  20.6 
47.

9 
15.3  16.6 29.5 25.1  32.4 34.1 22.9  31.1 30.6 TI C64x DSP  12.5   

GPU [23](2006)  Adaptive   1.4  1.9  6.9  0.7  1.2  6.1  7.9  13.3 18.6 4.0  9.8  8.3  AMD 2700+    

GPU [83](2007)  SAD   2.3  3.6  
11.

2 
3.6  4.6  19.8 10.9  18.8 23.2 5.9  14.3 13.8 ATI Radeon X800  20.3GF/s  124.1  

GPU [30](2007)  SAD   1.0  1.8  5.3  0.2  0.5  1.7  6.7  12.1 14.7 4.2  10.7 10.6    9.4  

GPU [25](2007)  Adaptive  256 × 256(96)  7.63  13.0 
14.

3 
9.04  19.4 9.20        Nvidia GeForce 7900  87  548  

GPU [84](2007)  Laplacian  320 × 240(32)   4.22    2.98    14.4    13.7   ATI Radeon 9800  22  53.0  

GPU [85](2007)  
Gradient 

Guided  
512 × 384(40)   2.48    3.91         ATI Radeon 9800XT  14.7  117  

GPU [86](2009)  
cross-

based  
384 × 288(16)  2.80  4.84 

7.2

9 
2.14  3.40 11.5 9.67  16.3 18.8 5.85  13.7 12.1 

nVidia GeForce 

7900GTX  
17  30  

GPU [87](2009)  
Stream-

Centric  
450 × 375(60)  4.33  6.06 

15.

2 
5.88  6.87 12.5 13.6  20.6 25.3 6.88  14.9 16.0 

nVidia GeForce 8800 

GT  
100   

GPU [88](2010)  SAD   1.4  1.9  7.1  0.4  1.0  2.7  8.6  15.2 19.5 5.6  12.5 13.2 GTX 8800  350GF/s  144.4  

GPU [89](2011)  Scalable  384 × 288(16)  1.64  2.13 
6.4

3 
0.57  0.90 2.90 9.70  14.8 19.3 7.00  12.5 13.6 GeForce8800 GTX  64  113.2  

GPU [90](2011)  
Profile 

Shape  
384 × 288(31)  9.6  11.5   15.1  15.7   3.2  4.8   5.3  6.6   2.8GHz AMD  62   

GPU [91](2012)  SAD  1280 × 1024   241    161    311    381   
nVidia GeForce GTX 
280 

49   

FPGA [21](2003)  SAD  640 × 480(64)              
Xilinx 10000 Virtex 

II  
31@10   

FPGA [92](2003)  SAD  640 × 480(80)              Xilinx XC2V6000  18.9@40   

FPGA [93](2005)  CBiased  512 × 512(96)   4.77    10.2         Nvidia Geforce 7900  24  605  

FPGA [94](2007)  
Phase 

based  

1280 × 

960(29)  
            Xilinx Virtex-II  52@65  1885  

FPGA [95](2008)  SAD  320 × 240(64)   28            Nios II Cyclone II  325@100  800  

FPGA [96](2010)  Census  640 × 480(64)  9.8  11.6 
20.

3 
3.6  5.3  36.8 12.5  21.5 30.6 7.3  17.6 21.0 Xilinx Virtex-5  60@24.5  4522  

FPGA [97](2010)  SAD  750 × 400(60)  5.81  7.14 
22.

6 
2.61  3.33 25.3 9.79  15.5 25.7 5.08  11.5 15.0 

AlteraStratixI 

(133MHz)  
60  1080  

FPGA [98](2011)  SAD  640 × 480(64)              Altera DE2-70  30@12.2  295  

FPGA [99](2012)  SAD  640 × 480(64)  4.48  6.04 
12.
7 

6.01  7.47 18.2 21.5  28.1 28.8 17.1  25.9 25.8 
Xilinx Virtex-
5LX110T  

30@155  589  

FPGA [100] 

(2012)  
Combined  

1280 × 

1024(120)  
9.26  10.4 

28.

2 
11.0  12.1 28.9 21.4  29.1 41.3 17  25.3 33.4 

Xilinx Virtex-5 

LX110T  
50  7864  

FPGA [91](2012)  SAD  1280 × 1024   481    421    471    661   
Xilinx Virtex-5 VLX 

330  
40@53   

ASIC 

[101](2004)  

SSD-

Census  
256 × 192(25)              0.25um  50@75   

ASIC 

[102](2010)  

Mini-

census  
352 × 288(64)   2.80    0.64    13.7    10.1   UMC 0.09um  42@95  272.5  

ASIC[103](2012)  SAD  320 × 240(64)              0.18um  144@120  707  

 

5. Future Research Direction 

To improve system throughput with better disparity accuracy is still a challenging research 

topic although a number of near real-time systems which can achieve higher image resolution 

which have been implemented on GPU, FPGA or ASIC. For future software and hardware 

implementations, there are several points need to be emphasized: 
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 Super Resolution (SR) stereo vision processing: data bandwidth and memory storage 

requirements will be much tighter than current high resolution steam. New optimization 

methods should be considered during software and hardware optimization processes. 

 Real-time and low power consumption requirements: the trend for hand-held stereo 

vision system with high image resolution, quality, and free-view features. Algorithm 

parallelization and specific PE design are effective technologies for it. 

 Powerful GPU, FPGA and ASIC system optimization: will play more critical roles along 

with VLSI design technology development. Parallel calculation capability, specific PE, 

efficient memory allocation method, will bring stereo vision system a revolution in the 

near future. 

To resolve issues including occlusion, image inconsistent, hardware resource limitations, 

etc., there are several optimization aspects to meet the upcoming stereo matching technology 

challenges. 

 

5.1. Image Segmentation or Hierarchy Optimization 

Segmentation or hierarchy approach has been widely employed in stereo matching to 

reduce algorithm complexity. It can be divided into three categories: over segmentation, color 

segmentation and coarse-to-fine layer department. They break the image apart into smaller 

ones, and then process the reduced images one by one. Color based segment assumes that the 

neighboring pixels with similar colors have similar depth values. Over segment gets trade-off 

between color segment and performance. Coarse-to-fine can reduce disparity calculation 

range by hierarchy search.  

We also study the optimization method based on adaptive image segmentation [106]. We 

take advantages of chrominance component, intelligently comprehends object depth 

characteristics to pre-determine the inter-prediction block size, instead of selecting the best 

one after calculating all block sizes’ cost function. Ignoring unrelated block size calculation 

saves computation resources and time. Smaller block size is pre-decided at an object 

boundary, and larger block size is for consecutive areas. Experiment results show that the 

method not only is effective for real-time stereo matching, but also performs well on both 

object boundary and consecutive areas, both block effect and prediction noises are optimized 

with accelerated prediction speed. 

 

5.2. Occlusion and Consistency Handling 

Stereo image discontinuous issues mainly include occlusion and color inconsistency. 

Occlusion is caused by viewing degree changes between images. Image inconsistency is 

always caused by various radiometric factors such as luminance changes, illuminate color or 

imaging device changes. Some optimization methods, such as left-right consistency criterion, 

interactively estimation, are already in use to identify and remove invalid matches or 

occlusion pixels. Normalized or unified matching algorithm [107] and Scan-line Optimization 

(SO) [108] are effective optimization techniques for image inconsistency issues. Depth map 

mismatches can be suppressed by penalizing large jumps in disparity between the scan-line 

points, or only dealing with propagated disparities along scan-line directions. 

 

5.3. Matching Cost & Energy Optimization Improvement 

A careful selection of cost functions or energy optimization methods is the foundation of 

local or global stereo matching algorithms [109]. compares a large scale possible combination 
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of matching costs with window based method, SGM, and GC under various radiometric 

conditions. High order MRF model [110], Quadratic Pseudo-Boolean Optimization (QPBO) 

approaches [111], or high order strategy [112], Mutual Information (MI) [113], Winner-Take-

All (WTA) [115] are all valid for efficient energy optimization. Cost function optimizations 

have always been used in a cooperative system to reduce computation redundancy. 

 

5.4. Cooperative Optimization 

High quality stereo matching results are always involved in combined processing methods. 

Integration of HBP, mean sift, color segmentation [116], combination of shiftable windows 

and global energy minimization framework [117], combination of WTA and DP [118], 

diffuses of matching costs and weights [119], integration of WTA and matching cost [120], 

combination of GC and SIFT [121], associated matching cost optimization and occlusion 

handling [114], integrated census transform and hamming distance calculation [91], as well as 

combined optical flow and feature extraction [122] are all examples of cooperation. Stereo 

matching precision enhancement, such as sub-pixel interpolation, can provide a dense 

disparity image, and is also effective for enhancing stereo matching image quality. 

 

5.5. Efficient Memory Arrangement Method 

Memory arrangement is critical for hardware performance enhancement because memory 

accessing is always a bottleneck of current hardware processing architecture. An optimized 

method is to divide a large memory accessing array into several sub-arrays, and allocate sub-

arrays to different memory areas to exploit parallel access capability. The other method is to 

interchange memory content with various sub-array clusters based on algorithm data 

parallelism or pipeline architecture. 

 

5.6. Advanced VLSI design Method 

The advantages of VLSI chip have already brought high processing capability for stereo 

matching systems. CPU, GPU, FPGA and ASIC processing capabilities are getting much 

benefit from VLSI design technology development. Thanks to embedded DDR design 

technology, 3D VLSI design technology, etc., VLSI chip’s processing capability increases 

fast in recent years. More and more transistors will be integrated in one chip in future VLSI 

design, which is able to execute more parallel calculations simultaneously. It will bring more 

powerful calculation capability for both software and hardware realization. 

 

6. Conclusion 

In this paper, we summarize both software and hardware implementations for stereo 

matching algorithms. We analyze typical stereo matching algorithms based on different 

software and hardware implement techniques, including CPU, DSP, GPU, FPGA, and ASIC. 

We present the overall evaluation of processing performance, efficiency, and quality. We also 

point out optimization technologies to reduce computation complexity and increase 

calculation efficiency. Based on these comparisons, we conclude two points: First, there is 

optimization potential for both stereo matching algorithm optimization and software or 

hardware implementation in terms of speed, parallelism, data bandwidth, memory storage, 

etc. Second, GPU, FPGA and ASIC designs are future research trends in real-time embedded 

stereo vision application systems because of their high parallel processing capabilities and 

specific powerful calculation supporting components. GPU has more programming flexibility 
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and powerful computation capability, while FPGA and ASIC have high performance, lower 

power consumption and cost. Stereo matching system could be enhanced fantastically along 

with software and hardware technology development. 
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