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Abstract 

Image classification is one of the most fundamental and useful activities in computer vision 

domain. For better accuracy and executing efficiency under the circumstance of high 

dimensional feature descriptors in image classification, we proposes a novel framework for 

multi-class image classification based on kernel principal component analysis(KPCA) for 

feature descriptors post-processing and support vector machine (SVM) with randomized 

hyper-parameter optimization for classification. We produce the image feature representation 

by extracting pyramid histogram of visual word (PHOW) descriptors of image, then map the 

descriptors though additive kernels. At the third step we use KPCA for feature dimensionality 

reduction. Finally we classify image by SVM with randomized hyper-parameter optimization. 

Extensive experiments are tested on two data sets: Msrcv2, 15-Scenes. These experiments 

justify that (1) feature descriptors with KPCA is superior to that with PCA for dimensionality 

reduction;(2)SVM with randomized hyper-parameter optimization greatly saves time while 

keeping high accuracy. 

 

Keywords: Image Classification, Support Vector Machine, Kernel Principal Component, 

Hyper-parameter Optimization, Grid search, Randomized Grid Search 

 

1. Introduction 

Nowadays, image classification is the task of classifying image into different classes 

according to their visual characteristics. It has become one of the fundamental basis for all 

other image processing activities. It involves two factors: one is feature representation and 

coding, the other is classifier selection and optimization. 

With regard to image representation, Haralick, et al., [1] first propose texture based on 

gray tone spatial dependencies as image feature representation. This feature is based on 

statistics which summarize the relative frequency distribution (which describes how often one 

gray tone will appear in a specified spatial relationship to another gray tone on the image). 

Afterwards rotation, affine, scale etc. factors being considered, people propose LBP [2], SIFT 

[3], HOG [4] etc., for feature extraction. These feature extracting algorithms have wide 

applications in computer vision. 

Feature coding is the next step for enhancing feature representation. The typical coding 

schemes include histogram of texture [5], Bag of Words (BOW) or Bag of Features (BOF) 

[6]. BOW has been widely used and shows high performance. It has three parts: (1) region 

selection and representation; (2) cookbook generation and feature quantization; (3)frequency 

histogram based image representation. In recent years, coding schemes based on pyramid are 

proposed such as Pyramid Histogram Of visual Word (PHOW) [7], which is based on spatial 

pyramid matching [8]. The pyramid match computation is linear in the number of features, 
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and it implicitly finds correspondences based on the finest resolution histogram cell where a 

matched pair first appears. 

Finally, for further incrementing the discriminating capability, Vedaldi, et al., [9] propose 

additive kernel transformation of feature coding. 

However the transformation will produce high dimensional descriptors of image 

representation. It is necessary to do dimensionality reduction. As one of the classical methods 

of dimensionality reduction, Principal Component Analysis (PCA) [10] represents the input 

data as vectors and uses Euclidean distance as the basic metric for nearest neighbor 

classification. This method seeks the global projection via an optimization formulation 

assuming that the Gaussian distribution can describe the original data space. However, for the 

image classification task of kernel transformed descriptors, PCA is not very effective for 

extracting the discriminant features. Kernel principal component analysis (KPCA) [11] is 

devoted to the case for nonlinear principal component analysis. KPCA has the advantage that 

no nonlinear optimization is involved that we only need to solve an eigenvalue problem as in 

the case of standard PCA. Therefore, we are not in danger of getting trapped in local minima 

during training. 

Nowadays many classifiers have been successfully applied in image classification such as 

random forests, support vector machine etc., [12]. Haralick, et al., [1] propose piecewise 

linear discriminant function method and min-max decision rule algorithms with application to 

photo micrographs, earth resource technology satellite multi-spacial imagery, obtaining the 

scores of 82% and 83% overall accuracies respectively. 

In recent years, image classification by learning algorithms catches a lot of interest in 

computer vision. Bosch, et al., [7] propose random forests and ferns for image classification. 

Performance with 30 training images scores 80% on caltech 101 data and 44% on caltech 

256. Chapelle, et al., [13] use support vector machine for image classification on data set 

Corel14, obtaining score of 89% accuracy. Foody, et al., [14] also use SVM for classification 

on remote sensing imagery data set, they achieve a score of 93.5% accuracy which is superior 

to the scores of 90.3% for decision tree and 90% for discriminating analysis. 

In this paper, in order to improve running performance and the accuracy of image 

classification, We propose PHOW feature with KPCA dimensionality reduction for feature 

descriptor and SVM classifier with randomized hyper-parameter optimization. We achieve 

performances of above 71% accuracy on 15-scenes data set and 49% on Msrcv2 data set with 

only 10% training samples. 

The paper is organized as follows: Section 2 briefly describes the framework proposed for 

high dimensional image classification with kernel principal component analysis (KPCA) and 

randomized hyper-parameter optimization. In Section 3 we detail feature extraction with 

pyramid histogram of visual word (PHOW). In Section 4 we introduce descriptors 

transformation with additive kernel. Descriptors dimensionality reduce by KPCA are 

introduced in Section 5. In section 6 we explain how to train and classify by support vector 

machine (SVM) with randomized hyper-parameter optimization. The experiment results are 

show in section 7. Finally conclusion and remarks are presented in Section 8. 

 

2. Framework of High Dimensional Image Classification with Kernel PCA 

and SVM with Hyper-parameter Optimization 

We discuss the overall procedure of image classification. We propose a new 

framework of image classification with high dimensional feature descriptors based on 

KPCA for feature descriptors dimensional reduction and SVM with hyper-parameter 

optimization for classification (see Figure 1). 
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The proposed method is composed of four stages as follows: feature extraction with 

PHOW, descriptors transformation via additive kernel, descriptors dimensionality 

reduction by KPCA, model training and classifying by SVM with randomized hyper -

parameter optimization. 
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Figure 1. The Outline of our Solution. The Main Framework Consists of Four 
Processing Steps: Extracting Image PHOW Feature, Additive Kernel 

Transformation, KPCA Dimensionality Reduction, Model Training based on 
SVM with Hyper-Parameter Optimization 

3. Feature Extraction with PHOW 

First of all, we extract image PHOW feature, which is an improvement of dense SIFT 

descriptors. The basic steps for feature extraction include: (1) We follow the approach of 

Bosch, et al., [15]. SIFT descriptors [3] are computed at points on a regular grid with spacing 

M  pixels. At each grid point the descriptors are computed over four circular support patches 

with different radii, consequently each point is represented by four SIFT descriptors. Multiple 

descriptors are computed to allow for scale variation between images. (2)The dense features 

are vector quantized into V visual words [16] using K-means clustering. (3)Multiple V visual 

words are summed to obtain the total descriptors. 

 

4. Descriptor Transformation with Additive Kernel 

At second stage, the PHOW feature descriptor is transformed through additive kernel for 

good representation. The additive kernel is defined as: 
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( , ) ( , )



 
B

b b

b

K x y k x y                                                    (1) 

where b  is number for each bin of histogram, B  is count of bins,
b

x ,
b

y  is the distribution 

of each bin, 
0 0 0

:
  
 k R R R  is positive definite kernel. We use 

2
  kernel proposed by 

Vedaldi[9] for the transformation. In our experiment, this will produce 36000 dimensionality 

feature descriptors at each image. 

 

5. Descriptors Dimensionality Reduction by KPCA 

In the third stage of the proposed framework, the dimensionality of feature vectors is 

reduced with the KPCA algorithm. KPCA is used to generate the unique features set and 

minimize the computational complexity of our framework. For good understanding of 

dimensionality reduction, we briefly recall the linear PCA. 

5.1. Linear PCA 

The main goal of PCA is to reduce an initial large number of variables to a smaller 

set of uncorrelated ones, called Principal Components (PCs) [17]. The set of PCs is 

capable of reproducing as much variance from the original variables as possible. PCA 

solutions with more than one PC are referred to as multi -dimensional solutions. In such 

cases, the PCs are ordered according to their eigenvalues. The first component is 

associated with the largest eigenvalue, and accounts for most of the variance, the 

second accounts for as much as possible of the remaining variance, and so on.  

Given a set of  vectors , 1, 2 , 3, ... , 
N

k k
x k x R ,

1

0



 k

k

x , the covariance matrix 

defined as 

1

1



  k k

k

C x x
•

                                                      (2) 

This can be accomplished by solving the eigenvalue equation 

 
i i i
v C v                                                            (3) 

where 0 
i

 are the eigenvalues and 
N

i
v R  the eigenvectors of the covariance 

matrix. The new coordinates in the eigenvector basis, i.e., the orthogonal projections 

onto the eigenvectors are called principal components. 

5.2. Kernel Principal Component Analysis 

Kernel Principal Component Analysis (KPCA) generalizes linear transformation to a 

nonlinear one of the following kinds[11]. Suppose we first map the data nonlinearly 

into a feature space F  by 

: , ( ).  
N

R x xF                                                  (4) 

We can perform PCA in F  on arbitrarily large dimensionality by the use of kernel 

functions known from support vector machines. 

The covariance matrix, 
F

C F , will be defined similarly as 

1

1
( ) ( ) 



 
N

T

F i i

i

C x x
N

                                                 (5) 
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We assume that ( )
i

x  are centered in feature space. We shall come back to this point 

later on. We define a N N  kernel matrix 

( , ) ( ( ) , ( )) 
F i i j

K x x j x x                                               (6) 

which allows us to compute the value of dot product in F  without having to carry 

out the map  . The kernel function has to satisfy the Mercer's theorem to ensure that it 

is possible to construct a mapping into a space where 
F

K  acts as a dot product. The 

projection of a new test point, n  is given by 

1

( . ( )) ( , )
 
 



 
i

N

l l

F i

i

v n K x n                                               (7) 

where 



l
 is defined by the solutions to the eigen value equation 

 
   

F
N K . 

Finally, it is important to stress that all the arguments shown in this sub-section rely 

on the assumption that the data are centered in feature space. This is not a direct 

consequence of using X  instead of G . 

At this point, we have the tools necessary to compute the centered kernel matrix 

based on dot products in input space. However, we still need to choose a form for the 

kernel function ( , ) :
ij

i j F
k x x K . 

In our work, we choose five kinds of kernels[18]. 

(1)linear kernel: 

( , )  
i j i j

k x x x x
•

                                                 (8) 

where 
i

x  and 
j

x  are vectors in the input space. •  is the transpose of matrix 
j

x . 

(2)polynomial kernel: 

( , ) ( ( ) )  
d

i j i j
K x x x x c

•
                                       (9) 

where X  and Y  are vectors in the input space.   is parameter of polynomial 

kernel, 0c  is a constant trading off the influence of higher-order versus lower-order 

terms in the polynomial. d  is the kernel degree. •  is the transpose of matrix 
j

x . 

(3)sigmoid kernel: 

( , ) tan h ( ( ) )  
i j i j

K x x x x c
•

                                  (10) 

where 
i

x  and 
j

x  are vectors in the input space. c  is a constant trading off parameter 

for sigmoid kernel. •  is the transpose of matrix 
j

x . 

(4)radial basis function(rbf) kernel: 

2
( , ) ( )

‖ ‖





i j

i j

K x x exp
x x

                                       (11) 

where 
i

x  and 
j

x  are vectors in the input space.   is parameter of rbf kernel. .‖‖  is 

the dot product. 

(5)cosine kernel: 

( , )
*




i j

i j

i j

x x
K x x

x x

•

                                            (12) 
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where 
i

x  and 
j

x  are vectors in the input space. .‖‖  is the dot product. •  is the 

transpose of matrix 
j

x . 

 

6. Model Training and Classifying by SVM with Randomized Hyper-

Parameter Optimization 

In this section we propose support vector machine combining with randomize hyper -

parameter optimization. First of all, we briefly introduction multi -class support vector 

machine. 

6.1. Support Vector Machine 

A support vector machine constructs a hyper-plane or set of hyper-planes in a high or 

infinite dimensional space, which can be used for classification, regression or other 

tasks. Intuitively, a good separation is achieved by the hyper-plane that has the largest 

distance to the nearest training data points of any class (so-called functional margin), 

since in general the larger the margin the lower the generalization error of the classifier. 

Given training vectors , 1, ..., 
n

i
x R i l , in k  classes, and a vector 

n
y R  such that 

1, 2 , ...,
i

y k , Support Vector Classifier(SVC)[19] solves the following primal problem: 

1 1

1
( , )

2
  

  

   
i

k

T m

m m i

m i m y

w w w C                                       (13) 

Where w  is unit vector: 1w , C  is trade off coefficient,   is slack variable. 

Equation 13 is subject to 

( ) ( ) 2

0 , 1, . . . , . 1, . . . , .





      

  

i i

T m

y i y m i m i

m

i i

w x b w x b

i m k y‚

                                    (14) 

The decision function is 

( ) arg m ax[ ] , 1, ..,   
n n

f x w x b n k                                     (15) 

We can find the solution to this optimization problem in dual variables through the 

Lagrangian function 

1 1 1

1 1 1 1

1
( , , , , ) ( )

2

[( ( ) ) 2 ]

   

   

  

   

  

       

  

   
i i
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T m

m m i

m i m

k k

m m m m

i y m i y m i i i

i m i m

L w b w w C

w w x b b

         (16) 

Here the dummy variables are subject to 

0 , 2 , 0 , 1, ...,     i i i
y y y

i i i
i                                      (17) 

and constraints are 

0 , 0 , 0 , 1, ..., 1, ...,      
m m m

i i i i
i m k y‚                     (18) 

In our experiment, SVM models derived from libsvm[20]. The hyper-parameter 

include: C  as regularization parameter for the error term, d  as degree of the 

polynomial kernel function(ploy) , ,   as kernel coefficients for 'rbf', 'poly' and 'sigm', 

tol as tolerance for stopping criterion and kernels  are linear, rbf, poly, sigmoid. 
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6.2. Hyper-parameter optimization 

In machine learning areas, hyper-parameter optimization is the problem of choosing 

a set of hyper-parameter for a learning algorithm, usually with the goal of  obtaining 

good generalization[21]. For training samples ( , )x y , hyper-parameter optimization 

problem(
(* )

 ) can express in terms of a hyper-parameter response function  . 

1

(* )

~

,.. . ,

a rg m in [ ( ; ( ) ) ]

a rg m in ( ; ( ) ) a rg m in ( )

ˆa rg m in ( )









 

  





 



 





  

  

x

S

tra in

y g

tra in

x x

L y x

m e a n y x

E A

L A                            (19) 

Where   is the hyper-parameter, L  is loss function, 

A  is the learning algorithm 

with hyper-parameter  , 
~

x
x g
E  is generalization error, S  is the amount of  .   is the 

indexed by various configuration variables. 

6.2.1. Grid search optimization 

The most widely used strategies for hyper-parameter optimization is grid search, 

which is simply an exhaustive searching through a manually specified subset of the 

hyper-parameter space of a learning algorithm. Grid search experiments are common in 

the literature of empirical machine learning, where they are used to optimize the hyper-

parameter of learning algorithms. It is also common to perform multistage, multi -

resolution grid experiments that are more or less automated. 

In our experiment, the hyper-parameter space includes five parameters: C  is set at 

1e3, 5e3, 1e4, 5e4, 1e5 respectively. d  is set at 1, 2, 3, 4, 5 respectively.   is kernel 

coefficient for 'rbf', 'poly' and 'sigm'. We set it at 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1 

respectively. tol is set at 1e-2, 1e-3, 1e-4, 1e-5, 1e-6 respectively. kernel is set to linear, 

rbf, poly, sigmoid respectively. 

6.2.2. Randomized Search Optimization 

A major drawback of manual search is the difficulty in reproducing results. This is 

important both for the progress of scientific research in machine learning as well as for 

ease of application of learning algorithms by non-expert users. On the other hand, grid 

search alone does very poorly in practice. This paper shows empirically and 

theoretically that randomly chosen trials are more efficient for hyper -parameter 

optimization than trials on a grid in image classification. 

In our experiments, randomized search optimization is done by a randomized search 

over parameters, where each setting is sampled from a distribution over possible 

parameter values [22]. This has two main advantages over a grid search optimization: 

(1)A budget can be chosen independent of the number of parameters and possible 

values. 

(2)Adding parameters that do not influence the performance does not decrease 

efficiency. 

Specifying how parameters should be sampled is done using a dictionary, very 

similar to specifying parameters for grid search optimization. And furthermore, a 

computation cost, being the number of sampled candidates or sampling iterations, is 

specified using the loop parameter. For each parameter, either a distribution over 
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possible values or a list of discrete choices (which will be sampled uniformly) can be 

specified. 

 

7. Experiments 

In our experiment, we use two data sets. The Microsoft Research Cambridge Object 

Recognition Image Database version 2 (Msrcv2) data set has 591 images, 23 object 

classes. The original 15-scenes [23] data set consists of 15 classes and totally 4485 

images. 

For the two data sets, we randomly selected 10%, 20%, 30%, 40%, 50% samples as 

training samples, the rest as test ones. Following the procedure of Figure 1, we 

extracted the image feature descriptors and did KPCA transformation with 100 principal 

components. Finally we got 1 0 0N  for training features. Here N  is the counts of 

training samples. The test samples were also done by the same procedure.  

In the experiments, the feature extraction and transformation is done in matlab 

environment with VLF eat [9]. The classification tasks are carried out in python  

environment with scikit-learn[22], numpy, scipy and etc. The testing environment is on 

a desktop with CPU Intel Core2 2.53 GHZ and 2 GB RAM. 

7.1. Experiments and Discussions 

7.1.1. Feature Transformation 

In this experiment, we compare the training time of PCA and KPCA on data sets: 

Msrcv2 and 15-Scenes. The kernel type of KPCA is respectively linear, poly, rbf, 

sigmoid and cosine. The training sampling percentages are set at 10%, 20%, 30%, 40% 

and 50% respectively. Then the experimental results are illustrated in Figure 2 and 

Figure 3. Where y-axis denotes the training time (sec), x-axis denotes the training 

sampling percentages(%). 

As observed from Figure 2 and Figure 3, we find the following properties: 

(1)The executing performance of KPCA is greatly superior to that of PCA in image 

feature descriptor dimensionality reduction. 

(2)The training time increases with increase of training sampling percentage . 

(3)KPCA with different kernels almost have same training runtime performances.  

 

 

Figure 2. The PCA and KPCA Transformation Training Time on Msrcv2 
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Figure 3. The PCA and KPCA Transformation Training Time on 15-Scenes 

7.1.2. The PCA and KPCA Transformation Training Time on 15-Scenes 

In this experiment, we compare the accuracy of PCA and KPCA  by various principal 

components on data sets: Msrcv2 and 15-Scenes with 10% sampling for training. The 

different principal components are set at 10, 20, ..., 200 with interval of 10. Here we 

choose SVM with randomize hyper-parameter optimization. The experiment results 

show in Figure 4 and Figure 5 (y-axis denotes the total accuracy and x-axis denotes the 

principal components extracted from 10 to 200 with interval of 10). 

From Figure 4 and Figure 5, we obtain the following results: 

(1)On data set 15-Scences PCA obtains the lowest accuracy at the point with 50 

principal components. KPCA with sigmoid kernel oscillates up and down at some PCs 

on both data sets. 

(2)On data set Msrcv2, PCA and KPCA almost have same accuracy. 

(3)The majority of classifier performances reach stable accuracy at point with 100 

PCs. 

 

 

Figure 4. The Results by Various Principal Components on Msrcv2 with 10% 
Sampling 
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Figure 5. The Results by Various Principal Components on 15-Scenes with 10% 
Sampling 

7.1.2. Image Classification with Hyper-Parameter Optimization by Various Sampling 

Percentages 

In this experiment, we compare the accuracy and executing performance of PCA, 

KPCA by various kernel on data sets: Msrcv2 and 15-Scenes with different sampling 

for training. The kernel type of KPCA is set at linear, poly, rbf, sigmoid and cosine 

respectively. The SVM hyper-parameter optimization is grid search and randomized 

search. The experimental results are illustrated in table 1, table 2. The first column in 

tables denotes the various methods used for image classification. The method of PCA + 

GS stands for feature descriptors dimensionality reduction by PCA and SVM 

classification by hyper-parameters optimization with grid search. Likewise, PCA + RS 

stands for feature descriptors dimensionality reduction by PCA and SVM classifier by 

hyper-parameters optimization with randomized search. KPCA + poly + GS is feature 

descriptors dimensionality reduction by KPCA with poly kernel and SVM classifier by 

hyper-parameters optimization with grid search. KPCA + poly + RS is feature 

descriptors dimensionality reduction by KPCA with poly kernel and SVM classifier by 

hyper-parameters optimization with randomized search. The rest methods have similar 

meaning. Column 2 to column 6 are the sampling percentages for training.  

Table 1. The Comparison of Accuracy and Running Time of Two Algorithms on 
Msrcv2 with Various Sampling Percentages 

accuracy(%) 

/time(sec) 

Method 

10% 20% 30% 40% 50% 

PCA + GS 49.34/1.7 51.69/3.5 57.14/5.7 59.32/8.0 62.71/11.1 

PCA + RS 49.34/0.2 53.81/0.2 57.14/0.4 59.32/0.7 62.37/0.9 
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KPCA + poly + GS 45.57/1.4 53.60/2.8 57.14/4.6 60.73/7.0 62.03/9.9 

KPCA + poly + RS 49.34/0.1 53.60/0.2 57.14/0.4 60.73/0.6 62.03/0.9 

KPCA + rbf + GS 45.57/1.4 53.81/2.8 57.14/4.7 60.45/6.9 63.72/9.8 

KPCA + rbf + RS 49.34/0.1 53.81/0.2 57.14/0.4 60.45/0.6 63.72/0.8 

KPCA + sigmoid + GS 45.57/1.4 53.38/2.8 57.14/4.6 62.99/6.8 63.05/9.7 

KPCA + sigmoid + RS 45.57/0.1 53.38/0.2 57.86/0.4 62.99/0.6 63.05/0.8 

KPCA + cosine + GS 48.58/1.5 53.38/3.0 57.62/4.9 59.32/7.5 61.69/10.3 

KPCA + cosine + RS 48.58/0.1 53.38/0.2 57.62/0.4 58.47/0.6 62.03/0.9 

KPCA + linear + GS 49.34/1.5 51.69/3.1 57.14/5.1 59.32/7.2 62.71/10.2 

KPCA + linear + RS 49.34/0.1 53.81/0.2 57.14/0.4 60.16/0.6 62.03/0.9 

Table 2. The Comparison of Accuracy and Running Time of Two Algorithms on 
15-Scenes with Various Sampling Percentages 

accuracy(%) 

/time(sec) 

Method 

10% 20% 30% 40% 50% 

PCA + GS 71.53/17.0 76.47/49.1 78.52/100.9 80.25/162.4 80.53/228.4 

PCA + RS 71.08/1.5 71.08/1.4 76.08/3.9 78.52/9.0 80.25/17.4 

KPCA + poly + GS 71.75/15.7 75.96/50.0 77.15/104.3 77.98/176.1 79.28/257.5 

KPCA + poly + RS 71.75/1.3 74.90/4.1 77.21/9.3 77.98/14.4 78.88/24.6 

KPCA + rbf + GS 71.43/15.6 75.18/50.7 77.08/104.8 77.98/177.7 78.61/266.2 

KPCA + rbf + RS 71.55/1.4 73.96/4.7 77.34/7.5 77.98/14.3 78.61/22.3 

KPCA + sigmoid + 

GS 

71.48/15.9 75.18/52.9 77.02/112.1 77.98/193.7 78.57/286.0 

KPCA + sigmoid + 

RS 

71.48/1.4 75.18/4.7 75.68/10.4 78.05/15.9 78.57/23.2 

KPCA + cosine + 

GS 

70.81/15.4 74.74/43.5 77.34/84.9 77.87/138.2 79.55/201.2 

KPCA + cosine + 

RS 

69.67/1.3 75.49/3.5 76.86/7.6 77.87/15.5 77.36/16.6 

KPCA + linear + 

GS 

71.53/15.3 76.47/43.8 78.52/83.6 80.25/138.0 80.53/197.3 

KPCA + linear + 

RS 

70.78/1.3 76.08/3.7 78.52/6.7 80.25/13.1 80.53/17.9 

From Table 1 and Figure 4, we obtain the following results on data set msrcv2: 
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(1)The training time for SVM with hyper-parameter by randomized search is great 

superior to that for SVM with hyper-parameter by grid search. 

(2)SVM classifiers with grid search have same running performance for training at 

same sampling percentage. 

(3)SVM classifiers with randomized search have same running performance for 

training at each sampling percentage. 

(4)The training time increased with the increase of sampling percentage.  

(5)The total accuracies of various methods are almost the same at each sampling 

percentage. 

 

8. Conclusions 

The problems of high dimensional feature descriptors dimensionality reduction and 

with hyper-parameter optimization for classifier are vital important in image 

classification. The two factors directly affect the accuracy and running efficiency in real 

application. 

In this paper, we propose an effective image classification based on feature 

descriptors dimensionality reduction by KPCA and SVM classifier with hyper -

parameter optimization by randomized search. Experimental results illustrate that the 

proposed solution achieves better performance than feature descriptors dimensiona lity 

reduction by PCA and SVM classifier with hyper-parameter optimization by grid 

search. 

At feature dimensionality reduction stage, KPCA apparently has advantages over 

PCA for feature descriptors dimensionality reduction. The total accuracies reach stabl e 

status at 100 principal components extracted by PCA and KPCA. 

At the classification step, the running time of hyper-parameter with randomized 

search is about ten times as fast as that of hyper-parameter with grid search while 

keeping the total accuracy. 
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