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Abstract 

In the interest of deriving regressor that is robust to outliers, we propose a support vector 

regression (SVR) based on non-convex quadratic insensitive loss function with flexible 

coefficient and margin. The proposed loss function can be approximated by a difference of 

convex functions (DC). The resultant optimization is a DC program. We employ Newton’s 

method to solve it. The proposed model can explicitly enhance the robustness and sparseness 

of SVR. Numerical experiments on six benchmark data sets show that it yields promising 

results. 
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1. Introduction 

Support vector machine (SVM), proposed by Vapnik and his group [11, 3, 6] and is 

popular in the pattern recognition and machine learning community over the past decades. 

SVM is based on statistical learning theory and structural risk minimization principle [11]. As 

a state of the art technique, SVM has been applied to various real-life problems, such as text 

categorization, time series prediction, regression analysis and so on [3, 6]. As we know, loss 

functions play a key role in supervised learning. Using different loss functions, we can yield 

different SVMs. In regression estimation, one kind of the important loss functions is quadratic 

loss functions, and many SVRs are derived by using these loss functions, such as L-2-SVR 

[6] and least squares SVR (LS-SVR) [9]. Quadratic loss functions are all convex which have 

the amenability to theoretical analysis as well as computational advantages. In practice, 

sampling errors, modeling errors and instrument errors may corrupt the training samples with 

outliers. In the presence of outliers, the classical SVRs with convex loss functions which are 

unbounded and emphasize the effect of outliers, yield poor generalization performance. 

In recent years, non-convex loss functions have shown superiority to convex ones in 

generalization performance, robustness and sparseness. Xu and Crame [15] studied training 

algorithms for SVMs with the ramp loss and solved the non-convex optimization by utilizing 

semi definite program and convex relaxation techniques. Wu and Liu [14] proposed a robust 

SVM with truncated hinge loss, which was illustrated to be more robust to outliers and 

derived more accuracy classifiers. Collobert, et al., [5] pointed out the scalability advantages 

of non-convex approaches and used the Concave-Convex Procedure (CCCP) [16] for non-

convex optimization to achieve faster batch SVMs and Transductive SVMs. Motivated by the 

recent interest in solving SVM in the primal [4, 2], Wang, et al., [13] gave robust support 

vector machine with smooth ramp loss in the primal. Zhao, et al., [17] extended the similar 

idea to regression estimation. Wang, et al., [12] and Zhong [18] presented two different non-
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convex loss functions for robust SVR. These studies derived the improvement in 

generalization performance and running time. 

In this paper, based on quadratic insensitive loss function, we propose a flexible loss 

function which is non-convex with variable coefficient and margin, and derive a robust 

model, termed as RSVR-FL. We first present two Huber loss functions to approximate the 

proposed loss function. The resultant optimization problem is a DC program [10, 1]. We 

utilize a Newton’s method to solve the robust model. It reveals that RSVR-FL can explicitly 

incorporate outlier suppression and sparseness in the training process. Numerical experiments 

show that the proposed algorithm gives promising results. In the next section, we propose a 

flexible non-convex loss function and the RSVR-FL. We solve the robust model by DC 

program in Section 3. Experiments on benchmark data sets are presented in Section 4. The 

last section concludes the paper. 

 

2. Robust SVR Model 

Given a training set
1

{ x , }
n

i i i
y


, where x

m

i
R  is the input variable and 

i
y R  is the 

corresponding target. A common used loss function for SVR is the following insensitive 

quadratic loss function: 

                                                              2

1
( ) m a x (0 , | | )l z z                                               (1) 

where 0  . Its shape is shown in Figure 1. The optimization problem of SVR [11] is 

 usually written as: 
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where A  is the reproducing kernel Hilbert space. According to [7], the optimal function for 

(2) can be expressed as a linear combination of the training samples in the feature space 
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where ( )k   is a kernel function. Substituting (3) into (2), we get 
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where T

1 1
( , , . . . , )

n
    , and 

i
K  is the ith row of kernel matrix K . (4) is SVR with loss 

function (1) in the primal. 

In this section, based on (4), we propose a robust SVR. First, we generalize the loss 

function 
1
( )l z  as follows 
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The loss function 
2

( )l z  is asymmetry and regularized by the real positive constants c and 

d . Its shape is shown in Figure 1. The modification of 
2

( )l  , providing both scalable 

penalties and more flexible insensitive tube, offers a better chance to deal with regression 

problem. We notice that 
2

( )l z  is unbounded, which indicates that 
2

( )l   has no limit on the 

influences of outliers. The outliers keep more influences on the optimal solution of (4), which 

may lead to the decision hyper plane of SVR deviating from the original position, and thus 
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deteriorate the generalization performance of SVR. Thus, we set the upper bound of 
2

( )l  to 

limit the impact of outliers, and get a flexible loss function 

                                                               
2

2
( ) m in { , ( )}l z l z


                                                (6) 

where 0   is a constant. Its shape is shown in Figure 1. The loss function in [12] is a 

special case of ( )l z


. 

 

 

Figure 1. 
1
( )l z ,

2
( )l z and ( )l z


 with 

1 2
0 .2 , 0 .6 , 0 .8, 1 .1, 0 .8c d        

However, ( )l z


is not differentiable, and the associated optimization problem is difficult to 

be solved. We use a differentiable and non-convex function to approximate it. Inspired by the 

Huber loss function, we propose the following Huber loss functions: 
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where 0h   is the Huber parameter. We find that 
1

( )
h u

l z and 
2

( )
h u

l z are convex and 

differentiable, and the difference of 
1

( )
h u

l z and 
2

( )
h u

l z is a differentiable approximation 
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of ( )l z


. Let
, 1 2

( ) ( ) ( )
h u h u
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l z l z l z


  .  Its shape is shown in Figure 2. It is easily verified that 
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 . Then, we propose the robust SVR with 

flexible loss function in the primal as 
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Figure 2. 
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3. DC Program for the Robust SVR Model 

Notice that the objective function of (9) is non-convex, and it is difficult to be solved by 

classical convex optimization techniques. However, from the expression of 
,

( )
h

l z


 and 

optimization problem (9), and by denoting T
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1
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2
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h u
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u K l z   



   ,  
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  , we can see that (9) is a DC program which can be expressed as: 

                                                     m in ( ) ( )u v


                                                     (10) 

In the DC program literature, the DCA [10, 1] was proposed for solving a general DC 

program of the form  m i n { ( ) ( ) : }
n

u x v x x R   with u  and v  being proper lower semi-

continuous convex functions, which form a large class of functions than the class of 

differentiable functions. In our program (10), the solution to (10) can be achieved by 

iteratively solving the following optimization: 

                                                1 T
a rg m in { ( ) ( )}

t t
u v



   


                                  (11) 

where ( )
t

v   is the derivative of ( )v   with respect to   at the tth iteration,             

T2

1 1

( )( )
( )

h u tt n n

t ti i

i i

i ii

l z zv
v K

z


   

  

 
    

  
          (12) 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.7, No.4 (2014) 

 

 

Copyright ⓒ 2014 SERSC  215 
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In each iteration, we actually only need to minimize the following optimization: 
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The objective function 
,

( )
h

L


  of (13) is piecewise quadratic and the Newton’s method 

appears a nature choice for an efficient minimization. Each Newton’s step consists of the 

following update 
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 and H  are the gradient and the Hessian of ,
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Substituting (18) into (17), we get the optimal solution at the (t + 1)th iteration 
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It shows that the samples belonging to 
1 2

,E E  and N  groups have no contribution to the 

optimal solution because their corresponding elements in 
1t




 are fixed at 0. Noticing that the 

N  region is equivalent to the ε-insensitive zone, while outliers usually lie in the 
1

E and 
2

E  

regions, our proposed model not only keeps the sparseness like the classical SVRs but also to 

a certain extent discards outliers as support vectors. Having updated 
1t




, we get the 

corresponding predictor 
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The flowchart of implementing our proposed model is described as follows. 

RSVR-FL (Newton’s method for RSVR with flexible loss function) 

Input: Training set 
1

{ x , }
n

i i i
T y


 , kernel matrix K , and a small real 0  . 

1. Let  0 n
R   and calculate 0 0

i i i
z K y   , 1, 2 , .. . ,i n . Divide training set into 7 groups 

according to 
0

i
z  . Set t = 0. 
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2. Rearrange the groups in the order of 
1 2 , 3 4 , 1 2
, , ,S S S S E E and N , and adjust K  and 

y correspondingly. Solve 
,

( )
t

h
L


 by (15). Check whether
,

|| ( ) ||
t

h
L


   . If so, stop; else, 

go to next step. 

3. Calculate 
1t




 by (19) and 
1
( x )

t
f


 by (21). 

4. Divide training set into 7 groups according to
1 1

| | | y |
t t

i i i
z K 

 
  . Let t = t + 1, and go to step 

2. 

 

4. Experiments 

To examine the efficiency of the RSVR-FL, we compare it with LS-SVR [9], classical L-

2-SVR [6] and robust support vector regression with insensitive quadratic loss function 

(RSVR-QL) [12] on benchmark data sets. All these algorithms employ quadratic loss 

functions. Gaussian kernel is chosen in the experiments. We adopt five popular regression 

criterions, root mean square error (RMSE), mean absolute error (MAE), mean relative error 

(MRE), ratio between the sum squared error SSE and the sum squared deviation testing 

samples SST (SSE/SST), and ratio between interpretable sum deviation SSR and SST 

(SSR/SST) [8], to evaluate these algorithms. All the experiments are implemented in Matlab 

7.0 in Core 3.00GHz, 2GB RAM. 

We select six popular benchmark data sets for our experiments, including Pyrim, Triazines 

and Servo which are from UCI
2
, Body fat, Pollution from StatLib

3
, and Diabetes from the 

web page
4
. The data set is randomly divided into two parts, while one is used for training and 

another for testing.  In this paper, we focus on outliers and hence we contaminate the training 

samples by adding large noise on their targets. The testing samples are not added noise. We 

repeat the above process 10 times with different partition of training and testing samples. 

Table 1. Experimental Results on Benchmark Data Sets 

Dataset Algorithm RMSE MAE MRE SSE/ 

SST 

SSR/ 

SST 

#SV Time(s) 

Servo  LS-SVR 0.7054 0.4194   0.4553 0.2126  0.8353 100 0.0342 
(167 4)  L-2-SVR 0.7105      0.4150 0.4417 0.2157 0.7785 98.4 57.6764 

 RSVR-QL 0.6920 0.3865 0.4088 0.2061 0.7567 86.7 0.0540 

 RSVR-FL 0.6695 0.3739 0.4011 0.1962 0.8075 80.7 0.0806 

Diabetes LS-SVR 0.5816 0.4734 0.1055 0.9009 0.4568 30 0.0070 
(43 2) L-2-SVR 0.5829 0.4731 0.1057 0.9062 0.3811 23.1 2.8326 

 RSVR-QL 0.5795 0.4687 0.1008 0.9461 0.8529 14.3 0.0177 

 RSVR-FL 0.5721 0.4559 0.1026 0.8983 0.6754 8.6 0.0298 

Pollution LS-SVR 39.8592 31.0642 0.0325 0.5358 0.8910 40 0.0083 

(60 16) L-2-SVR 39.8785 31.0743 0.0325 0.5361 0.8894 39.9 5.3624 

 RSVR-QL 37.9818 29.3810 0.0309 0.4795 0.7261 35 0.0187 

 RSVR-FL 37.7460 29.2860 0.0309 0.4730 0.6998 34.1 0.0252 

Pyrim LS-SVR 0.1056 0.0649 0.1959 0.5925 0.5729 50 0.0137 

(74 27) L-2-SVR 0.1047 0.0652 0.1952 0.5826 0.5715 31.9 9.0532 

 RSVR-QL 0.1045 0.0645 0.1966 0.5813 0.4058 46.8 0.0322 

 RSVR-FL 0.1013 0.0616 0.1971 0.5462 0.5498 32 0.0370 

Triazines LS-SVR 0.1481 0.1126 0.2884 0.9295 0.3356 150 0.0759 

(186 60) L-2-SVR 0.1486 0.1141 0.2903 0.9368 0.2966 149.1 168.8824 

                                                           
2 http://www.ics.uci.edu/~mlearn/MLRepository.html 
3 http://lib.stat.cmu.edu/datasets/ 
4 http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html 
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 RSVR-QL 0.1420 0.1088 0.2845 0.8403 0.2211 103.9 0.1529 

 RSVR-FL 0.1403 0.1039 0.2825 0.8233 0.2331 121.6 0.1252 

Bodyfat LS-SVR 0.0075 0.0056 0.0053 0.1868 0.7799 200 0.0854 

(252 14) L-2-SVR 0.0076 0.0057 0.0054 0.1931 0.7785 191.9 393.0776 

 RSVR-QL 0.0030 0.0015 0.0014 0.0357 0.9408 131.9 0.1286 

 RSVR-FL 0.0020 6.2054E 

-4 

5.8098 

 E-4 

0.0224 0.9768 55.1 0.1689 

The average testing results of these algorithms are reported in Table 1. The results indicate 

that the RSVR-QL and our proposed RSVR-FL enhance testing accuracies when compared 

with LS-SVR and L-2-SVR. In addition, the numbers of support vectors (#SV) obtained by 

the RSVR-QL and RSVR-FL are also less than those of SVR for most of the data sets. The 

main reason is that RSVR-QL and RSVR-FL employ non-convex loss function which can 

discard outliers as support vectors in the training process. As mentioned above, our RSVR-FL 

uses the loss function with more flexible coefficient and margin and gives a better chance to 

learn regression estimation. It outperforms RSVR-QL, which is verified in Table 1. 

Furthermore, it is shown by Table 1 that our RSVR-FL outperforms the other regressors in 

generalization. These results imply the RSVR-FL obtains a sparser regressor with good 

generalization. As for the running time (Time), Table 1 shows that our RSVR-FL requires 

less running time when compared with the L-2-SVR. But our RSVR-FL needs a little more 

running time than these of the LS-SVR and RSVR-QL. 

 

5. Conclusion 

In this paper, we propose a robust regression model, called RSVR-FL, which adopts a non-

convex quadratic loss function with more flexible coefficient and margin to suppress the 

influence of outliers. The robustness comes from the property of non-convex loss function, 

which is bounded. Since the proposed loss function is a non-convex one, we approximate it 

by a difference of two huber loss functions. Newton’s method is employed to solve the 

corresponding DC program. The RSVR-FL has shown better robustness and sparseness in 

numerical experiments. 
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