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Abstract 

Brain image segmentation is an important part of medical image analysis. Due to the effect 

of imaging mechanism, MR images usually intensity in homogeneity, which is also named as 

bias field. Traditional Gaussian Mixed Model (GMM) method is hard to obtain satisfied 

segmentation results with the effect of noise and bias field. We propose a novel model based 

on GMM and nonlocal information. The improved method coupled segmentation and bias 

field correction that can manage the bias field while segmenting the image. In order to obtain 

a smooth bias field, we employed the Legendre Polynomials to fit it and merged it to the EM 

framework. We also use the non local information to deal with the noise and preserve 

geometrical edges information. The results show that our method can obtain more accurate 

results and bias field.  
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1. Introduction 

Medical imaging technology has been used to prevent a qualitative and quantitative 

analysis of brain tissue [1]. Among many biological imaging methods, the magnetic 

resonance imaging (MRI) technology is very effective for the soft tissues such as the brain 

tissues due to its special imaging mechanism. The segmentation of magnetic resonance (MR) 

images is important for the study of many diseases, i.e. brain diseases [2]. 

Many image techniques have been used for image segmentation, i.e., thresholding method, 

the region growing method, the active contour model and the clustering method. The 

traditional active contour models can obtain continuous results, however, they usually only 

uses the edge information which makes them sensitive to the noise and week boundaries. 

Furthermore, the initial contour must be placed near the edges of the region of interesting. 

Because of the ambiguity of the internal brain organization and the inherent uncertainty of 

MR images, the active contour model is hard to obtain satisfied results. Recently, the fuzzy c-

means (FCM) [3] is widely used for brain MR image segmentation. However, this method 

only considers intensity of image, which makes it sensitive to the noise. Gaussian Mixed 

Model (GMM) [4, 6] is another widely used method and can obtain more satisfied results 

than the FCM methods. The traditional GMM is still sensitive to the noise. Further, this 

method is sensitive to the intensity in homogeneity. 

In this paper we proposed an improved GMM method based on nonlocal information [7] 

to reduce the effect of the noise, which can estimate the bias field when segmenting the 

images. In order to obtain smooth bias field, we used the Legendre polynomial [5] to fitting 

the bias field and integrated it into the EM framework.  
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2. Methods 
 

2.1. Traditional Gaussian Mixed Model 

For most MR images, the distribution of the intensity obeys Gaussian distribution. 

Gaussian Mixed Model can estimate distribution of each class. Let },,,{
21 N

xxxI   

denote an image with N  pixels, which can be divided into c  classes. Modeling each class by 

a Gaussian distribution with mean   and variance 
2

 , the probability density for class j  

can be written as: 
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where ,,2,1, ci
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  is the tissue class at position i  and ),(
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   is the parameters of 

the jth  class. Then the overall probability density of 
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x  is: 
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   is the Gaussian distribution parameters of the mixed model. 

)( jp
i
  is the priori probability of jth  class. The probability density for image I  can be 

written as: 
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The maximum likelihood estimates for the parameters 
j

  and 
j

  can be obtained by 

maximization of )|( Ip . 

EM algorithm is one of the wildly used methods for maximum likelihood estimation 

method for solving the model parameters from incomplete data. EM algorithm is simple and 

stable but it is dependent on the initialization and easily trapped into local optima. So we first 

use the fuzzy c-means to get the initial parameter 
)0(

  and then calculate the prior 

probability
)0(

P . The whole EM algorithm can be written as:  

Step 1. E-step: 
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Obviously, 
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x is more likely regarded as class m
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  Step 2. M-step: 
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2.2. Improved Gaussian Mixed Model 

The observed MRI signal J  is the product of the true signal I generated by the underlying 

anatomy and spatially varying field factor B, and an additive noise n : 

 BnIJ  )(   (8) 

Given the observed signal J , the problem is to estimate the true image I . To simplify the 

computation, we ignore the noise and take the logarithmic transform of both sides. 

 BnIBnIJ log)log())log((log   (9) 

Where B  is the bias field, which can be estimated by using Legendre polynomial functions: 
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)( . The Legendre polynomial functions can make the bias field smooth. In this 

paper, we set 4N . Then the improved GMM can be written as:   
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and  
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with }{
k

cC   is the bias field parameters. The parameters
j

 , 
j

  and 
k

c  can be calculated 

by maximizing the likelihood
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2.3. Improved GMM based on Non Local Information 

Gaussian mixture model is based on the gray scale information, which makes it sensitive to 

the noise. Local spatial information was introduced to reduce the effect of the noise by using 

neighbor information. Because the neighborhoods of each pixel contain both target and non-

target points when corrupted by noise, we need to increase the weight of the target point to 

avoid over-segmentation. We utilize non local information into the prior probability: 
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where ),( qiw  is a non local mean, 
r

i
W  denotes the neighbor of pixel i  with size rr  . 

),( qiw  is defined as: 
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Where, 1),(0  qiw  and 1),(  qiw ,
2

,2

)()(
a

qi
MvMv   is a weighted Euclidean 

distance of intensity gray level vectors )(
i

Mv  an )(
q

Mv . 
q

M  denotes a square 

neighborhood centered at a pixel q  which is usually fixed as rr  . h  is a degree which 

controls the decay of the function, )( iZ  is the normalizing constant. The pixel with a similar 

gray level neighborhood to )(
i

Mv  have larger weights .The non local means not only use the 

adjacent pixels, but the similar configuration in a whole neighborhood. It performed well at 

image denoising. 

 

3. Implementation and Results 

Experimental results on brain MR images are presented in Figure 1, 2. The brain MR 

image from brain web database of McGill University. Figure 1 shows the results of MR 

image with 3% noise and 80% INU. Due to the bias field, the traditional GMM failed to find 

the results while our method obtains satisfied results similar to the ground truth. In Figure 2 

shows the segmentation on the data with noise level 5% and INU level 80%. From the results 

we can find our method can reduce the effect of the noise. 

   

(a)                               (b)                            (c) 
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(d)                (e) 

Figure 1. 3% Noise and 80% INU (a) Original Image (b) Ground Truth (c) 
Estimated Bias Field use our Method (d) Result of our Traditional GMM (e) 

Result of our Method 

In order to measure the result of the experiment, we use the Jasccard Similarity (JS) to 

exam the accuracy of segmentation. 
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1
S  is the result of segmentation where 

2
S  is the ground truth. The better results have a higher 

JS. 

Figure 3 and Figure 4 shows the accuracy of segmenting WM and GM. The accuracy 

reduced when the image combined with noise level increased from 0% to 9% and the INU 

level increased from 0% to 80%. We can found that the traditional GMM had a poor 

performance on the segmentation of white matter when the INU level increased. Our method 

was stable when the INU level and noise level changed. 

 

 

Figure 2. 5% Noise and 80% (a) Original Image (b) Ground Truth (c) Estimated 
Bias Field use our Method (d) Result of our Traditional GMM (e) Result of our 

Method 
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Figure 3. JS for Different Noise Level under 80% INU Level, Solid Line is our 
Method and Broken Line is Traditional GMM Method 
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Figure 4. JS for Different INU Level under 3% Noise Level, Solid Line is our 
Method and Broken Line is Traditional GMM Method 

4. Conclusions 

In this paper, we proposed a method for MR segmentation and bias field correction using 

an improved Gaussian mixed model by using non local information to reduce the effect of the 

noise. The improved method can segment images meanwhile estimate the bias field. The 

results show that the presented method can accurately segments the brain MR images 

corrupted with bias field and noise. 
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