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Abstract 

In the field of computer vision and photogrammetry, it is constantly necessary to online or 

real-time acquire the camera parameters through self-calibration. This paper presents a 

method about self-calibration of camera with rotary motion based on SIFT feature matching. 

The proposed approach first shoots more than three images of the same scene by rotating the 

camera and keeping its position and internal parameters unchanging. After SIFT feature 

extraction and sequentially cycled matching for all images, the optimal reference image and 

effective images are determined by virtue of the algorithm on pose estimation. According to 

the coordinates of matched SIFT features, all 2D projection transformation matrices which 

transforms the reference into other effective images are calculated. With these matrices, 

relevant linear equations are established and the internal matrix of camera is solved. The 

proposed method can be online applied to quickly, accurately and stably obtain internal 

parameters of camera. Real data has been used to test the proposed approach, and very good 

results have been achieved. 
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1. Introduction 

The process of acquiring the parameters of camera geometric model is called camera 

calibration [1]. It is an essential step to extract three-dimensional space information from two-

dimensional images in the applications of image processing and computer vision, and is 

widely used in three-dimensional reconstruction, navigation, visual surveillance and other 

fields. Under certain camera model, camera calibration strikes camera parameters of the 

model with a series of mathematical transformations and calculations by virtue of the image 

processing. At present, there have been a lot of camera calibration methods, which contains 

traditional calibration and self-calibration.  

Traditional calibration is relatively mature and stable but based on specific experimental 

conditions, such as calibration references with known shape or size [2-5]. The traditional 

methods of using calibration references obtain a wide range of applications, which typically 

involve Tsai two-step method [2-3]. These traditional methods require using the calibration 

references in the process of shooting calibration images, which would bring great 

inconvenience into the camera calibration, since the use and position adjustment of 

calibration reference may result in the online task interrupted. 

Camera self-calibration does not require the use of calibration reference, and estimates the 

camera internal parameters based solely on the corresponding relationship between feature 

pixels of images, which makes online and real time calibrating camera parameters possible. 
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However, many existing self-calibration methods still cannot get stable results and be mature 

enough for practical application [6-10], and therefore need some ways to improve the existing 

self-calibration techniques. 

This paper presents a method about self-calibration of camera with rotary motion based on 

SIFT feature matching. The proposed approach requires fixing camera position, that is, 

camera not being displaced, but being rotated with unknown rotation angle. With the internal 

nature of the captured image sequence under the special shooting conditions, the complex 

problem solving nonlinear self-calibration is simplified, thereby solving the internal reference 

of camera based on SIFT feature extraction and matching. The proposed method provides a 

fast self-calibration solution with stable and accurate results. This makes online and real-time 

calibrating the internal parameters of camera possible in the case of no dependent calibration 

references, thus improving the existing camera self-calibration. 

 

2. The Proposed Approach on Camera Self-Calibration 

For the proposed approach, we make the camera fixed, and rotate it to shoot multiple 

images of the same scene under the condition of constant internal parameters. Then extract 

and match SIFT features of shooting images, and take advantage of the SIFT feature 

correspondence between the images to solve the self-calibration problem. The proposed 

approach is described as follows in details. 

2.1. Shooting the Images of Self-Calibration 

Camera is fixed at the same position in the 3D world space, and is rotated to different 

directions to capture images of the same scene. In the course of capturing image sequences, 

we remain internal reference matrix K  unchanged. We assume that L images (L3) are 

captured as the input images of the proposed method.  

K  is an upper triangular matrix representing camera internal parameters. 

 0

0 0 1

u u

v v

k s p

K k p

 

 

 

  

, (1) 

The goal of this self-calibration method is to determine the internal reference matrix K  of 

camera, where  

u
k  is the magnification in u direction (horizontal) of image, unit in pixels, 

v
k  is the magnification in v direction (vertical) of image, unit in pixels, 

s is the distortion factor corresponding to the distortion of camera axis, 

u
p  and 

v
p  are the principal point coordinates, unit in pixels. 

The parameters 
u

k  and 
v

k  are closely linked to focal length of camera. If 
u v

k k  and 0s  , 
u

k  

and 
v

k  are just focal length in pixels. 
u v

k k  means that the photosensitive array of camera 

contains square pixels. If 
u v

k k , 
u

k  is the ratio of the focal length f and the pixel size in u 

direction, and 
v

k  is the ratio of the focal length f and the pixel size in v direction. It means 

there are the following relationships. 

 
u u

f k d p x  , (2) 

  
v v

f k d p y  , (3) 

where 
u

f  and 
v

f  are effective focal length, or distance from image plane to projective center, 

unit in millimeters, and dpx and dpy are the pixel size of image plane, respectively in u and v 
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directions. 
u v

k k  means that the photosensitive array of camera contains non-square pixels, 

such as CCD camera situation. 

2.2. SIFT Feature Extraction 

SIFT is an image local feature based on scale space proposed by Lowe DG [11]. It remains 

invariant to rotation, scaling zoom, pan and even brightness changes, and also maintains a 

certain degree of stability to perspective changes, affine transformation, even noise. SIFT 

feature has good uniqueness and rich information, even though a handful of objects can also 

produce a lot of SIFT feature vectors [12]. Existing camera calibration methods are often 

based on some fixed geometric features such as corner points, lines, circles, etc in the images. 

Since these geometric features are assumed to exist in the scene, it confines the calibrating 

scene. As for the proposed self-calibration method, we extract SIFT features from the 

calibrating images, in order to ensure the extracted features invariant to rotation, scaling zoom, 

pan and even brightness changes. By the way, since it is not necessary to assume the 

existence of the fixed geometric features such as corner points, lines or circles in the scene, 

no restrictions or requirements are imposed on the shooting scenes. 

2.3. SIFT Feature Matching 

As for SIFT feature point matching between two images A and B, we adopt the Euclidean 

distance of two corresponding SIFT feature vectors as the similarity measure of two SIFT 

feature points. Here nearest neighbor ratio is applied in the specific determination of 

similarity. It is explained as follows. For a certain SIFT feature point a in image A, we find 

out the first nearest feature point b1 and the second nearest feature point b2 in the image B 

according to Euclidean distance. If the ratio of the first nearest Euclidean distance between a 

and b1 and the second nearest Euclidean distance between a and b2 is less than a certain 

threshold, for example 0.6, the pair of a and b1 is considered to be one pair of matched SIFT 

points. If this ratio threshold is reduced, the number of SIFT matched point pairs will be 

reduced, but the match is more stable. 

For more images, after their SIFT feature points are extracted, the sequentially cycled 

matching is conducted among them, so as to determine the position of respective SIFT feature 

points in these images corresponding to same three-dimensional feature point. The 

sequentially cycled matching is described as follows. 

Suppose there are L images
0

I , 
1

I , ..., 
L -1

I , for each SIFT feature point  
i

p  in 
0

I ,we conduct 

the following round of SIFT feature matching. 

1) Search SIFT feature points in the images 
1

I ...
L -1

I  which can match 
i

p  in
0

I . If the 

matched SIFT feature point corresponding to 
i

p  can be found in every image of 
1

I ...
L -1

I , 

which are named as
0 ,1

p , 
0 ,2

p , 
0 ,3

p , …, 
0 ,L -1

p ,  go to Step 2). If not, this round of SIFT feature 

matching is over. 

2) Search SIFT feature points in the images 
2

I ...
L -1

I  which can match 
0 ,1

p  in 
1

I . If the 

matched SIFT feature point corresponding to 
0 ,1

p  can be found in every image of 
2

I ...
L -1

I , 

which are named as 
1 ,2

p , 
1 ,3

p , …, 
1 ,L -1

p ,  go to Step 3). If not, this round of SIFT feature 

matching is over. 

3) Search SIFT feature points in the images 
3

I ...
L -1

I  which can match 
0 ,2

p  in 
2

I . If the 

matched SIFT feature point corresponding to 
0 ,2

p  can be found in every image of 
3

I ...
L -1

I , 

which are named as 
2 ,3

p , …, 
2 ,L -1

p ,  go to Step 4). If not, this round of SIFT feature matching is 

over. 

…… 
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L-2) Search SIFT feature point in the image 
L -1

I  which can match 
0 ,L -2

p  in 
L -2

I . If the 

matched SIFT feature point corresponding to 
0 ,L -2

p  can be found in the image 
L -1

I , which is 

named as 
L -2 ,L -1

p ,  go to step L-1). If not, this round of SIFT feature matching is over. 

L-1) If 
0 ,2 1 ,2

p p  in 
2

I ,and 
0 ,3 1 ,3 2 ,3

p p p   in 
3

I , ……, and 
0 ,L -1 1 ,L -1 L -2 ,L -1

p p ... p    in 
L -1

I , this round 

of SIFT feature matching is successfully over, and  
i

p  in 
0

I , 
0 ,1

p  in 
1

I , 
0 ,2

p  in 
2

I , …, 
0 ,L -1

p  in 
L -1

I  

are saved as matched SIFT feature points corresponding to same three-dimensional feature 

point.  

The sequentially cycled matching can ensure correctly matching SIFT feature points to a 

maximize degree. After SIFT feature extraction and matching, we get matched SIFT feature 

points in multiple images corresponding to same three-dimensional feature point. Actually, 

for the subsequent processing step, it is enough to just save the pixel location of every SIFT 

feature point extracted from SIFT feature vector. 

2.4. Determine the Optimal Reference Image and Effective Images 

We hope that the proposed self-calibration approach adopt the calibration images with 

bigger rotation angle as far as possible, in order to achieve better calibration results. So we 

design the approach to provide automatically filtering of the input images in the pre-

processing stage. For every input image, this pre-processing stage focuses on automatically 

calculating the relatively rotational orientation between this image and all other images which 

includes the rotation angles of three coordinate axes. Those images whose relative rotation 

angle in any direction is greater than a predetermined angle (for example 30 degrees) are 

considered to be the effective candidate images about this input image. The input image with 

the largest number of effective candidate images is determined as the optimum reference 

image, and the image and its effective candidate images are considered as the effective 

images of the proposed self-calibration approach. If the number of the effective images is less 

than 3, all input images are considered as the effective images, so that the self-calibration can 

be performed due to this performing condition where the self-calibration method requires at 

least three input images. We name the optimum reference image as 
0

E I , and all images in the 

following steps means the effective images, which are named as 
0

E I ,
1

E I ,...,
N -1

E I . 

Since we select images which are more suitable for rotational motion self-calibration 

method based on the relative orientation among images in the pre-processing stage, the better 

calibrating results can be achieved. If there is not enough effective images, applying all 

images to the proposed self-calibration method will make the calibrating results not so bad, 

especially in the case of a large number of images. 

The algorithm about calculating the relatively rotational orientation between two images 

[14] is revealed in Section 3. 

2.5. Calculating 2D Projection Transformation 

After the pre-processing stage, we select 
0

E I  as the reference image. For every image 

j
E I (j=1…N-1) of effective images except for 

0
E I , we compute 2D projection transformation 

j
P  which transforms 

0
E I  into 

j
E I . Determining all N-1 

j
P  mainly involves two steps, where 

one is calculating N-1 
j

P  using a linear method, and two is iteratively refining N-1 
j

P   using 

Levenberg-Marquardt optimization method. 

1) Calculating N-1 
j

P  using a linear method 

Suppose that 0 0 0 T

i
u ( , ,1)

i i
u v  and j T

i
u ( , ,1)

j j

i i
u v  are two pixel positions about the ith pair of 

matched SIFT features between the image 
0

E I  and the image 
j

E I , 0 0 0 T

i
u ( , ,1)

i i
u v  is in 

0
E I , and 
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j T

i
u ( , ,1)

j j

i i
u v is in 

j
E I , the following equation between the pair of matching pixels is always 

established. 

 T 0 0 T
( , ,1) ( , ,1)

j j j

i i i j i i
w u v P u v  (4) 

where j

i
w  is unknown. Let 

  
1 2 3

4 5 6

7 8 9

j j j

j j j j

j j j

p p p

P p p p

p p p

 

 

 

 
 

. (5) 

After eliminating the unknown j

i
w  from equation (4) and rearranging the equation, we can get  

  
0 0 0 0

1 2 3 4 5 6 7 8 9

0 0 0 0

1 2 3 4 5 6 7 8 9

0 0 0 ( ) ( ) ( ) 0

0 0 0 ( ) ( ) ( ) 0

j j j

i j i j j j j j i i j i i j i j

j j j

j j j i j i j j i i j i i j i j

u p v p p p p p u u p v u p u p

p p p u p v p p u v p v v p v p

               


              

. (6) 

The formula (6) is a group of equation including two equations involving nine unknown 

items of 
j

P , which means that there are two equations involving nine unknown items of 
j

P  

inferred from a pair of matched SIFT feature points. Thus, four pairs of matched SIFT feature 

points can bring about an equation group including eight equations involving nine unknown 

items of 
j

P , so 
j

P  can be determined in the meaning of a scale factor difference when 
9j

p ＝1. 

When there are M (M5) pairs of matched SIFT feature points between 
0

E I  and 
j

E I , we can 

get an over-determined system of linear equations with the following form. 

  p 0A  , (7) 

where A  is a 2M×9 matrix, and T

1 2 3 4 5 6 7 8 9
p ( , , , , , , , , )

j j j j j j j j j
p p p p p p p p p  is a column vector from the 

items of 
j

P . The over-determined system of linear equations (7) can be solved to determine p  

by virtue of SVD decomposition or Jacobi method, which make || p ||A  minimize and ||p ||= 1  

where || ||  means the magnitude of vector. 

2) Iteratively refining N-1 
j

P   using Levenberg-Marquardt optimization method 

From equation (4), we introduce the vector T

i 1 2 3
y ( , , )

i i i
y y y , and let 

  
j

i
i

u y
j

P , (8) 

where 
j

iu  is the adjusted value of j

i
u , and 

i
y  is the adjusted value of 

i
y . Using Levenberg-

Marquardt optimization method aims to calculate 
j

P  and 
i

y  by iterative refinement, and make 

the error indicated by formula (9) minimize.  

  
j

j 2

i
i

1 ... 1

0 ... 1

( u , u )

j N

i M

d

 

 

 , (9) 

The initial value of 
j

P  can take the value linearly determined in the step 1), and the initial 

value of 
i

y  can take 0

i
u . In fact the vector 

i
y  can be considered as the direction of 

corresponding 3D point in the scene projection reconstruction space, and calculating 
j

P  and 

i
y  is equal to the projection reconstruction of the scene. 

3) Transforming 
j

P  into a value with unit determinant 

For every 
j

P , let 
j j j

B P  so as to d e t( ) 1
j

B  . It is easy to know that 3 1 / d e t( )
j j

P   , thus 
j

P  

can be transformed into 
j

B  with unit determinant as follows 

  3 1 / d e t( )
j j j

B P P  , (10) 
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2.6. Computing Internal Reference Matrix K  of Camera 

Search an upper triangular matrix K  to make 1

j j
K B K R


 (j=1, 2…N－1) become a rotation 

matrix where K  is the internal reference matrix of camera, and 
j

R  represents the rotation 

matrix of 
j

E I  relative to 
0

E I . According to the property - T

j j
R R  of the rotation matrix, we get 

-1 - -T T T

j j
K B K K B K , i.e., 

  T T T

j j
B K K B K K .  (11) 

Let 

  =
T

a b c

C K K b d e

c e f

 

 


 
 
 

. (12)     

Since C is a symmetric matrix, the equation (11) is become as follows. 

  T

j j
B C B C . (13) 

For every 
j

B , after expanding matrix multiplication in the equation (13), and eliminating 

redundant equations, we can get six homogeneous linear equations involving six unknowns a, 

b, c, d, e and f. So, there are the following steps: 

1) From N-1 
j

B , we establish a homogeneous over-determined system of linear equations 

as follows. 

  '
0X C  , (14) 

where '
( , , , , , )

T
C a b c d e f  is a vector consisted of the independent items of C, and X is a 6(N-1)×

6 matrix. The least-square solution of '
C  is the eigenvector corresponding to the minimum 

eigenvalue of T
X X [13]. By conducting SVD decomposition of X or using Jacobi method, we 

can find the smallest eigenvalue of symmetric matrix T
X X . 

2) For the generated C, it is necessary to judge if it is a positive definite matrix. If not, C is 

abandoned. Otherwise, go to step 3). 

3) According to C＝KK
T
, solve K by virtue of Cholesky decomposition. If the diagonal 

terms of K are required to be positive, the Cholesky decomposition is unique 

 

3. The Algorithm on Pose Estimation between Two Images 

The algorithm about calculating the relatively rotational orientation between two images is 

as follows. 

1) Preprocess the image pixel coordinates. 

The basic assumption of pre-processing is that the coordinate of main point is in the center 

of the image. As for the estimation algorithm, this assumption is reasonable. Although the 

main point of the actual image will have some offset relative to the center, the offset is very 

small. Using this assumption can estimate the positional relationship between the images in 

the case of the unknown focal length. 

The preprocessing mainly focuses on move the image pixel coordinates to the vicinity of 

predicted main point. As far as SIFT feature extraction is concerned, the origin of the image 

pixel coordinates is located in the upper left corner of the image. The translational motion of 

the preprocessing aims to move the origin to the center of the image. 

2) Calculate the basis matrix Q between two images, according to the preprocessed image 

pixel coordinates and their corresponding relationship. 

3) Execute SVD decomposition of Q, so as to T
Q U D W , and det(U)=det(V)=1, where 

V=WE, and  
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0 1 0

1 0 0

0 0 1

E

 

 
 
 
 
 

. (15) 

Let r and s represent two largest singular values which comes from two diagonal elements of 

matrix D. 

4) Construct two matrices 
1

M  and 
x

M [14]. 

  

1 1 1 3 1 2 1 3 1 3 1 3 1 1 1 1 1 2 1 2

1 1 2 3 1 2 2 3 1 1 2 3 1 1 2 1 1 2 2 2

1

2 1 1 3 2 2 1 3 2 3 1 3 2 1 1 1 2 2 1 2

1 1 2 3 2 2 2 3 2 3 2 3 2 1 2 1 2 2 2 2

U U U U U

U U U U U

U U U U U

U U U U U

V V V r V s V

V V V r V s V
M

V V V r V s V

V V V r V s V

 

 


 
 

 
 

 (16) 

  

1 3 1 1 1 3 1 2 1 2 1 2 1 1 1 1 1 3 1 3

1 3 2 1 1 3 2 2 1 2 2 2 1 1 2 1 1 3 1 3

2 3 1 1 2 3 1 2 2 2 1 2 1 1 1 1 1 3 1 3

2 3 2 1 2 3 2 2 1 2 1 2 1 1 1 1 1 3 1 3

-sU -rU rU sU rsU

-sU -rU rU sU rsU

-sU -rU rU sU rsU

-sU -rU rU sU rsU

x

V V V V V

V V V V V
M

V V V V V

V V V V V

 

 


 
 

 
 

 (17) 

Then calculate the determinant 3

1 1 3
( ) d e t( )

x
p x M xM a x a x    . Determine the values of 

constants 
1

a  and 
3

a  using the following algebraic methods. That is, let x=1 and x=2 

respectively, we can get the following group of equations. 

  1 3 1

1 3 1

d e t( )

2 8 d e t( 2 )

x

x

a a M M

a a M M

  


  

 (18) 

We can acquire the values of constants 
1

a  and 
3

a  by solving equation group (18). 

If
1 3

/ 0a a  , the pose problem has no solution and the algorithm terminates. Otherwise, 

let
1 3

/x a a  . 

5) Solve the equation 
1

( )( , , ,1) 0
T

x
M xM      to obtain the values of  ,   and  , and construct 

two matrices 
, ,

X
  

 and *

, ,
X

  
 as follows [14], 

  
, ,

0

0

0 0

r

X s
  







 

 

 
 
 

, *

, ,

0 0

0 0

s

X r

s r rs

  





 

 

 

 
 
  

 (19) 

where r and s are two largest singular values of matrix D in step 3). 

6) Construct the products 
, ,

T
U X V

  
 and *

, ,

T
U X V

  
, and calculate 

1
k  and 

2
k  by the following 

equation, 

  
2

2 3 1 3 1

2

1 1 3 1 3

/

/

k x g f

k f x g

 




 (20) 

Where 
ij

f  and 
ij

g  represent the corresponding items in the matrix 
, ,

T
U X V

  
 and *

, ,

T
U X V

  
. If the 

solved 
1

k  and 
2

k  are imaginary numbers, the pose problem has no solution and the algorithm 

terminates. 

7) Calculate the matrix
2 1

Q K Q K  , where 
1

k  and 
2

k  are the following diagonal matrix. 

  
1

1

1 0 0

0 1 0

0 0

K

k

 

 

 
 
 

, 
2

2

1 0 0

0 1 0

0 0

K

k

 

 

 
 
 

 (21) 

8) Execute SVD decomposition of Q  , so as to T
Q U D V    .  
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Let the camera projection matrix 
1 1

( | 0 )P K , then 
2

P  should be set to one of the following 

four matrix[14]: 

 

2 2

2 2

2 2

2 2

( | ( 0 , 0 ,1) )

( | ( 0 , 0 ,1) )

( | ( 0 , 0 ,1) )

( | ( 0 , 0 ,1) )

T T

T T T

T T

T T T

K U E V K U

K U E V K U

K U E V K U

K U E V K U

  

  

  

  

 (22) 

According to the fact that the matching points must be located in front of the camera, we can 

make a correct select of 
2

P . The specific process is as follows. 

(a) Select any pair of matched SIFT feature points, and let them be 
1 2

( , ,1)
T

x x x  and 

1 2
( , ,1)

T
x x x   , and 

1 2 3
( , , )X X X X  and 

1 2 3
( , , )X X X X     represent their 3D coordinates. According to 

the epipolar geometry, there is a relationship between  X  and X   as equation (23). 

  ( )X R X T   , (23) 

where R represents rotation matrix, and T represents translation matrix, and they are 

respectively set to the left and right part in one of four matrix in (22). According to equation 

(23), we can get 

  1 31 1

1

3 3 3 3

( / )( )

( ) ( / )

R x T XX R X T
x

X R X T R x T X

 
   

  
, (24) 

where 
i

R  means the ith row of matrix R. After the deformation on equation (24), the equation 

(25) is available. 

  1 1 3

3

1 1 3

( )

( )

R x R T
X

R x R x





 (25) 

Thus, the three-dimensional coordinates of X are achieved as follows. 

  
1 1 3 2 2 3

,X x X X x X   (26) 

According to equation (23), the coordinates 
1 2 3

( , , )X X X X     can be similarly determined. 

(b) In accordance with Step (a), when we select one of four matrix in (22) and set R and T 

respectively to be the left and right part in this matrix, if the solved 
3

X  and 
3

X   are all positive, 

the selected matrix is the final result, and the rotation matrix R between two images is finally 

determined. 

9) Determining the relatively rotational angles between two images. 

According to the rotation matrix R, the angles of rotation can be obtained. The rotation 

angles are commonly expressed with the Euler angles, i.e., precession angle  , nutation angle 

 , and spin angle  . According to the relevant knowledge of the rotation matrix, we can get 

the following results. 

  

3 1

3 2 3 3

2 1 1 1

s in ( )

ta n ( ) /

ta n ( ) /

R

R R

R R







 





 (27) 

where 
ij

R  represents an item of rotation matrix R. By the knowledge of trigonometric 

functions, it is easy to solve three rotational angles between two images. 

 

4. Experimental results 

We took real images to confront our proposed framework with the real world. The camera 

to be calibrated is an off-the-shelf Panasonic AW-E300 CCD camera. The image resolution is 

720×576. Only three groups of real images which come from three difference scenes are 

shown in the paper due to space limitation, as can be seen in Figures 1-3.   
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Figure 1. Group 1 of Real Images for Camera Self-Calibration 

 

Figure 2. Group 2 of Real Images for Camera Self-Calibration 

 

Figure 3. Group 3 of Real Images for Camera Self-Calibration 

We adopted the proposed self-calibration to calibrate each image group, and presented the 

calibrated results of intrinsic parameters in Table 1, where the second, third and last rows are 

for Group 1 of image in Figure 1, Group 2 of image in Figure 2 and Group 3 of image in 

Figure 3, respectively. In Table 1, f  is effective focal length, or distance from image plane to 

projective center, unit in millimeters.  Here we let 
u

f f . q is the image size factor about 

internal parameters and determined by /
u v

q f f . 

Table 1. Calibration Results of Intrinsic Parameters Applying the Proposed 
Self-Calibration Approach Respectively to Three Image Groups Shown in 

Figures 1-3 

images ku kv f pu pv s q 

Group 1 1066.16 1128.66 10.70 351.20 283.64 1.26 1.07 

Group 2 1045.83 1115.64 10.49 368.64 295.84 1.31 1.07 

Group 3 2781.13 2993.26 27.91 351.15 282.83 1.10 1.06 

During the self-calibration process, we detected a set of 2D feature points from every input 

image using SIFT detector respectively and matched the feature points using the sequentially 

cycled matching algorithm in Section 2.3. As we can see from the calibration results of 

intrinsic parameters, the calibrated coordinate (
u

p , 
v

p ) is very close to the ideal computer 

image coordinate (360, 288) of the origin in the image plane, and the calibrated distortion 

factor s is very close to 0, so our proposed self-calibration approach actually yields good 

calibration results. 

We further evaluated the self-calibration accuracy by how well it can sense the 3D world. 

For each group of image, we applied the calibrated camera parameters to back project every 

3D feature point into the image plane and computed the Euclidean distance between back-

projected 2D feature point and real SIFT feature point. Then we averaged the Euclidean 
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distances about all back-projected 2D feature points to obtain the mean back-projected error. 

In addition, we computed the standard deviation of the back-projected error. The mean back-

projected error and the standard deviation are presented in the second and third columns in 

Table 2, respectively. As we can see from Table 2, the mean back-projected error and the 

standard deviation for the self-calibration are all lower than 1 pixel, which is satisfactory in 

many real computer vision and photogrammetry tasks. 

Table 2. The Mean Back-Projected Error and the Standard Deviation for Three 
Image Groups 

images 
the mean back- 

projected error 

the standard 

deviation 

Group 1 0.641 0.560 

Group 2 0.208 0.432 

Group 3 0.586 0.525 

For our experiments，we used a PC platform with 2.5GHz Intel Core i5-2450M processor, 

4G RAM and Windows 7 to run the proposed self-calibration method implemented in C++. 

We recorded the computation time of obtaining the calibrated results as shown in Table 6. 

The computation time for the calibration method includes the time t1 for detecting and 

matching SIFT feature points, the time t2 for self-calibration and the time t3 for 

reconstructing and back projecting 3D feature point. As we can see from Table 3, except that 

the time of detecting and matching SIFT feature points is nearly or less than two second, the 

computation time for self-calibration and reconstructing 3D feature point is far less than one 

second, which has been very pleasing and encouraging without interrupting the execution of 

computer vision and photogrammetry tasks. 

Table 3. The Computation Time of Calibration for Three Image Groups 

images t1 (s) t2 (s) t3(s) 

Group 1 2.012 0.018 0.110 

Group 2 1.685 0.016 0.031 

Group 3 1.794 0.031 0.047 

 

5. Conclusion 

This paper presents a method about self-calibration of camera with rotary motion based on 

SIFT feature matching. The proposed approach requires fixing camera position, that is, 

camera not being displaced, but being rotated with unknown rotation angle. The proposed 

self-calibration approach extracts and sequentially cycled matches SIFT features for all 

images. Then determines the optimal reference image and effective images and calculates 2D 

projection transformation matrices for effective images. Finally establishes relevant linear 

equations so as to acquire the internal reference matrix of camera. The proposed method can 

be applied to quickly, accurately and stably obtain internal parameters of camera. This makes 

online and real-time calibrating the internal parameters of camera possible in the case of no 

dependent calibration references, thus improving the existing camera self-calibration. 
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