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Abstract 

This paper presents a general framework for seamlessly combining multiple low cost and 

inaccurate estimated segmentation maps (with an arbitrary number of regions) of the same 

scene to achieve a final improved segmentation. The proposed fusion model is derived from 

the well-known precision-recall criterion, specially dedicated to the specific clustering 

problem of any spatially indexed data and which is also efficient and widely used in the vision 

community for evaluating both a region-based segmentation and the quality of contours 

produced by this segmentation map compared to one or multiple ground-truth segmentations 

of the same image. The proposed combination framework is here specifically designed to be 

robust with respect to outlier segmentations (that appear to be inconsistent with the 

remainder of the segmentation ensemble) and includes an explicit internal regularization 

factor reflecting the inherent ill-posed nature of the segmentation problem. We propose also a 

hierarchical and efficient way to optimize the consensus energy function related to this fusion 

model that exploits a simple and deterministic iterative relaxation strategy combining the 

different segments or individual regions belonging to the segmentation ensemble in the final 

solution. The experimental results on the Berkeley database with manual ground truth 

segmentations show the effectiveness of our combination model. 

 

Keywords: cluster ensemble algorithm, combination of multiple segmentations, F-measure, 

precision-recall, segmentation ensemble 

 

1. Introduction 

Image segmentation is a low-level vision task which is often the preliminary step in the 

development of many high-level image understanding algorithms and computer vision 

systems such as reconstruction problems [1] or 3D object localization/recognition [2, 3]. 

A plethora of region-based segmentation methods have been proposed so far to solve the 

difficult unsupervised segmentation problem of textured natural images. Most of these 

methods exploit first a texture feature extraction step (whose goal is to characterize each 

meaningful textured region to be segmented) followed by a clustering technique, attempting 

to group (with different criteria or strategies) spatially coherent regions sharing similar 

attributes. Years of research in segmentation have thus focused on finding more sophisticated 

image features and/or more elaborate clustering techniques and significant improvements in 

the final segmentation results have been achieved, generally at the cost of an increase in 

model complexity and/or in computational complexity. These methods include segmentation 

models exploiting directly clustering schemes [4, 5, 6, 7] using Gaussian mixture modeling, 
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fuzzy clustering approach [8, 9] or fuzzy sets [10] or after a possibly de-texturing approach 

[7, 11, 12], mean-shift or more generally mode seeking based procedures [13-15], watershed 

or [16] region growing strategies [17], lossy coding and compression models [18, 16], 

wavelet transform [19], MRF [20-26], Bayesian [27] texton-based approach [28] or graph-

based models [29-31], variational or level set methods [32, 33, 34, 28, 35], deformable 

surfaces [36], active contour model [37] (with graph partitioning based approach [38] or 

curve-based techniques, iterative unsupervised thresholding technique [39, 40], genetic 

algorithm [41], self-organizing map, manifold learning technique, topology, symbolic object 

based approach [42] and spectral clustering [43] to name a few. 

A recent and effective alternative to these segmentation approaches consists in combining 

several quickly and coarsely estimated segmentation maps of the same scene associated with 

simpler segmentation model
1
 to achieve a final improved segmentation. In this strategy, 

instead of looking for the best segmentation algorithm (along with its optimal internal 

parameters) which is hardly possible considering the different types of existing images, one 

prefers to look for the best fusion model of segmentations, or more precisely for the most 

efficient criterion for fusing multiple segmentations. 

Combining multiple segmentations can be viewed as a special case of the so called cluster 

ensemble problem, i.e., the concept of combining multiple data clusterings for the 

improvement of the final clustering result, initially explored in the machine learning field [44-

46]. Indeed, a distinctive aspect of image data is its spatial ordering and image segmentation 

is a process of clustering spatially indexed data. Consequently the grouping of pixels into 

clusters must take into account not only the similarity in the feature space but also the 

requirement of their spatial coherence. This distinction allows defining the notion of spatial 

boundaries between different regions which does not exist in a simple clustering process. This 

characteristic, inherent to the spatially indexed data of any images, allows defining a very 

efficient criterion of good segmentation called the global F-measure [47] which will be used 

as criterion of our fusion model. It is worth mentioning that this ensemble segmentation 

problem can also be viewed as a special type of denoising problem in which each 

segmentation (to be fused) is in fact a noisy solution or observation and the final objective is 

to find a denoised segmentation solution which would be a consensus or a compromise (in 

terms of level of details, contour accuracy, etc.,) exhibited by each input segmentations. In 

some sense, the final fused segmentation is the average of all the individual segmentations to 

be combined according a defined criterion. 

Despite of decades of intensive research to find a universal region-based segmentation 

algorithm (and/or selected features) that can successfully segment all images, up to now; few 

works have been proposed on how to efficiently combine multiple (region-based) 

segmentations or label fields of the same scene. However, we can cite the fusion model 

proposed in [4] which merges the individual input segmentations in the within-cluster 

variance (or inertia) sense (for the set of local label histogram values given by each input 

segmentations) since, the final segmentation result is optimized by applying a K-means 

algorithm based fusion scheme. In the same vein, we can also cite the fusion scheme 

proposed in [48] which uses the same strategy but for the set of local soft labels (computed 

with a multilevel thresholding scheme) and for which the fusion procedure is thus achieved in 

the (somewhat) sense of the weighted within-cluster inertia. This fusion of (region-based) 

segmentation maps can also be achieved in the probabilistic Rand index [49] (PRI) sense, 

                                                           
1
 These initial segmentations to be fused can be given either by different (and ideally complementary) algorithms 

or by the same algorithm with different values of the internal parameters or seeds (for stochastic methods), or by 

using different features and applied to an input image possibly expressed in different color spaces or 

transformations (e.g., scale, skew, etc.,) or by other means 
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with a consensus function encoding the set of constraints, in terms of pairs of pixel labels 

(identical or not), provided by each of the segmentations to be combined. This PRI criterion 

can be optimized either with an algebraic optimization method [50] or with a random walking 

approach [51] (and combined with a mutual information based estimator for estimating the 

optimal number of regions in the final segmentation result), or with an Expectation 

Maximization (EM) algorithm [52] (combined with integer linear programming and applied 

on superpixels, preliminary obtained by an over-segmentation) or finally in the penalized PRI 

sense including a global constraint on the fusion process [53] (restricting the number and the 

size of the regions) with a Markovian approach and an analytical optimization method. Let us 

also cite the fusion model proposed in [45] in the evidence accumulation sense (and using a 

hierarchical agglomerative clustering model) and the one proposed in [54] in the variation of 

information sense (and using an energy-based model optimized by exploiting an iterative 

steepest local energy descent strategy combined with a connectivity constraint). 

The fusion model, proposed in this paper is an hierarchical energy-based model with a 

consensus (fusion) function derived from the well-known harmonic mean of precision-recall 

measure (or global F-measure) [47] widespread used for evaluating a soft (or possibly 

probabilistic) boundary map or the quality of contours produced by a region-based 

segmentation map (comparatively to a ground-truth segmentation obtained from an expert). In 

this new framework, we will see that the proposed resulting consensus energy-based fusion 

model of segmentation can be efficiently optimized by simply applying a deterministic 

relaxation scheme on each region (or superpixel) given by each individual segmentations to 

be combined. In addition, we will see how this model can be efficiently designed to be robust 

with respect to outlier segmentations. 

The remainder of this paper is organized as follows: Section 2 describes the combination 

model and the optimization strategy used to minimize the consensus energy function related 

to this model. Section 3 describes the generation of the segmentation ensemble to be fused by 

our model. Finally, Section 4 presents a set of experimental results and comparisons with 

existing segmentation techniques on the Berkeley natural image database (including, for 

quantitative evaluations, ground truth segmentations obtained from human subjects). 

 

2. Proposed Fusion Model 
 

2.1. The F Measure 

The global F measure (or harmonic mean of precision-recall measure) [47] provides a 

performance score, evaluating the agreement between region boundaries of a machine 

segmentation and its ground-truth segmentation
2
. This latter measure is, in fact, deduced from 

the well-known precision/recall values that characterize, in the image segmentation case, 

respectively the fraction of detections that are true boundaries and the fraction of true 

boundaries detected. 

Qualitatively, the precision measure (P) is defined as the fraction of detections that are true 

boundaries; this measure is low when there is significant over-segmentation, or when a large 

number of boundary pixels have poor localization. The Recall (R) measure gives the fraction 

of the true boundaries detected; a low recall value is typically the result of under 

segmentation and indicates failure to capture the salient image structure. Thus, precision 

                                                           
2
 Historically, the F-measure has its origin in the text mining literature for the purpose of document clustering. In 

this specific context, this measure is used to quantify the accuracy of a clustering solution, i.e., how close a 

clustering solution, given by a search engine (in response to a user’s query), is compared to a human-defined 

categorization [55]. 



International Journal of Signal Processing, Image Processing and Pattern Recognition  

Vol.7, No.3 (2014) 

 

 

64   Copyright ⓒ 2014 SERSC 

quantifies the amount of noise in the output of a detector, while recall quantifies the amount 

of ground-truth detected. In statistical terms, precision and recall are respectively related to 

the percentage of false positives (or false alarms) and miss detection rate. The performance of 

a boundary detector providing a binary output is represented by a point in the precision-recall 

plane. If the output is a soft (or possibly probabilistic) boundary representation, a parametric 

Precision-Recall curve expresses the compromise between absence of noise and fidelity to 

ground truth as the main parameter of the boundary detector varies. 

Image segmentation is not a well-defined task, since the level to which an image is 

subdivided is determined by the application at hand. In this context, the precision and recall 

measures are particularly meaningful since it is reasonable to characterize the higher level 

processing in terms of how much true signal is required to succeed (recall), and how much 

noise or false alarms can be tolerated (precision). A particular application can define a 

relative cost α between these two quantities, which focuses attention at a specific point on the 

precision-recall curve [47]. The F measure, defined as, 

PR

PR
F

)1( 



                                                                         (1) 

captures this trade off as the weighted harmonic mean of the precision and recall measures. 

The best F measure, for a given α (i.e., reflecting the optimal compromise between how much 

true signal is required and how much false alarm can be tolerated), thus allows to find the best 

segmentation method required (as a pre-processing step) in the development of a given high-

level computer vision system
3
. In our fusion model of multiple segmentations (of the same 

scene), we will see that α can efficiently act as a regularization term for the final fused 

segmentation result, favoring over segmentation for values close to zero and merging for 

values close to one (this will be explicit in Section 2.2 ). In addition, when a ground-truth 

segmentation is available, α is, by default, set to 5.0  (i.e., )/(2 RPPRF  ) in order to 

objectively evaluate the agreement between region boundaries of a machine segmentation and 

its ground-truth segmentation. 

This F measure based performance score was also recently used in image segmentation 

[47] as a quantitative measure to compare automatic segmentation of an image to a set of 

ground truth segmentations. This family of ground truth segmentations is, in fact, the multiple 

acceptable ground truth segmentations associated with each natural image and reflects the 

inherent variability of possible interpretations between each human observer of an image. 

This variability between observers, recently highlighted by the Berkeley segmentation dataset 

[56] is due to the fact that each human chooses to segment an image at different levels of 

detail. This variability is also due image segmentation being an ill-posed problem, which 

exhibits multiple solutions for the different possible values of the number of regions or 

segments not known a priori. 

Hence, in the absence of a unique ground-truth segmentation, this F measure based quality 

measure has to quantify the agreement of an automatic segmentation (i.e., given by an 

algorithm) with the variation in a set of available manual segmentations representing, in fact, 

a very small sample of the set of all possible perceptually consistent interpretations of an 

                                                           
3
 In this case, the maximal F measure, for a given application, (i.e., for a given α) on a precision-recall curve is 

generally used as a summary statistic for the performance of the detector on a set of images. The notation F@ 

recall, precision) represents the value of the highest F performance measure (of a binary classifier) existing on its 

precision-recall (or ROC) curve at coordinates (@), the measure of its recall performance (on x axis) and its 

precision performance (on y axis). 
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image [57]. The authors [56] address this concern by computing the mean F measure as a 

means of accounting for this variation in the ground truth set.  

More formally, let us consider a set of L manually segmented (ground truth) images 
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corresponding to an image. Let 
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S be the segmentation to be 

compared with the manually labeled set, the mean F-measure is simply defined by: 
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As a result, the F -measure will give a high score to a machine segmentation 
t

S which is 

consistent (in this criterion sense) with most of the segmentation results given by human 

experts. 

 

2.2. Consensus Energy-Based Fusion Model 

Let us consider now that we have at our disposal, a set of L segmentations 

},,,{}{
21 LLkk

SSSS 


 (associated with a same scene) to be fused in order to obtain a 

final improved segmentation result relatively to each member of
Lkk

S


}{ . In this context, the 

previously defined mean F measure on 
Lkk

S


}{  can be straightforwardly used as the 

consensus or cost function in this energy-based fusion model and in this framework, the 

consensus segmentation is simply obtained by the solution of the following optimization 

problem: 

)}{,(maxargˆ
Lkk
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n
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
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

                                                              (3) 

With 
n

S the set of all possible segmentations using n  pixels. In this way, this fusion model 

is a generative model of correct segmentation, which can also be considered as a likelihood of 

Ŝ , in the maximum 


F sense or equivalently in the Maximum Likelihood (ML) sense for 

this 


F  criterion, for the given segmentation ensemble 
Lkk

S


}{ (considered as a set of 

observations). Let us note that this optimization approach is also called the median partition 

[46] with respect to both the mean F  measure criterion (used in this application) and the 

segmentation ensemble
Lkk

S


}{ . 

In our application, in order to increase the robustness of our estimator 
F

Ŝ  relatively to the 

outliers, i.e., relatively to the possible segmentation maps belonging to 
Lkk

S


}{  far away 

(according to our F  measure-based criterion) from the averaged or fused segmentation 

result, (i.e., statistically speaking, relatively to an observation or subset of observations which 

appears to be inconsistent with the remainder of the segmentation ensemble), we have 

decided to weight the importance (or equivalently the confidence) of each segmentation of 

Lkk
S


}{ by a coefficient 

k
w  proportional to its mean F measure 5.0F  )}{,(

Lkkk
SS


. 

In this context, our final fusion model, generative of averaged segmentation, in the mean 

F  measure sense, is expressed by: 
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in which Z is a normalizing constant ensuring Lw

k

k
 , and   is a parameter controlling 

the decay of the weights, (e.g., for high values of  , 1
k

w k  and for small values of  , a 

large subset of the weights is close to 0 , thus removing the outliers which appears to be 

inconsistent with the remainder of the segmentation ensemble). 

 

 

Figure 1. Examples of Segmentation Ensemble and our Fusion Result 
(Algorithm FMBFM) 

From top to bottom; three first rows; K-means clustering results for the segmentation 

model described in Section 3. Input natural image from the Berkeley image database and final 

segmentation map resulting of our fusion model. 
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2.1. Fusion Model Optimization 

Our fusion model of several label fields, in the 


F  criterion sense, thus ends up as an 

optimization problem of a complex non-convex cost function with several local extrema 

across the lattice of possible clusterings 
n

S . 

The difficulty (and more precisely the non-convexity) of this optimization problem, lies in the 

fact that many different region-based segmentation images can give the same optimal binary 

boundary representation, (i.e., the one optimizing our criterion or ensuring the maximal mean 

F measure). Indeed, it is important to recall that the estimation of the F measure (see Eq. (1)) 

exploits a squared window search (or a window search with a ball shape) of a few pixels, 

(e.g., 3 pixels) in order to estimate both the percentage of false positives (or false alarms) and 

the miss detection rate between the binary boundary representation of the machine 

segmentation and the ground-truth segmentation. This window search based procedure is 

essential in order to take into account the fact that each contour of the ground truth 
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segmentations are not perfect and are hand drawn with a certain degree of accuracy. Due to 

this level of accuracy of a few pixels (2 or 3 pixel size), it is important to understand that each 

segmentation map whose binary boundary representation are within this aforementioned 

accuracy would be considered as similar. In this context, the boundary representation of the 

optimal region-based segmentation (solution of our fusion model) and the degenerate solution 

given by the boundary representation of this latter boundary representation (exhibiting a 

segmentation solution without spatial homogeneity, with one-pixel wide region corresponding 

to the contours) will give the optimal and maximum F  measure. 

In order to find a reliable estimation of  
F

S


  that efficiently maximizes this complex 

energy function and that leads to a region-based segmentation solution (and not a degenerate 

solution without spatial homogeneity), we must constrain the solution space in order to avoid 

region-based segmentation solutions with possibly one-pixel wide regions. In this context, the 

strategy used in [54], exploiting the local expression of the decrease (or increase) in the 

consensus function for each pixel update of this consensus segmentation to be estimated (thus 

avoiding the prohibitive calculus of the global consensus measure for the entire segmentation 

map thanks to a relaxation scheme based on a pixel-wise optimization strategy) is useless for 

our consensus measure based on the 


F  criterion. In order to avoid a prohibitive 

computational complexity, requiring the calculus of the global consensus criterion for the 

entire segmentation map, we have decided to apply an optimization procedure based on the 

set of superpixels
4,5

 existing in  
Lkk

S


, i.e., the set of regions or segments given by each 

individual segmentations to be fused. This strategy has a second important advantage. Indeed, 

it is logical to think that we could efficiently and spatially combine the strengths of multiple 

segmentation maps which, individually, might produce some poor segments or regions, (i.e., 

poor segmentation result for some sub-parts of the image) but for which there also often exist 

good segments (in other sub-parts of the image). The set of superpixels existing in  
Lkk

S


 

are likely to contain the different right segments or individual regions of the optimal 

segmentation solution. 

For the optimization procedure, we have chosen the simple Iterative Conditional Modes 

(ICM) introduced by Besag [60], i.e., a Gauss-Seidel relaxation, where superpixels (in our 

hierarchical approach) are updated one at a time. This iterative search technique is 

deterministic and simple, but has the disadvantage of requiring a proper initialization of the 

segmentation map close to the optimal solution. Otherwise it will converge towards bad local 

minima associated with our complex energy function. In order to solve this problem, we can 

take, as initialization (first iteration), the segmentation map 
 0

F
S


such as: 

 

 
  

Lkk
SS

F
SSFS

Lkk






 ,maxarg
0





                                                             (5) 

                                                           
4
 Let us note that the use of superpixels in an energy-based fusion procedure has been initially proposed in [58] 

with a different goal, namely the one of blending a spatial segmentation (region map) and a quickly estimated and 

to-be-refined application field, (e.g., motion estimation/segmentation field, occlusion map, etc.,) and in [59] for 

restoration application. 
5
 Another reliable strategy consists of initializing the ICM with the first NI optimal input segmentations (in the 

mean F measure sense) and to finally retain, after convergence of the ICM procedure, the segmentation result 

ensuring the highest mean Fα measure. This procedure allows improving very slightly the reliability of our fusion 

model but at a prohibitive computational cost. 
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i.e., in choosing for the first iteration of the ICM procedure, amongst the L segmentation to be 

fused, the one ensuring the maximal consensus energy (in the mean F measure sense) of our 

fusion model (Eq. (4))
5
. In our case, where our optimization problem is a maximization 

problem, ICM is an iterative steepest local energy ascent algorithm which searches to obtain, 

for each (super)-pixel to be labeled, the maximum energy label assignment. Starting with 
 0

F
S


, i.e., a solution not too far from the optimal solution (see Eq. (5)), ICM chooses, at each 

iteration and (sequentially) for each (super)-pixel, the label (of the final segmentation result), 

yielding the largest increase of the energy function, conditioned on the labels assigned to its 

neighbors. 

It is also worth mentioning that algorithmically, the computation of the largest increase of 

the energy function  
new

F


(see Algorithm 1) may be efficiently and quickly answered, in C++ 

by exploiting the BITSET class (which is is very similar to a regular array, but optimizing for 

space allocation, each element occupies only one bit) and appropriate Boolean operations 

(such as the logical AND bit-wise operator in order to estimate the precision and the recall 

values, between two binary contours-based segmentation maps, required to compute the F -

measure 
new

F


). Similar bit-wise operator and bit-set operations are also available in Matlab. 

Finally, the overall F measure-Based Fusion Model (FMBFM) algorithm with the iterative 

steepest local energy ascent strategy and the maximal energy label assignment of each 

superpixel belonging to  
Lkk

S


 is outlined in pseudo-code in Algorithm 1. 

 

3. Segmentation Ensemble Generation 

The initial segmentation maps, which will be fused by our fusion framework are simply 

given, in our application, by a K-means [61] clustering technique, with respectively; different 

features, several values of K and expressed in 12 different color spaces, namely; RGB, HSV, 

YIQ, XYZ, LAB, LUV, i123, h123, YCbCr, TSL, HSL, P1P2 (see [53] for a justification of 

these color spaces and for references), i.e.,. 

1. As the number of classes K of the K-means algorithm, we use for each image, a metric 

measuring the complexity, in terms of the number of different texture types, of a 

natural color image. This metric, introduced in [62] is herein defined as the measure of 

the absolute deviation (L1 norm) of the set of normalized histograms obtained for each 

overlapping squared fixed-size (Nw) neighborhood contained within the input image. 

This measure ranges in [0, 1] and an image with several different texture types will 

result in value of complexity close to 1. In our application, 

)(1
max

valuecomplexityKceilK                                             (6) 

where ceil(x) is a function that round x up to the nearest integer and 
max

K is an upper-

bound of the number of classes for a very complex natural image. In our application, 

we use three different values of 
max

K , namely 8
max

1
K , 

 
1

max

1

max

2
 KK  and 

2/
max

1

max

3
KK  . 

2. As input multidimensional feature descriptor, we used the set of values of the 

requantized color histogram, with equidistant binning, estimated around the pixel to be 

classified. In our application, this local histogram is equally re-quantized, for each of 

the three color channels, in a 
3

bb
qN   bin descriptor, computed on an overlapping 
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squared fixed-size (Nw = 7) neighborhood centered around the pixel to be segmented 

with two different values of qb, namely qb = 5 and qb = 4. 

For a total of 12 × (3 + 2) = 60 input segmentations to be fused. This generation process 

allows us to ensure the diversity required to obtain a good, (i.e., reliable) segmentation 

ensemble on which the final result will be conditioned. It is worth mentioning that the more 

varied the set of segmentations is, the more information for the consensus function (on which 

the fusion model is based) is available [53, 46] (conversely, it is logic to think that a 

combination of similar segmentation solutions could not give an improved segmentation that 

outperforms the individual ensemble members). 

 

 

Figure 2. Example of Fusion Convergence Result on Four Different 
Initializations for the Berkeley Image (n0 134052) 

Left: initialization and right: result at the convergence of our FMBFM model (12 

iterations). From top to bottom, the original image, the input segmentations (from the 

segmentation ensemble  
Lkk

S


which have the best and the L/2 = 30-th best 


F score and the 

input segmentation which have the worst 


F  score and one blind (or non-informative) 

initialization. 
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4. Experimental Results 
 

4.1. Setup and Initial Tests 

In all the experiments, we have considered our fusion model (see Eq. (4)) based on a 

segmentation ensemble  
Lkk

S


 generated as indicated in Section 3 (see Figure 1 for an 

example of segmentation ensemble generated by our K-means based procedure). In addition, 

for these initial tests, we have set 8
max

1
K , 16  and 86.0  (these values of the 

internal parameters of our fusion model will be explained in Section 4.2). 

First, we have tested the convergence of our iterative optimization procedure by taking, as 

initialization of our ICM-based iterative steepest local energy ascent algorithm, respectively, 

the input segmentations (of our segmentation ensemble   
Lkk

S


 which have the best, (i.e., 

maximal) 


F score, the L/2 = 30-th best score, the worst (i.e., minimal)  


F  score and one 

blind (or non-informative) initialization by considering an image spatially divided by K = 5 

horizontal rectangles with K different labels (see Figure 2 and 3). We can notice that our 

strategy, consisting in relaxing the set of superpixels belonging to the segmentation ensemble, 

remains robust to the initialization. We can also notice than our strategy, consisting in 

choosing for the first iteration of the ICM procedure, the segmentation (amongst the L 

segmentation to be fused) closest to the optimal solution of the consensus energy function of 

our fusion model (Eq. (4)), allows to improve somewhat the final segmentation result. 

Second, we have tested the role of the parameter   (see Eq. (4) and Algorithm 1.) on the 

obtained segmentation solutions. Figure 4 shows clearly that   efficiently acts as a 

regularization parameter of our fusion model favoring oversegmentation (for value close to 0) 

and merging (for value close to 1). 

 

 

Figure 3. From Lexicographic Order, Evolution of the Resulting Segmentation 
Map along the Iterations of the Relaxation Process for 1-] the Initial 

Segmentation which have the Best 


F  Score and 2-] for One Non Informative 

Initialization 
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Figure 4. Example of Segmentation Solutions Obtained for Different Values of 
 , from Top to Bottom and Left to Right,  = {0.5, 0.7, 0.8, 0.86, 0.9, 0.99} 

4.2. Performance Measures & Comparison With State-Of-The-Art Methods 

In these experiments, we have tested our fusion model as segmentation algorithm on the 

Berkeley segmentation database (BSD300) [56] for which the color images are normalized to 

have the longest side equal to 320 pixels. The segmentation results are then supersampled in 

order to obtain segmentation images with the original resolution (481 × 321) before the 

estimation of the performance metrics. 

In order to validate our segmentation model, several performance metrics will be estimated 

(for the entire image database) for an objective comparison with the other segmenters. These 

performance measures include the PRI [63] score which is highly correlated with human 

hand-segmentations [6] and widely used in the region-based segmentation field. This PRI 

score quantifies the percentage of pairs of pixel labels correctly classified in the segmentation 

results and a score equal to PRI=0.80 means that, on average, 80% of pairs of pixel labels are 

correctly classified in the segmentation results on the BSD300. 

In order to ensure the integrity of the evaluation, the internal parameters of our 

segmentation algorithm, namely 
max

1
K  required for the segmentation ensemble generation 

(see Section 3) and   (and to a lesser measure, the parameter  ) for the fusion model (see 

Eq. (4)) are tuned on the train image set by doing a local discrete grid search routine, with a 

fixed step-size, on the parameter space and in the feasible ranges of parameter values (namely 
max

1
K ∈ [5−10] [step-size = 1], α ∈ [0.5−1] [step-size = 0.02] and   ∈ [0.125−16] [step-size 

= a power of 2.0]. We have found that 
max

1
K = 8, α = 0.86 and   = 16

6
 is a good set of 

internal parameters leading to a very good PRI score of 0.80 (see Table 1). 

Consequently, a good strategy (in the case of a fusion model based on the F measure 

criterion) consists in proposing several over-segmentations in the segmentation ensemble and 

a high value of regularization for α, thus favoring a final segmentation result with contours 

predominantly found in this set of segmentations. 

For comparison, we now illustrate the results of our segmentation algorithm by showing 

the same segmented images (see Figures 7 and 8) as those shown in the fusion model 

proposed in [53, 54] and in the segmentation algorithms proposed in [12, 11]. The results for 
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the entire database will be available on the website of the author. It may be noted that our 

segmentation procedure gives a very competitive PRI score among the state-of-the-art 

segmentation methods recently proposed in the literature. Figure 5 shows respectively the 

distribution of the PRI measure and the number and size of regions obtained by our 

FMBFM algorithm over the BSD300. 

 

Figure 5. From Left to Right, Distribution of the -1- PRI measure -2- Number 
and -3- Size of Regions Over the 300 Segmented Images of the Berkeley Image 

Database 

We have also compared our segmentation method with the VoI metric [68], the GCE[56] 

and the BDE [69] (see Table 2) (for which a lower distance is better), showing that our 

method gives competitive results for some other metrics based on different criteria and 

compared to state-of-the arts. 

We have also tested the performance of our fusion method as segmentation method, in 

term of F measure (see Table 3). First, we should remember that this measure is best 

appropriate for contour detection methods giving a “soft” boundary representation since this 

benchmark measure also finds (from a soft edge map) the optimal threshold value ensuring 

the best F measure [70] over the BSD300. In this spirit, we will let this benchmark measure in 

choosing the optimal threshold on a soft contour map provided by averaging, 6 times, the set 

of “hard”, (i.e., binary) boundary representations of our segmentation method with K
max

, the 

number of classes of the segmentation step, varying in an interval containing an upper and 

lower bound of the number of classes, e.g., K
max

 ∈ [K
max

 : K
max 

+ 6]. We have obtained F = 

0.62@(R = 0.65, P = 0.59) for the BSD300, which remains competitive compared to the state-

of-the art existing segmentation methods and a significant improvement, compared to F = 

0.53@(R = 0.70, P = 0.42), the overall score obtained by the segmentation result achieved by 

a single K-means based segmentation map (with the features proposed in Section 3) for each 

image, without fusion method. 



International Journal of Signal Processing, Image Processing and Pattern Recognition  

Vol.7, No.3 (2014) 

 

 

74   Copyright ⓒ 2014 SERSC 

 

Table 1. Average Performance, in Term of PRI Measure, of Several (Region-
Based) Segmentation Algorithms on the BSD300, Ranked According to their 

PRI Score and Considering only the (Published) Segmentation Methods with a 
PRI Score above 0.75 

 

Table 2. Average Performance of Several Algorithms for Different Performance 
Measures (Lower is Better) on the BSD300 
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Table 3. Average Performance, in Term of F Measure, of Several Segmentation 
(Into Contours) Algorithms and Contour Detectors (in Parentheses) on the 

BSD300 

 

Figure 6. Evolution of the PRI (Higher is Better) as a Function of the Number of 
Segmentations (L) to be Fused for our FMBFM Algorithm. More Precisely for L 

= 1, 5, 10, 15, 20, 30, 60 Segmentations (by Considering First, One K-means 
Segmentation and then by Considering 5 Segmentation for each Color Space 

and 1, 2, 3, 4, 6, 12 Color Spaces) 
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Figure 7. Example of Segmentations Obtained by our Algorithm FMBFM on 
Several Images of the Berkeley Image Database (see also Tables 1, 2 and 3 for 
Quantitative Performance Measures and on the Website of the Author for the 

Segmentation Results on the Entire Database) 
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Figure 8. Example of Segmentations Obtained by our Algorithm FMBFM on 
Several Images of the Berkeley Image Database (see also Tables 1, 2 and 3 for 
Quantitative Performance Measures and on the Website of the Author for the 

Segmentation Results on the Entire Database) 



International Journal of Signal Processing, Image Processing and Pattern Recognition  

Vol.7, No.3 (2014) 

 

 

78   Copyright ⓒ 2014 SERSC 

4.3. Discussion 

As we can  notice, our method of fusion of simple, quickly estimated segmentation results 

appears to be very competitive for different kinds of performance metrics and thus appears as 

an interesting alternative to complex, computationally demanding segmentation models 

existing in the literature. We can also observe (see Figure 6) that the PRI performance 

measures are better when L (number of segmentation to be fused) is high. This experiment 

shows the validity of our fusion procedure and shows also that our performance scores are 

perfectible if the segmentation ensemble is completed by other (and different and/or ideally 

complementary) segmentation maps (of the same scene). 
 

4.4. Algorithm 

The segmentation procedure takes, on average, between 70 and 90 seconds for a Core i7 

Intel© , 3.2 GHz, 6403 bogomips and non-optimized code running on Linux. More precisely, 

the two steps, (i.e., 1] estimations of the L = 60 weak segmentations to be fused and 2] the 

minimization step of our fusion procedure) takes respectively, on average, one minute for the 

segmentation ensemble generation and less than 30 seconds for the fusion step and for a 320 

× 214 image. Let us add that the initial segmentations to be fused and the proposed energy-

based fusion method can be easily computed in parallel. It is straightforward for the 

generation of the segmentation ensemble but also truth for our fusion model by considering a 

Jacobi-type version of the Gauss-Seidel based ICM procedure [71]. The final energy-based 

minimization can be efficiently implemented by using the parallel abilities of a graphic 

processor unit (GPU) (embedded on most graphics hardware nowadays available on the 

market) and can be greatly accelerated (up to a factor of 200) as indicated in [71].  

Source code (in C++ language) of our algorithm with the set of segmented images are 

publicly available at the following http address http://www.iro.umontreal.ca/~mignotte/ 

Research Material/fmbfm.html in order to make possible eventual comparisons with future 

segmentation algorithms or different performance measures. 
 

5. Conclusion 

In this paper, we have presented a new and efficient fusion model of segmentation based 

on a consensus energy-based fusion procedure whose goal is to combine, in the precision-

recall sense, multiple (simple) segmentation maps to achieve a final improved segmentation 

result. This framework of segmentation combination performs well compared to the best 

existing state-of-the-art segmentation methods and thus appears as an interesting alternative 

to complex segmentation models existing in the literature. It remains simple to implement, 

perfectible (by increasing the number of segmentation to be fused), robust to outliers and is 

easily parallelizable (and thus especially well-suited for the next generation massively parallel 

computers, embedded graphics or multi-core processors). In addition, the proposed 

hierarchical optimization approach based on a deterministic relaxation scheme combining the 

set of superpixels belonging to the segmentation ensemble is simple, efficient and also 

general enough to be applied to other fusion models of label fields (in the sense of other 

criteria). Furthermore, this fusion model includes an explicit internal regularization factor 

reflecting the optimal compromise between how much true signal is required and how much 

false alarms can be tolerated in the resulting segmentation map, thus allowing to design the 

appropriate fusion model allowing to find the best segmentation map required, as a pre-

processing step in the development of a given high-level computer vision system. 
 

 

http://www.iro.umontreal.ca/mignotte/
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