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Abstract 

In order to realize the high precision real-time measurement for the static objects, three 

coding-pitches triangular patterns phase-shifting profilometry based on modified Sunzi 

Theorem (ST) was proposed in this paper. First, according to Sunzi Theorem, the triangular 

pattern is designed. This Sunzi Theorem was adopted to unwrap three wrapped coordinate 

acquired from triangular patterns fringe images. The greatest common divisor of coding-

pitches is obtained by the used projector. In unwrapping processing, the wrapped coordinate 

is considered as remainder of the absolute coordinate modulo of the coding-pitch. Generally 

there are two kinds of rounding policies for the remainder in real number set. If the rounding 

policy selection is wrong, the rounding result of remainder containing decimal fraction error 

which can lead the unwrapping result to quite away from the correct one. In order to solve 

the high sensitivity of the decimal fraction error, the decimal fraction difference is recognized 

as the criterion of the rounding policy selection for real number erroneous remainder. To 

verify the presented method in this paper, a 3D shape measurement experimental system is 

constructed using projector and camera. The experiment results shown that, a maximum 

standard deviation of measurement error to the rule 3D objects is 0.62mm, and the complex 

surface reconstruction with different surface reflectivity can be realized very well.  

 

Keywords: Phase-shifting Profilometry, Triangular Patterns, Three Coding-pitches, Sunzi 

theorem 

 

1. Introduction 

Structured light (SL) technique is one of most widely used techniques for generating three 

dimensional (3D) shape measurements [1]. Because of its numerous advantages, such as non-

contact, low-cost, high-resolution, phase-shifting profilometry (PSP) has been widely used in 

such fields as the manufacturing inspection, medical sciences, reverse engineering, MEMS 

component characterization, etc., [2]. The advantage of PSP is that it is less sensitive to the 

surface reflectivity variations and the object can be measured point by point [3]. For PSP, a 

phase unwrapping algorithm is usually necessary to obtain continuous phase maps [4].  

The spatial unwrapping is one solution for phase unwrapping. Since it assumes that the 

phase difference between neighboring pixels is less than π, and spatial unwrapping basically 

only works well on smooth surfaces [5]. An alternative solution for the height-step object is 

PSP combining with Grey-code patterns and frequently regarded as the powerful solution for 

3D shape measurement. In this case, the pattern period’s number used to create the wrapped 

map is usually determined by the patterns amount of Grey-code, since GC essentially codes 

the areas within every pattern period [6]. The Multi-Wavelength PSP (MWPSP) based on 
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more than two wavelengths is employed to obtain the higher accuracy 3D shape measurement. 

Three-Wavelength Heterodyne Phase Shift Profilometry (TWHPSP) based on three-

wavelength is popularly used, because the unambiguity measurement range (UMR) of the 

dual-wavelength PSP improved no significant beyond than any of the wavelength used [7, 8]. 

The excess fractions is another unwrapping method for unwrapped phase map acquired by 

three-wavelength PSP [9], but this method has some defect, such as large amount computing, 

computing time expensive, etc. An appealing approach was originally introduced by Gushov 

and Solodkin [10]. This approach is based on the Sunzi Theoretic Approach (ST) where only 

two patterns, with a larger number of periods, are considered, which is in theory sufficient to 

provide highly accurate 3D results. Unfortunately, the conventional Sunzi theorem is very 

sensitive for phase error, which is usually exist in obtaining wrapped phase map. Many robust 

algorithms [11, 12] were presented, but these are based on search algorithms and application 

in density 3D shape measurement is restricted.  

The phase map was calculated using the standard phase-shifting formula and three 

sinusoidal disturbed fringe images for every image pixel [3, 4, 5]; thus the processing time-

consuming is expensive. Alternatively, a linear gray-scale pattern, such as triangular patterns 

[13], can obviously reduce time-consuming. Therefore, the accurate and time-consuming play 

the significantly larger roles for MWPSP. Fast obtaining wrapped phase map and improving 

the Sunzi theorem sensitivity of wrapped phase error are vital for the success of MWPSP to 

measure objects with larger surface reflectivity variations.  

In this research, we propose a novel three coding-pitches triangular patterns phase-shifting 

profilometry based on Sunzi theorem. It should be noted that wavelength as defined in this 

paper is different from that defined in physics. The wavelength here indicates the coding-

pitch of single triangular fringe stripes, i.e., number of projected image pixels per fringe stripe. 

The results of experiments are demonstrated that the presented profilometry significantly 

reduced the 3D shape measurement time-consuming and increased the accurateness of 

unwrapping phase. The main work of this paper is given as follows. Section 2 gives the 

principle of the novel phase coding method. Section 3 demonstrates the presented method 

through experiments. Section 4 summarizes this presented method. 

 

2. Principle of Three Coding-pitches Triangular Patterns PSP based ST 

PSP is a triangulation based, 3D reconstruction technique based on measuring the fringe 

distortion in a series of phase shifting fringe images captured by camera from an angle 

relative to the projector, when some patterns are projected by projector, reflected off the 3D 

object. PSP measurement system is shown as Figure 1.  

 

2.1. Principle of Triangular Patterns PSP 

In the Triangular Patterns PSP (TPPSP), only three triangular patterns phase-shifted by one 

third of the pitch are used to reconstruct the 3-D object. The gray-scale distribution of the 

three-step phase-shifted triangular fringe patterns are shown in Figure 2. The gray-scale 

formula for the two shifted triangular patterns is formulated as (1), (2). 
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max min=mI I I                                                  (2) 

Where,  ,  p p p

jI n m are the gray-scales of projector pixel  ,  p pn m in three-step shifting 

patterns, respectively and j  = 1, 2, 3. T  is the coding-pitch of one triangular. 
maxI  And 

minI  are the minimum and maximum gray-scales of the triangular patterns.  mod ,  pn T  

Equals the remainder of pn  congruent modulo T . 
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Figure 1. PSP Measurement Systems 
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Figure 2. Gray-Scale Distribution of the Three-Step Phase-Shifted 
Triangular Patterns 

 ,  c c c

jI n m  definite as the gray-scales of camera image pixel  ,  c cn m  in the fringe 

images. The matching pixel in projector image to  ,  c cn m  could be found. And its row 

coordinate pn (namely absolute coordinate as follow) is wrapped into one coding-pitch 

as rn . rn  Is wrapped coordinate and calculates according formula (3). The camera image 

plane coordinates  ,  c cn m  is omitted in formula (3).  
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                               (3) 

Three difference coding-pitches are selected to obtain the absolute coordinate. The 

unwrapping algorithm details as follow.  

 

2.2. Wrapped Coordinate Unwrapping Algorithm Based Modified ST 

Let pn be a positive integer, 1 20 kT T T    be k module, and
1

rn ,
2

rn , , r

kn be the k  

remainders of pn , i.e., as depicted in 

 mod    or  p r p r

i i i i in n T n f T n                                         (4) 

Where if is unknown integer and named folding integer? pn and r

in are said to be 

congruent modulo 
iT , 1 i k  . If and only if  lcmp

in T  (where lcm{} denotes the 

Least Common Multiple), pn can be uniquely reconstructed from k remainders. If the 

entire modules iT are co-prime, then ST has a simple formula as follow 
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  , it defines as iT T , it  is modular multiplicative inverse of it , 

i.e. 

 1 mod  i i it t T                                                   (6) 

If any pair module iT  have the greatest common divisor t (t=gcd{Ti}), in this case, 

the entire modules have gcd t . Let i iP T t , then all iP are co-prime. Define  lcm iP P , 

and i ip P P . Notes that ip and iP are co-prime, and the modular multiplicative inverse 

exists, which is denoted by ip . Define  floor r

i ia n t@ , floor () denotes rounding to the 

nearest integer towards zero, and then  

r

i i c i cn a t n a t a t                                                     (7) 
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where mod( ,  )r

c in n t is the common remainder of r

in modulo t for1 i k  ,
ca is the decimal 

fraction, i.e., 0 1ca  . Define  0 floorp pn n t@ . Then if only if
00 pn P  , 
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Therefore, pn can be uniquely reconstructed as 

0

p p

cn n t n                                                          (9) 

If pn and r

in are positive real. And defines as
if and

iT must be integer, and formulas (7), 

(8), (9) could generalization to real. 

In nature, wrapped coordinate have errors. If the entire modules iT are not co-prime, 

define
iE as the error of r

in , and the i th erroneous remainder (in this research as the 

wrapped coordinate) be ˆr r

i i in n E@ . Define
ie is real quotient of

iE d , i.e.,
i ie E d . 

Assume ie  , and iE   , i.e., t  . The ST is very sensitive to the error of 

remainder. The well-known problem in ST is the entire ˆ r

in are rounded and then used in 

(5) or (8). Consider that, due to error, just one of the wrapped coordinate is slightly 

above an integer, when it should actually be just below that integer. Evidently,  rounding 

(discarding a fractional part) gives a wrong input in (5) or (8), which is even magnified 

in the computation with the corresponding coefficient ie or iE . Consequently, the 

absolute coordinate pn will be quite apart from the correct one.  

Generally, there are two policies when computing an integer apart from the rational 

wrapped coordinate: either rounding to the nearest integer or to the nearest integer 

towards zero. The key issue is how to assure that the entire wrapped coordinates are 

rounded towards the same corresponding value on the absolute coordinate axis and that, 

consequently, the rounding process provides the correct  integer to be used in (5) or (8). 

Assume  =0.25 or  =0.25t, and the Decimal Fractional Difference (DFD) of two 

wrapped coordinate could be regard as criterion for selection the rounding policies. In 

this case, no deviation decoding scope of ST depicted in shading part exclude dotted 

circle of Figure 3, it is limited by the gcd of coding-pitches. 
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Figure 3. No deviation Decoding Scope of Wrapped Coordinate 
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Where
îr is a real, define as ˆ ˆr

i ir n t . If the absolute value of
ijb is not more than 0.5, 

the rounding policies is rounding to the nearest integer the nearest integer towards zero, 

alternative rounding to the nearest integer.  

 

2.3. Optimum Coding-Pitch Selection in Unwrapping Algorithm Based Modified ST 

As discuss above, the co-prime coding-pitch should obtain the bigger unambiguity 

measurement range (UMR) and improve anti-noise of ST using only few shorter 

coding-pitch. 

But in the co-prime coding-pitch must be odd, and the accuracy of wrapped 

coordinate under odd coding-pitch is lower than the even coding-pitch [14]. In addition 

to the odd or even number coding-pitch, the amount of pixels including in one pitch for 

triangular pattern should be multiple of three. In this case, the gray-scales of pattern is 

the integer, the error of coding is reduced to minimum i.e., 0. In summary, the gcd of 

the coding-pitches is the multiple of six. The gray-scales is limited to 256 by 8 bit in 

coding pattern, taking into account minimizing the sensitivity of ambient noise, and the 

gcd of coding-pitches is selected as 6.  

The off-the-shelf digital video projector usually has the projector image resolution 

1024  768 pixels. The maximum pixels of projector mean to the biggest UMR. The 

absolute coordinate is selected as 1024. In this selection and taking into account the gcd 

of coding-pitches, the product of the remaining prime factor in coding-pitches dividing 

by gcd is more than 1024/6 i.e., 170.667. The three root of this product is rounding to 

the nearest integer towards zero, and the minimum remaining prime factor is 5. The 

other two remaining prime factor is selecting co-prime larger than 5. Clearly these are 6 

and 7. And the triangular pattern three coding-pitches are respectively 30, 36 and 42. 

The unwrapping formula as follow 
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The average of difference between wrapped coordinate and the rounding integer is 

defined as the estimates of
cn . The estimates of pn , i.e., ˆ pn can calculate with (9). 

This unwrapping operation is performed for every camera pixel  ,  c cn m , and the 

correspondence projector pixel ˆ pn of these is acquired. The 3D world coordinates of the 

scanned object can, therefore, be derived through triangulation with the projector  [15] 

where, under the assumption that the camera and projector are accurately modeled  using 

the pinhole lens model such that their perspective matrices, C and P , are given by 
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where  ,p pR T and  c c,R T , named the extrinsic parameters of projector and camera 

respectively, are the rotation and translation which relates the 3D world coordinate 

system to the camera coordinate system and the projector coordinate system. 

 0 0,  p pn m and  0 0,  c cn m are respectively the coordinates of the principal point in the digital 

image coordinate system of projector and camera. c

nf and c

mf are the scale factors in 

camera image m and n axes. p

nf and p

mf are the same scale factors. p and c are the 

parameter describing the skew of the two image axes, respectively. 

The 3D world coordinates
wX ,

wY and
wZ  are calculated as 
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              (14) 

 

3. 3D Shape Measurement System and Experimental Results 

In order to verify the performance of the presented method in this paper, we 

programmed the 3D shape measurement experimental system of Figure 4. The system is 

composed of a Hitachi F22 camera with Computar M3Z1228C-MP camera lens and an 

Acer H7531D digital video projector. Camera images have a resolution of 1360 × 1024 

pixels. The baseline between the camera and the projector is  approximately 400 mm. 

The angle between the optical axes of the camera and the projector is of about 30 

degree. With the linear calibration method based on orthogonal three coding-pitches 

triangular patterns, the calibration results are as follows 
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0.00 0.00 0.00 1.00
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   
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 
 
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2.68 0.04 0.07 125.02

0.05 2.73 0.55 118.16

0.00 0.00 0.00 1.00

P

    
 

   
 
 

 

Figure 5 shows the gray-scales response curve of this 3D shape measurement system. 

From this Figure, between 70 and 190, the linearity is well, and the minimum and 

maximum gray-scales of the triangular patterns are selected respectively. 

To generating one wrapped coordinate map, using sinusoidal pattern phase-shifting, 

must be using arctangent processing, and needs to determine the results, translation and 

expand. The time consuming is expensive. But using triangular pattern is linearity, 

time-consuming, 0.3861s in experiments, is few. Comparing with sinusoidal pattern, it 

takes 3.3029s in the same processing. And the time efficiency in measurements using 

the presented method is well. 



International Journal of Signal Processing, Image Processing and Pattern Recognition  

Vol.7, No.3 (2014) 

 

 

488                   Copyright ⓒ 2014 SERSC 

 

3D object 

CCD camera 

DLP projector 

Computer 1 Computer 2 
 

Figure 4. The Setup of 3D Shape Measurement System 
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Figure 5. Measurement System Gray Level Response Function Curve 

In order to evaluate the accuracy, we have reconstructed a white plane. The fringes 

image of the white plane, with 42 pixels in a coding-pitch, is shown in Figure 6. Ideally, 

all the acquired 3D points should lie on the plane, but in practice they do not. Hence, a 

common practice to evaluate accuracy in this case is to interpolate the plane from the 

entire 3D points and then to compute the errors to the interpolated plane. The error of 

reconstructed plane positioned as Figure 5 is shown in Figure 6. In Table 1 we provide 

the mean and Standard Deviations (SD) of difference position in the 3D world 

coordinate system calibration volume. 

 

                         

Figure 5. The White Plane Fringe         Figure 6. The Error of Reconstructed 
Image with Plane Positioned                                         as Figure 5 

    42 Pixels Coding-Pitch 

As part of the qualitative evaluation of the presented method in this paper, a complex 

curve surface, as shown in Figure 7, was reconstructed shown as Figure 9. From Figure 

9, noted that the reconstructed surface shows the vivid detail of 3D object. Uniform 

absolute coordinate in the projector digital image coordinate system is show in Figure 8. 
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Figure 7. Complex Curve   Figure 8. Uniform Absolute  Figure 9. Reconstructed 
Surfaces                              Coordinate                       using the Presented  

                                                                                      Method Surface in this Paper 

Table 1. The Measure Result of White Plane (Unit: mm) 

3D world coordinate -150.00 -100.00 -50.00 0.00 50.00 100.00 150.00 

Mean of measure -150.29 100.17 -50.09 0.04 50.06 100.10 150.15 

SD of error 0.62 0.54 0.47 0.40 0.42 0.46 0.49 

Another part of the qualitative evaluation of the presented method in this paper, 

many different material surfaces, such as textiles, colored paper and plastic surface as 

shown in Figure 10, were reconstructed and wrapped with their texture shown as Figure 

11. From Figure 11, noted that the reflectivity of different material surface could not be 

affected the reconstructed result of using the presented method. And our method is not 

sensitivity to the reflectivity. 

 

                                   

Figure 10. Difference Material Surfaces       Figure 11. Reconstructed Surface  
    using the Presented Method 

4. Conclusion 

A novel three coding-pitches triangular patterns phase-shifting profilometry based on 

modified Sunzi theorem is presented in this paper. The presented method is based on one of 

most high accuracy and high speed structured light pattern, i.e., three wavelength triangular 

phase-shifting. In phase unwrapping, we have adopted a modification of Sunzi Theorem. The 

result of 3D shape measurement using programmed in this paper shown that there are some 

merits in the presented method, such as robust phase unwrapping, which is applicable to the 

3D object surface of complex curve and difference material. 
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