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Abstract 

With the growing demand of high quality multimedia (HD) the data size has increased thus 

the compression is the essential requirement to process and store data with smaller size. The 

Multiple Parameter Discrete Fractional Fourier Transform (MPDFRFT) is generalization of 

the discrete fractional Fourier Transform and can be use for compression of high resolution 

images with the extra degree of freedom provided by the MPDFRFT and its different 

fractional orders finally decompressed image can also be recovered. This paper deals with 

the image compression based on MPDFRFT using Eigen vector decomposition algorithm. 

The MPDFRFT possesses all the desired properties of discrete fractional Fourier transform. 

The MPDFRFT converts to the DFRFT when all of its order parameters are the same. We 

exploit the properties of multiple-parameter DFRFT and propose a novel compression 

scheme for satellite and medical images more conveniently than urban, rural and natural 

images. In this scheme image is subdivided and MPDFRFT is applied for the subdivided 

image to form transformed coefficients and Inverse MPDFRFT is applied for reconstruction 

of original images. The proposed compression scheme with MPDFRFT significantly shows 

better results over fractional cosine transform (FRCT), Fourier transforms (FT) and cosine 

transforms (CT). A comparison has been made between these techniques and observed that a 

good fidelity of decompressed image can be achieved at different fractional order parameter 

values of the transforms. The performance of system analyzed based on parameters like Peak 

Signal-to-Noise Ratio (PSNR), mean square error (MSE) and Compression Ratio (CR). The 

MPDFRFT provides better mean square error (MSE) and peak signal noise ratio (PSNR) for 

the same compression ratio (CR) as compared to FRCT, FT, cosine transform and classical 

lifting scheme based on wavelet, during image processing using MATLAB platform. 

 
Keywords: Satellite Image Compression, Medical Image Compression, Discrete Fractional 

Fourier Transform (DFRFT), Fourier Transform (FT), Fractional Fourier Transform (FRFT), 

Multiple Parameter Discrete Fractional Fourier Transform (MPDFRFT), PSNR, MSE 

 

1. Introduction 

Image and video data compression refers to a process in which the amount of data 

used to represent image and video is reduced to meet a bit rate requirement while the 

quality of the reconstructed image or video satisfies a requirement for a certain 

application and the complexity of computation involved is affordable for the 

application. It is a process intended to yield a compact representation of an image, 
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thereby reducing the image storage/transmission requirements. Its feasibility rests with 

two types of redundancies, i.e., statistical redundancy and psychovisual redundancy [1]. 

Statistical redundancy can be classified into two types: interpixel redundancy and 

coding redundancy. By interpixel redundancy we mean that pixels of an image frame 

and pixels of a group of successive image or video frames are not statistically 

independent. On the contrary, they are correlated to various degrees. This type of 

interpixel correlation is referred to as interpixel redundancy. Interpixel redundancy can 

be divided into two categories, spatial redundancy and temporal redundancy. Spatial 

redundancy represents the statistical correlation between pixels within an image frame. 

Hence it is also called intraframe redundancy. Temporal redundancy is concerned with 

the statistical correlation between pixels from successive frames in a temporal image or 

video sequence. Therefore, it is also called interframe redundancy. By coding 

redundancy we mean the statistical redundancy associated with coding techniques. 

Psychovisual redundancy originates from the characteristics of the human visual system 

(HVS). It is due to data that is ignored by the human visual system. Compression 

techniques reduce the number of bits required to represent an image by taking 

advantage of these redundancies. The objective of compression is to reduce the number 

of bits as much as possible, while keeping the resolution and the visual quality of the 

reconstructed image as close to the original image as possible. 

The image compression techniques are broadly classified into two categories 

Lossless compression and Lossy compression technique [2]. In lossless compression 

techniques, the original image can be perfectly recovered from the compressed 

(encoded) image. These are also called noiseless since they do not add noise to the 

signal (image). It is also known as entropy coding since it use statistics/decomposition 

techniques to eliminate/minimize redundancy. Lossless compression is used only for a 

few applications with stringent requirements such as medical imaging. 

Following techniques are included in lossless compression: 

1. Run length encoding     2. Huffman encoding      3. LZW coding      4. Area coding 

Lossy schemes provide much higher compression ratios than lossless schemes. Lossy 

schemes are widely used since the quality of the reconstructed images is adequate for 

most applications. By this scheme, the decompressed image is not identical to the 

original image, but reasonably close to it. In lossy compression techniques– 

transformation – decomposition process is completely reversible .The quantization 

process results in loss of information. The entropy coding after the quantization step, 

however, is lossless. The decoding is a reverse process. Firstly, entropy decoding is 

applied to compressed data to get the quantized data. Secondly, dequantization is 

applied to it and finally the inverse transformation to get the reconstructed image. 

Lossy compression techniques includes following schemes: 

1. Transformation coding        2. Vector quantization    3. Fractal coding   4. Block 

Truncation Coding      5. Subband coding. 

All the contemporary image compression schemes use various mathematical 

transforms for compression. The compression performance is closely related to the 

performance by these mathematical transforms in terms of energy compaction and 

spatial frequency isolation by exploiting inter-pixel redundancies present in the image 

data. Transform coding constitutes an integral component of contemporary image/ video 

processing applications. Transform coding relies on the premise that pixels in an image 

exhibit a certain level of correlation with their neighboring pixels. Similarly in a video 
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transmission system, adjacent pixels in consecutive frames show very high correlation. 

Consequently, these correlations can be exploited to predict the value of a pixel from its 

respective neighbors. A transformation is, therefore, defined to map this spatial 

(correlated) data into transformed (uncorrelated) coefficients. Clearly, the 

transformation should utilize the fact that the information content of an indiv idual pixel 

is relatively small. 

In much extracted manner, the fractional Fourier transform (FRFT) is a 

generalization of the ordinary Fourier transform in time and frequency plane for the 

analysis and processing of non stationary or time varying signals [3]. The idea of 

fractional Fourier operator much established in 1980 with publications by Namias [4]. 

Santhanam et al., [5] defined a discrete fractional Fourier transform (DFrFT) by using 

Taylor series expansion of the DFT matrix followed by the application of Cayley–

Hamilton theorem and defined DFrFT as a weighted sum of its powers. DFrFT can 

mainly be split in to two major groups. The first approach is based on the S matrix 

introduced by Dickinson et al., [6]. Second approach Candan et al., used the second-

order difference equation by approximating the second-order differential equation in 

which the homogenous solution set is the Hermite–Gauss functions [7]. Later on 

Candan uses higher-order approximations to discrete derivative operator to approximate 

Hermite–Gauss functions [8] 

In Pei and Yeh defined the DFRFT based on the eigen decomposition of the DFT 

matrix, a DFRFT with one fractional parameter was defined by taking fractional eigen 

value powers of an eigen decomposition of the DFT matrix [9]. The DFT eigenvectors 

used in are Hermite –Gaussian function type [9]. These eigenvectors are computed from 

a DFT–commuting matrix proposed in [6] by Dickson and Steigletz. Pei et al. [9], first 

proposed the eigen decomposition- based definition of the DFRFT and then Candan et 

al.[7] consolidated this definition. Hanna et al. considered generation eigenvectors by 

the singular value decomposition method and direct batch evaluation [10-12]. It finds 

application in signal image processing due to high decorrelation among the coefficients 

and compact signal representation in FRFT domain [3, 4, 13].  

The research article is organized as in a following way: In preliminaries section 2 the 

FRFT, DFRFT and MPDFRFT are discussed with their mathematical definition and 

properties. In subsection 2.3 the way to deduce MPDFRFT from DFRFT along with 

their algorithm in mathematical steps are illustrated. In section 3 the major focus is on 

the proposed scheme for image compression based on multiple parameters discrete 

fractional Fourier transform (MPDFRFT). The segment discusses each block 

implementation method and their conceptual significance. The section 4 highlights the 

major performance measuring parameters in compression domain. The section 5 is 

solely dedicated to simulation results and discussion. In this segment also the 

comparison is done with similar earlier existed schemes. In section 6 the research 

article is concluded on the basis of comparison in a summarized way. 

 

2. Preliminaries 
 

2.1. Fractional Fourier Transform  

The FRFT of the signal x(t) by angle α is expressed as,   

                                                       dtutKtxuf 




 ),()()(                                      (1) 

                                       

 

The signal x(t) can be recovered back by an FRFT with an angle –α : 
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                                                          duutKuftx 





 ),()()(                                                (2) 

The FRFT transform kernel is given by [4, 13]  
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Where α indicates the rotation angle of the transformed signal for FRFT. Hn(t) is the n-th 

order normalized Hermite Gaussian function. Where hn(t) is the n-th order Hermite 

polynomial. 

The 2D FRFT of the signal x(s, t) by angle parameter (α, β) is given by [14],  

                                                dsdtvutsKtsxvuf 




 ),,,(),(),( ,,                                          (4)  

The signal x(s, t) can be recovered by a 2D FRFT operation with angles -α,-β: 

                                                 dudvtsvuKvuftsx 





 ),,,(),(),(

,,                                           (5) 

The 2D FRFT transform kernel with various orders in two dimensions is defined as [14],   

   

 

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2222
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),,,(    (6) 

Where α and β indicate the rotation angles of the transformed signal for 2D FRFT. 

 

2.2. Discrete Fractional Fourier Transform 

The a -th order NN  DFRFT is developed based on the eigen decomposition, and 

its transform kernel is given on the basis of [7, 9, 15] is, 

                                                              
TVVDF  /2/2                                                              (7) 

Here 2a the DFRFT order of the parameter and α indicates the rotation angle of 

DFRFT.B.W. Dickinson and K. Steiglitz [6] introduced a commuting matrix S to compute the 

real eigenvectors of the DFT kernel matrix F. 
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Where, ω =2π/N and N is the size of the DFT kernel matrix. Matrix S commutes with 

matrix F, The eigenvectors of matrix S are also the eigenvectors of matrix F, but their eigen 

values are distinct. Because matrix S is a real symmetric matrix, the eigen values of S are all 

real and the eigenvectors of S are orthonormal to each other. 

 
1-N2-N10

vv........vv= V  For N is odd,  
1-N2-N10

vv........vv= V for N is even, and k
v  is the 

k-th order DFT hermit eigen vector.  /2D is a diagonal matrix with eigen values of DFRFT 

in the diagonal entries. The methods for finding the DFT Hermite eigenvectors vk are 

presented in [9] and [15]. In Table 1, there exists a jump in the last eigen values for the two 

even-length cases.  

The NN  DFT matrix F is given by, 

                                                   
kn

N
j

kn
e

N
F

2
1 

         1,0  Nnk                                  (9) 

Table 1. The Eigen Value Assignment for DFRFT Kernel 

No. N Eigen Values 

1. 4m 
jke

, mmk 4),24(....,2,1,0   

2. 4m+1  
jke

, mmk 4),14(....,2,1,0   

3. 4m+2 
jke

, )24(,4....,2,1,0  mmk   

4. 4m+3 
jke

)24(),14(....,2,1,0  mmk  

Therefore, there are some differences in computing the DFRFT kernels between even- and 

odd-length cases. For the odd- and even- length cases, equation (1) can be written as follows: 
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The DFRFT output is computed as a, 
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2.3. Multiple Parameter Discrete Fractional Fourier Transform  

The a -th order DFRFT matrix is 
 /2F given in equation (7). We know that 

 /2F degenerates to the DFT matrix F in equation (7) when 1a . So the DFRFT is a 

generalization of the DFT. If we further generalize the DFRFT on the basis of taking 

different fractional power for the eigen values )2/exp( kj
k

  of the DFT matrix. 

Subsequently the N point NN  MPDFRFT matrix is, 
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21 . In equation (15), a  is a N1 parameter vector consisting of 

the N independent order parameters of the MPDFRFT, 
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The diagonal matrix is simplified as 
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The vector a is given in equation (16) and  /2D is the NN  diagonal matrix of the 

DFT Eigen values 
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Then equation (13) can be expressed in summarized form as, 

                                                
TVVDF  /2/2                                                (19) 

The MPDFRFT of aX of the 1N data vector x with the parameter vector a  can be 

given by,  

                                                     x/2 FX
a
                                                     (20) 

The main features of the MPDFRFT are discussed as follows. 

1. If ),,.....,,( aaaa  the MPDFRFT is converted into DFRFT so DFRFT is the special 

condition of the MPDFRFT. 

2. The N point MPDFRFT can have up to N independent and possibly different order 

parameters, Whereas DFRFT have only one order parameter. 

3. The computation complexity for the MPDFRFT is )( 2NO same as DFRFT. 
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Table 2. Properties of MPDFRFT 

No. Property Mathematical representation 

1. Unitarity         IVVVVDVVDFF TT
H

T
H

  /2/2/2/2  

2. Identity Matrix  IVVVVDFa TT  0/2),0,...,0,0(0   

3. Fourier Transform (F) FVDVVVDFa TT  1/2),1,...,1,1(1   

4. Index additivity         2/)(2/2/2 21212121  
 FVVDVVDVVDFF TaaTaTa  

5. Index Commutativity         /2/2/2/2 12122121 FFVVDVVDFF TaaTaa
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
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3. Proposed Model for Image Compression and Decompression  

Earlier The Frct and FRFT based image compression schemes are established by the 

researcher here in Figure 1. The compression scheme is proposed on the basis of 

multiple parameter discrete fractional Fourier transform with few additional blocks are 

augmented and implemented to improve the performance of the proposed model. 

 

 

 

 

 

 

 

Figure 1.  Image Compression Model based on MPDFRFT 

Similarly at the receiver side the reverse process of decompression is applied with 

decoding and 2D MPDFRFT is applied with its reverse order subsequently the block 

merger is applied as shown in Figure 2 below. 

 

 

 

  

 

 

 

Figure 2. Image Decompression Model based on MPDFRFT 
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Transform coding based on utilization of interpixel correlation. Transform coding 

has been found to be efficient in coding prediction error in motion compensated 

predictive coding. We summarize the procedures of transform coding. There are three 

major steps in transform coding block division, linear transform and bit allocation. The 

selection of subimage (block) size, N, is important. Normally, the larger the size the 

more uncorrelation in transform coding can achieve.  However, that the correlation 

between image pixels becomes insignificant when the distance between pixels becomes 

large. On the other hand, a large size causes a possibly severe effect of transmission 

error on reconstructed images problems.  2D MPDFRFT transform is used in image 

compression is symmetric (hence separable) and unitary, the matrix form of the 2 -D 

image transform can be expressed as T = F
T
GF.  

For an image “L” of SR , is converted into NN   subimages L’ preferred 88  image size 

and then applied 2D-MPDFRFT to L’ size with parameters vectors ),( qp  is given by 

                                                               
qp

qp
FLFL '..'

),(
                                                             (21) 

Where pF and qF. are the 256 point MPDFRFT matrices respectively, p  and q are the 

parameter vectors of sizes 2561 and 2561 matrices respectively. Here p  and q are 

the parameter vectors distributed over the interval ]4,0[ . The variances of these 

transform coefficients, and therefore the signal energy associated with the transform 

coefficients, can be arranged in a ascending order. It can be shown that the total energy 

before and after the transform remains the same. Therefore, the more energy compacted 

in a fraction of total coefficients, the better energy compaction the transform has. The 

transformed blocks go through truncation, quantization, and codeword assignment. The 

last three functions: truncation, quantization, and codeword assignment, are combined 

and called bit allocation. It is known that the applied transform decorrelates subimages. 

Moreover, it redistributes image energy in the transform domain in such a way that 

most of the energy is compacted into a small fraction of coefficients. Therefore, it is 

possible to discard the majority of transform coefficients without introducing 

significant distortion. We see that in transform coding there are mainly three types of 

errors involved. One is due to truncation. That is, the majority of coefficients are 

truncated to zero. Others come from quantization. There are two different ways to 

truncate transform coefficients. One is called zonal coding, while the other is threshold 

coding. In threshold coding, also known as threshold sampling, there is not a predefined 

zone [16]. Instead, each transform coefficient is compared with a threshold. If it is 

smaller than the threshold, then it is set to zero. If it is larger than the threshold, it will 

be retained for quantization and encoding. Compared with zonal coding, this scheme is 

adaptive in truncation in the sense that the coefficients with more energy are retained 

no matter where they are located. The addresses of these retained coefficients, however, 

have to be sent to the receiver as side information. Furthermore, the threshold is 

determined after an evaluation of all coefficients. Hence, it was usually a two -pass 

adaptive technique. In thresholding and Shifting we use C(u,v) to denote the MPDFRFT  

coefficients. The DC coefficient, C(0,0) is processed differently, the DC coefficients 

are encoded with a differential coding technique. For all the AC coefficients, the 

following thresholding and shifting are, 
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Where, T on the right-hand side is threshold. Note that the above equation also implies a 

shifting of transform coefficients by T when C(u, v) > T. The threshold value is adjusted by 

the feedback from the rate buffer, or by the desired bit rate. 

The threshold subtracted transform coefficients CT(u,v) are normalized before round off. 

The normalization is as follows: 

                                                             
vu

T
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Figurr 3. (a) Input-output Characteristic of Normalization 

Where the normalization factor Гu,v is controlled by the rate buffer. The round off process 

converts floating point to integer as follows. 
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The combination of normalization and round off is equivalent to a uniform midtread 

quantizer with the quantization step size equal to the normalization factor Гu,v. Normalization 

is a scaling process, which makes the resultant uniform midtread quantizer adapt to the 

dynamic range of the associated transform coefficient. 

 

 

Figure 3. (b) Input-output characteristic of Round Off 
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A matrix consisting of all the normalization factors is called a quantization table 3 in 

JPEG. A given luminance quantization table 3(a) and a Chrominance quantization table 3(b) 

are used for JPEG. 

Table 3. Quantization Table 

(a) Luminance Quantization Table      (b) Chrominance Quantization Table 

 
16 11 10 16 24 40 51 61 

12 12 14 19 26 58 60 55 

14 13 16 24 40 57 69 56 

14 17 22 29 51 87 80 62 

18 22 37 56 68 109 103 77 

24 35 55 64 81 104 113 92 

49 64 78 87 103 121 120 101 

72 92 95 98 112 100 103 99 

 

Zigzag scanning minimizes the use of run-length codes in the block given by chen and 

Pratt in [16]. The application of the Huffman coding to the magnitude of nonzero transform 

coefficients and run-lengths coding for zero transforms. A rate buffer accepts a variable-rate 

data input from the encoding process and provides a fixed-rate data output to the channel. The 

status of the rate buffer is monitored and fed back to control the threshold and the 

normalization factor. The threshold and the normalization factor are controlled by rate buffer 

feedback. Since the threshold decides how many transform coefficients are retained and the 

normalization factor is actually the quantization step size, the rate buffer has direct impact on 

the bit rate of the transform coding system. After thresholding, normalization and roundoff 

are applied to the transform coefficients in a block; a great majority of transform coefficients 

are set to zero. A zigzag scan can convert the 2-D array of transform coefficients into a 1-D 

sequence as shown in figure 4 below. The number of consecutive zero-valued coefficients in 

the 1-D sequence is referred to as the run-length of zeros and is used to provide address 

information of nonzero transformed coefficients. Both the magnitude of nonzero coefficients 

and run-length information need to be coded. 

 

 

Figure 4. Zig-zag Scanning of Coefficient within a 8×8 Block 

17 18 24 47 99 99 99 99 

18 21 26 66 99 99 99 99 

24 26 56 99 99 99 99 99 

47 66 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 
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In a reconstructed subimage, there are three types of errors involved: truncation error 

(some transform coefficients have been set to zero), quantization error, and transmission 

error. In a broad sense, the truncation can be viewed as a part of the quantization. That is, 

these truncated coefficients are quantized to zero. The transmission error in terms of bit 

reversal will affect the whole reconstructed subimage. This is because, in the inverse 

transform (such as the inverse MPDFRFT), each transform coefficient makes a contribution. 

In reconstructing the original image all the sub images are organized to form the whole 

image. Therefore the independent processing of individual sub images causes block artifacts. 

Though they may not severely affect the objective assessment of reconstructed image quality, 

block artifacts can be annoying, especially in low bit rate image coding. The selection of sub 

image size is important issues for implementing transform coding. In general, a large size will 

remove more interpixel redundancy. But it has been observed from literature that the pixel 

correlation becomes insignificant when the distance of pixels exceeds. On the other hand, a 

large size is not suitable for adaptation to local statistics, while adaptation is required in 

handling nonstationary images. A large size also makes the effect of a transmission error 

spread more widely. For these reasons, sub image size should not be large. 

 

4. Performance Evaluation Parameters 

Image compression using transform coding yields extremely good compression, with 

controllable degradation of image quality. By adjusting the cutoff of the transform 

coefficients, a compromise can be made between image quality and compression factor using 

Q factor. Various important image compression quality measuring parameters are Peak Signal 

to Noise Ratio (PSNR), Mean Square Error (MSE), Transform Coding gain (TCG) and 

compression ratio (CR) etc. 

1) Transform Coding Gain (TCG) 

One measure of energy compaction is the transform coding gain GTC, which is defined as 

the ratio between the arithmetic mean and the geometric mean of the variances of all the 

components in the transformed vector.  

TC

DSQ

TC
D

D
 =G  

 

2) Peak Signal to Noise Ratio (PSNR) 

The Peak Signal-to-Noise Ratio (PSNR) value used to measure the difference between a 

decoded image R (i, j) and its original image L(i, j) is defined as follows. In general, the larger 

PSNR value, the better will be decoded image quality.  
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Where R  and S indicates the size of the image. 
 

 

 

 



International Journal of Signal Processing, Image Processing and Pattern Recognition  

Vol.7, No.3 (2014) 

 

 

464                    Copyright ⓒ 2014 SERSC 

3)  Compression Ratio (CR) 

It is defined as the ratio of size compressed image to the size of original image and is given 

below:  

100 ×  
Image Original of Size

Image Compressed of Size
 = % CR  

5. Simulation Results, Discussion and Comparison 

In this segment, the results are obtained for satellite image, medical error image, urban 

image, rural image and natural image of different sizes and variety at different quality factor 

of image. The relationship of quality factor is associated with compression ratio mentioned 

below in Table 6. From the analysis of results the comparison is done between proposed 

scheme and already their nearby established scheme. 

 

                  

Figure 5. (a) Satellite Image (b) Decompressed at Q = 95         (c) At Q = 75            

                

          (d) At Q = 50                          (e) At Q = 25                          (f) At Q = 15  

          

         (g) At Q = 10                          (h) At Q = 5    

 
The original satellite defence image is shown in Figure 5 (a) while Figure 5 (b), (c), 

(d), (e), (f), (g) and (h) shows the decompressed images at quality factor 95, 75, 50, 25, 

15, 10 and 5 respectively. The decompressed images at these quality factors recovered 

with their max PSNR 58.8dB, 49.2dB, 46.25dB, 45.8dB, 45.1dB, 44.7dB and 44.6dB 

respectively at the fixed fractional order parameter p = 0.86 and q = 0.84 for optimum 

results. The fractional parameters can be are selected in the range from 0 to 1. 
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Figure 6. Variation of Image Size versus Quality Factor for Satellite Image 

In Figure 6 the variation of image size versus quality factor for satellite defense 

image is shown it clearly depicted form the plot that the image size has been reduced up 

to 63% but still image quality of decompressed image is high for high resolution 

satellite image. 

 

                   

Figure 7. (a) Medical Image (b) At Q = 95      (c) At Q = 75               (d) At Q = 50 

              

    (e) At Q = 25              (f) At Q = 15                (g) At Q = 10             (h) At Q = 5               

The original medical error image is shown in Figure 7 (a) while in Figure 7 (b), (c), 

(d), (e), (f), (g) and (h) shows the decompressed images for different quality factor at 

95, 75, 50, 25, 15, 10 and 5 respectively with higher medical error detection possibility 

apart from setting higher compression ratio. The decompressed images at these quality 

factors provides max PSNR of 59.1dB, 49.6dB, 46.2dB, 44.3dB, 43.9dB, 43.3dB and 

44.5dB respectively at the fixed fractional parameter p = 0.86 and q = 0.84. 
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Figure 8. Variation of Image Size versus Quality Factor for Medical Error Image 

The Figure 8 provides the information  regarding  the decompressed  image size versus 

quality factor for medical error image and the graph shows that the image has been only has 

been reduced only up to 39% of its original size but still image quality of decompressed 

image is still has the capability of identifying any medicl error. The analysis is also done at 

the same fractional order parameter at p = 0.86 and q = 0.84 

 

          

Figure 9. (a) Newyork Urban Image (b) At Q = 95                     (c) At Q = 75            

          

             (d) At Q = 50                          (e) At Q = 25                        (f) At Q = 15 

     

          (g) At Q = 10                       (h) At Q = 5       
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The original urban Newyork image is shown in figure 9 (a) while in figure 9 (b), (c), 

(d), (e), (f), (g) and (h) shows the decompressed images for different quality factor at 

95, 75, 50, 25, 15, 10 and 5 respectively with high quality reconstructed image with 

setting higher compression ratio. The decompressed images at these quality fac tors 

provides max PSNR of 58.8dB, 50dB, 48.1dB, 46.3dB, 45.1dB, 44.9dB and 44.5dB 

respectively at the fixed fractional parameter p = 0.86 and q = 0.84. 
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Figure 10. Variation of Image Size versus Quality Factor for Urban Image 

The Figure 10 provides information between decompressed image size versus quality 

factor for Newyork urban image and the plot shows that the decompressed image has been 

reduced only up to 49% of its original size by still mainting high image quality.The fractional 

order parameter is selected at p = 0.86 and q = 0.84 for optimum PSNR reception. 

 

          

Figure 11. (a) Original Village fair   (b) At Q = 95                       (c) At Q = 75    

          

     (d) At Q = 50                              (e) At Q = 25                              (f) At Q = 15              
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      (g) At Q = 10                              (h) At Q = 5 

The Rural village fair image of size is shown in Figure 11. (a) While Figure 11. (b), (c), 

(d), (e), (f), (g) and (h) shows the max PSNR for decompressed images 55.2dB,  45.1dB, 

44.4dB, 42.6dB, 42.1dB, 41.9dB and 41.7dB for different quality factor at 95, 75, 50, 25, 15, 

10 and 5 respectively. The analysis is done at fractional order parameter p = 0.86 and q = 0.84 

for achieving max PSNR varying from 0 to 1. 
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Figure 12. Variation of Image Size versus Quality Factor for Rural Village Fair 

Similarly here also the Figure 12 shows the variation of decompressed image size versus 

quality factor for Rural Village Fair Image. This plot shows that the decompressed image has 

been reduced only up to 53% of its original size by still mainting high degree of image 

quality. 

 

                

Figure 13. (a) Glass Set Image    (b) At Q = 95                           (c) At Q = 75  
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        (d) At Q = 50                          (e) At Q = 25                            (f) At Q = 15        

        

      (g) At Q = 10                              (h) At Q = 5 

The original natural glass set image is shown in Figure 13. (a) While Figure 13. (b), (c), 

(d), (e), (f), (g) and (h) shows the decompressed images for quality factor at 95, 75, 50, 25, 

15, 10 and 5 respectively. The decompressed images at these quality factors provides max 

PSNR 60.2dB, 54.1dB, 49.4dB, 46.7dB, 45.2dB, 44.9dB and 44.7dB respectively at the fixed 

fractional order parameter p = 0.86 and q = 0.84. The fraction parameters are selected because 

at these parameters values the PSNR achieved maximum by varying p and q from 0 to 1. 
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Figure 14. Variation of Image Size versus Quality Factor for Natural Glass Set 

Here in Figure 14 the variation of decompressed image size versus quality factor for 

Natural glass set. This plot shows that the decompressed image has been reduced only 

approximately upto 50% of its original size by still mainting high degree of image quality. 
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Figure 15. PSNR with Quality Factor at Fractional Order p = 0.86 and q = 0.84 

The above Figure 15 represents the combined variation of each image PSNR versus quality 

factor at the fractional order p = 0.86 and q = 0.84. The graph shows maximum PSNR for 

Natural glass set and worst PSNR for shows for village fair image 60.2dB and 41.7dB 

respectively.  

 

 

Figure 16. MSE versus Quality Factor at Fraction Order p = 0.86 and q = 0.84 

The Figure 16 basically reprsents the dual curve of figure 16. because the more PSNR will 

produce minimum MSE so here also the graph shows min. MSE for Natural glass set while 

worst or max MSE for village fair image are around 6dB and 20dB respectively. 
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Table 4. Mean Square Error for Different Images at p = 0.86 and q = 0.84 

 
Image 

Natural Glass 
Set Image 
300×394 

(Max PSNR) 

Medical Error 
Image 

302×302 
(Max PSNR) 

Newyork 
Urban Image 

974×696 
(Max PSNR) 

Satellite 
Image  

916×693 
(Max PSNR) 

Rural Image  
683×1024 

(Max PSNR)  
At Q 

95 60.2 dB 59.1 dB 58.8 dB 58.8 dB 55.2 dB 

75 54.1 dB 49.6 dB 50.0 dB 49.2 dB 45.1 dB 

50 49.4 dB 46.2 dB 48.1 dB 46.25dB 44.4 dB 

25 46.7 dB 44.3 dB 46.3 dB 45.8 dB 42.6 dB 

15 45.2 dB 43.9 dB 45.1 dB 45.1 dB 42.1 dB 

10 44.9 dB 43.3 dB 44.9 dB 44.7 dB 41.9 dB 

5 44.7 dB 44.5 dB 44.5 dB 44.6 dB 41.7 dB 

The Table 5 shows the response of proposed scheme towards various images like natural 

glass set image, medical, urban, satellite and rural images of different sizes at different q 

factorrs. Table 6 also reprsent the size of original image and decompressed image with its 

percentage of reduction in size with image quality in tolerable range. 

Table 5. Original Image Size with Decompressed Image 

Type of Image  
Original Image 

Size 

Min. 
Decompressed 

Image Size 

Reconstructed  Image 
Size Reduction  

Satellite Defense Image 426810 bytes 158068 bytes 63 % 

Medical Error Image 9034 bytes 6451 bytes 39 % 

Rural Fair Image 927201 bytes 440522 bytes 53 % 

Newyork Urban Image 348185 bytes 180078 bytes 49 % 

Natural Glass Set Image 43139 bytes  21808 bytes 50 % 

The Table 6 shows the important relationship between the quality factor and compression 

ratio so by setting quality factor proportionally compression ration can be achieved. 

Table 6. Relationship between Quality Factor and Compression Ratio for JPEG 

Quality Factor Compression Ratio (CR) 

100 1:1 

95 2:1 

75 15:1 

50 23:1 

25 46:1 

1 144:1 

The Table 7 concludes the previous performance Table 4 along with the comparison of 

already existed schemes. The proposed scheme is compared with the schemes mentioned in  

[17-19] interms of PSNR, computation complexity and transform coding gain.  
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Table 7. Comparison of Proposed Scheme with Established Schemes 

Schemes Type of Image 
Maximum  

PSNR 
Minimum 

MSE 
Computation 
Complexity 

 
Transform 

Coding 
Gain 

 

Proposed 
Scheme 

Natural Glass 
Set image 

69.8 dB 6 dB O(N
2
) High 

Medical Error 
Image 

69.6 dB 11dB O(N
2
) High 

Newyork Urban 
Image 

69.4 dB 12 dB O(N
2
) High 

Satellite 
Defences Image 

69.3 dB 16 dB O(N
2
) High 

Rural Village 
Fair Image 

68.8 dB 20 dB O(N
2
) High 

Kulbir Singh 
et.al.  [17] 

Leena Image 27.5 dB --- 
Low Low 

Barbara Image 27.8 dB --- 

K. Nagmani and 
A.G. Anant [18] 

Satellite Image 29.0 dB  
Lower than 

O(N
2
) 

Medium 

Rajinder Kumar 
et.al.[19] 

Satellite Image 41.0 dB  O(N
2
) High 

 

6. Conclusion 

In this article, a new image compression scheme based on multiple parameter 

discrete fractional Fourier transform is proposed. This scheme shows a max. PSNR for 

Natural glass set image 60.2dB while min. PSNR for village fair is 41.7dB. Table 5 

shows that the satellite defence image shows the maximum compressed image upto 60% 

with significant image quality with respect to original image size and for medical error 

image shows large decompressed size with 39% but medical error can be detected for 

smaller quality factor also and can be reconstructed with little larger size but can be 

useful for more medical applications. The proposed scheme also shows high PSNR, 

O(N
2
) computational complexity and higher coding efficiency than FRCT, FRFT and 

DFRFT based image compression schemes.  
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