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Abstract 

Sparse representation has been successfully applied to visual tracking to find the target 

with the minimum reconstruction error from the target templates subspace. Traditional 

sparsity-based trackers handle corruptions and occlusions of the observation by introducing 

a set of trivial templates. However, the performance is not so satisfactory in practice. It is 

because the trivial templates unable to model heavy occlusions effectively, and the likelihood 

computation and the template update processes do not take full advantage of the occlusion 

information. In this paper, we propose a novel tracking method taking advantage of local 

sparse representation to detect occlusions during the tracking sequence. In our method, the 

target is divided into local patches. We analyze the spatial distribution of the samples 

employed by the local sparse representation, and determine the occlusion state for each patch 

respectively. The occluded patches are disregard, only the unoccluded ones are considered 

for reconstruction and likelihood computation. In addition, a dynamic template update 

strategy with occlusion handling is introduced to alleviate the drift problem. Experiments on 

challenging video sequences demonstrate that the proposed tracking algorithm performs 

favorably against several state-of-the-art methods. 

 

Keywords: visual tracking, occlusion handling, sparse representation, local patch, ℓ1 

minimization, template update 

 

1. Introduction 

Visual tracking has been an important topic in the field of computer vision for decades. It 

plays a key role in numerous applications such as intelligent surveillance, activity analysis, 

aided navigation, etc. The main challenge in designing a robust visual tracking algorithm is 

the inevitable appearance variations of the target observation which are mainly caused by 

partial occlusion, illumination change, background clutter, viewpoint variation and so on. 

Among many factors, occlusion is one of the most critical issues since it is difficult to be 

modeled but can greatly influence the tracking result. To deal with occlusions, a large number 

of effective tracking methods have been developed including statistical analysis method [1], 

fragments-based method [2] and spatiotemporal context based method [4]. 

Sparse representation offers a new insight for solving object occlusion problem. Mei et al., 

[11] formulate tracking as a sparse approximation problem in a particle filter framework, and 

deal with corruptions and occlusions by introducing a set of trivial templates. However, the 

trivial templates are unable to model large occlusion effectively. The images from the 

occluded regions may also get small reconstruction errors, so that might be mistaken as the 

tracking result. Moreover, the likelihood computation and template update processes do not 

take full use of the occlusion information captured in the sparse coefficients, the tracking 
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result with large occlusion might be added to the template set. Ambiguities accumulate and 

finally cause tracking failure. A modified method is proposed in [15], which detects occlusion 

through learning with observation likelihoods. However, the occlusion classifier needs to be 

trained in advance, and the training and testing should be performed in the similar 

environment to keep tracking reliability. Those restrictions limit its applicability. 

In this paper, we propose a novel tracking algorithm which takes advantage of local sparse 

representation to deal with occlusions. In our approach, a sample set which contains both 

target and background templates extracted from a sub-image centered around the target is 

constructed. We use this sample set to capture the local visual information of both the target 

and the possible occluders. In each tracking frame, the target region is divided into multiple 

local patches. We reconstruct each patch using the sample set and explore the spatial 

information captured by its sparse coefficient vector for occlusion detection. An occlusion 

mask is then constructed according to the occlusion status of all these patches, which is used 

to ensure that only the unoccluded patches are involved in the likelihood computation 

procedure. In additional, we introduce a dynamic template update strategy with the 

consideration of occlusion to adapt to the variations of the target appearance. The rarely used 

templates are replaced with the tracking result templates or their recovered templates to 

alleviate the drift problem. 

The rest of the paper is organized as follows. In the next section related work are 

summarized. Our occlusion detection method based on local sparse representation is 

described in Section 3. The proposed tracking algorithm and the dynamic template update 

strategy are presented in Section 4. We illustrate experimental results with both qualitative 

and quantitative evaluations in Section 5. Finally, concluding remarks are given in Section 6. 

 

2. Related Work 

Appearance model is usually the essential component in all tracking methods. To deal with 

the appearance variations of the target object, many sophisticated object representation 

methods have been proposed, which can be generally categorized into either discriminative 

[6, 7, 8] or generative [2, 10, 11] methods. 

Discriminative methods formulate tracking as a binary classification problem. The 

candidate which can be best separated from the background is taken as the tracking result. 

Avidan, et al., [6] propose an ensemble tracking framework, in which a confidence map is 

constructed using an ensemble of weak classifiers to separate pixels that belong to the object 

from ones that belong to the background. The peak of the map is considered as the new 

position of the object. Babenko, et al., [7] use multiple instance learning (MIL) instead of 

traditional supervised learning to learn a discriminative model for tracking. A discriminative 

appearance model based on super pixels is introduced in [8]. It facilitates the tracker to 

distinguish between target and background. These discriminative tracking methods aim to 

construct a good appearance model for effectively separating the object from background. 

How to correctly label the samples for training and updating the classifier is still a challenge. 

Generative methods formulate the tracking problem as searching for the region most similar 

to the target appearance. One of the critical issues for generative methods is how to make the 

tracker adapt to the inevitable appearance variation of the target. An online algorithm in [9] 

incrementally learns a low dimensional eigenspace representation to reflect appearance 

changes of the target [10]. decomposes the observation model into multiple basic observation 

models. Each basic observation model covers a specific appearance variation of the target, so 

that the compound observation model can be robust to combinatorial appearance variation. 

The target template is represented by multiple image patches to handle partial occlusion and 
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pose change in [2]. Moreover, algorithms take advantage of both generative and 

discriminative models are proposed in [16, 23]. 

Recently sparse representation has been extensively studied and successfully applied to 

computer vision and pattern recognition, e.g., face recognition [20], super-resolution [21] and 

image in painting [13]. Motivated by the work in [20], Mei et al., apply sparse representation 

to visual tracking [11], and further extend the tracker by combining the tracking with 

recognition simultaneously in [12]. In [15-17], local sparse representation is used to 

effectively manage the appearance changes of the object over time. Han, et al., [22] propose a 

sample-based adaptive sparse representation (AdaSR) method. Tracking is implemented by 

searching for the regions holding the most similar AdaSR to that of the target. Wang, et al., 

[19] propose an online object tracking algorithm, which takes advantage of both principal 

component analysis (PCA) algorithm and sparse representation scheme to learn an adaptive 

appearance model.  

Sharing philosophies with works above, we develop an effective object representation 

method which takes advantage of both generative mode and discriminative model of the 

object. The generative model is constructed from the holistic template of the object to adapt to 

the appearance variations during tracking process, while the discriminative model takes use of 

the local sparse representation of the object to detect occlusions. This method ensures that the 

occluded patches are excluded from reconstruction and likelihood computation. Compared 

with sparsity-based models [11, 12, 14], our method maintains local appearance information 

and therefore can effectively manage occlusion problem. Our work bears some similarity to 

[15] in the use of local sparse representations. Yet we construct the occlusion classifier online 

rather than train the classifier in advance, which improves the robustness and adaptability of 

the tracker. Furthermore, we improve the template updating operation according to the 

occlusion status of the tracking result to prevent pollution of the template set and get 

satisfactory results. 

 

3. Occlusion Detection based on Local Sparse Representation 

We now describe how to design the detector for occlusion and discuss the important 

characteristics related. In our method, the information hides in the spatiotemporal context of 

the tracking scene is explored. We use this information to design a general and robust 

algorithm for detecting occlusions adaptively. We first detail the local sparse representation 

as the basic of the detector, and then explain the classification rule of occluded and 

unoccluded local patches.  

 

3.1. Local Sparse Representation 

Local templates (fragments) based methods have been verified as a king of effective 

techniques for handling occlusions [2, 16]. The key issue of these methods is how to properly 

label the positive and negative samples to discriminate the target from the occluder. Missing 

updated with the occluder patches as positive samples, always leads to the template drift and 

tracking failure. By analyzing the causes of occlusions on several video sequences shown in 

Figure 1, it is not difficult to discover that the possible occluders always appeared in the 

former several frames before occlusion occurs. We combine spatiotemporal context of the 

tracking scene and sparse representation to model the occlusion region, and present a kernel 

based method to adaptively label the positive and negative samples. This method enhances 

the robustness and reliability of the occlusion classifier. Details will follow. 
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Faceocc2 (frames 121, 134 and 156) ThreePastShop2cor (frames 21, 60 and 77) 

 

 

Tud-crossing-sequence (frames 10, 12 and 31) Woman (frames 81, 104 and 120) 

Figure 1. Illustration of Occlusion Situations: Target, Possible Occluder and 
Sample Window are represented by Red, Blue and Green Bounding Boxes, 

Respectively; Arrow Denotes Moving Direction 

When the state of the target is estimated in each frame, the target image region is 

divided into 4×4 local image patches, as shown in Figure 2. Then each local patch is 

normalized to the same size and stacked to a vector 1H

i
 , where H is the size of the 

normalized patch. To estimate if a patch is occluded, a sample set is constructed based 

on a sample window, which is a rectangle region centered around the target.  Each 

template in the set is defined as a sub rectangle region of the sample window specified 

by ( , , )j j j jd c s , where jc  is the center coordinates which is generated according to 

uniformly distribution inside the sample window, 
j  is the rotation angle, it is set to be 

equal with that of the target. 
js  is the size which is variably set to 0:9, 1:0 and 1:1 times 

of H to manage the scale variation of the occluder. All the templates are normalized and 

turned into vectors in the same way as the local patch of the target. With the sparsity 

assumption, each local patch of the target can be sparsely represented as the linear 

combination of the templates of the sample set by solving the regularized ℓ1 minimization 

as 

* 2

2 1arg min || || || || , . . 0
i

i i i i i
b

b Db b s t b    µ                                 (1) 

Where  1 2, ,..., H m

mD d d d    denotes the sample set, m is the number of templates in 

the set and is set to 150 in our experiment to balance between effectiveness of modeling 

occlusion and computational efficiency. 1m

ib   is the sparse coefficient vector of the i-

th local patch, and   is a regularization constant to balance reconstruction error and 

sparsity. 0ib µ  Indicates all the elements of 
ib  are nonnegative. By this way, each local 

patch of the target region is sparsely represented by the most representative templates of 

the sample set. The larger the coefficient value, the more relevance exists between the 

corresponding template and the local patch.  

 

3.2. Kernel based Occlusion Detector  

It is reasonable to assume that the unoccluded patches of the target can be better 

represented by the linear combination of templates from target region, while the occluded 

patches can be better represented by the span of templates from the region belongs to possible 
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occluders. What should be pointed out in advance is that the sample set is sampled at a proper 

former frame before the occlusion occurs, which is to ensure the templates belong to the 

occluder region can keep a spatial distance with the templates belong to the target region. The 

leads depends on the frame frequency and the relative approaching velocity of the target and 

the occluder, and 3 to 9 frames ahead is a empirical choice in most of the real world video 

scenes. Taking the sampling strategy above, the templates from the possible occluder will 

appear in the outer region of the sample window, while the templates from the target will 

appear in the central region. Thus, a weight value of occlusion status for each local patch of 

the target is generated by 

2 *

1

1
(|| || )

m
j tar j

i i

j

c c
k b

m h





                                            (2) 

where * j

ib  is the j-th element of sparse coefficient vector *

ib , 
tarc  is the estimated center 

coordinates of the target, jc  corresponds to the location of the j-th template in the 

sample set, h  is bandwidth used to adapt to the size of the target region, and ( )k x  is an 

isotropic kernel profile. In order to make 0i   as the cut-off point of occluded patches 

and unoccluded patches, we extend the Epanechnikov kernel symmetrically by negative 

weights 

2

{| | }

3
K( ) (1 )1

4
u du u                                                     (3) 

Where d  is a constant accounting of width proportion of sample window and target 

region. Figure 2 illustrates the spatial distribution of the templates employed by the sparse 

representation of the occluded and unoccluded target local patches. Examples of occluded and 

unoccluded local patches are represented by the blue and red bounding boxes respectively in 

Figure 2(a). Figure 2(b) and (c) show their sparse coefficient vectors. We can see that both of 

the local patches can be sparsely represented by templates from the sample set, but the spatial 

distributions of the templates employed are different. By converting the 1D coefficient vector 

to a 2D image according to the location of the templates, we get an intuitive comparison of 

spatial distribution of these templates employed in two representations. As shown in 

Figure 2(d) and (e), the unoccluded patch is represented by templates from the target 

region with large coefficients (indicated by the red bars). To the contrary, the occluded 

patch is sparsely represented by templates from the occluder region (indicated by the 

blue bars). We get a weight image by weighting each coefficient value in the 2D image 

using kernel function K( )x . In this weight image, the templates well represent the 

unoccluded patch get positive weight values, and negative for templates associate with 

the occluded patch. The kernel function increases the absolute weight values of 

templates locating at the central and boundary areas of the sample window, and decreases 

the absolute weight values of the ones locating at the border of target region. Through 

this way, we improve the robustness of the occlusion classifier. 

After computing Eq. 2, the unoccluded local patches get positive values, and the occluded 

ones get negative values. We assign the pixels belong to the unoccluded patches a value of 1, 

and the pixels belong to the occluded patches a value of 0. Thus we get an occlusion map 

denoted by w h

oM   which indicates the occlusion status of the integral target region, where 

w is the width of the target region and h is the height.  
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Figure 2. Illustration of Spatial Distribution of the Templates Employed by the 
Sparse Representations of the Occluded and Unoccluded Target Local Patches 

4. Proposed Tracking Algorithm 

Our object tracking algorithm is carried out within the Bayesian inference framework. 

Given the observation set of target 
1 2{ , ,..., }t tZ z z z  up to the t-th frame, we estimate the 

target state variable 
tx  by maximizing the posteriori probability over N samples at frame t 

by 

* arg max ( | ), 1,2,...,
i
t

i

i t t
x

x p x Z i np                                   (4) 

Where i

tx  indicates the state of the i-th sample at the t-th frame. The posteriori 

probability ( | )t tp x Z  (we drop the sample index i for generality) can be estimated 

recursively by 

1 1 1 1( | ) ( | ) ( | ) ( | )t t t t t t t t tp x Z p z x p x x p x Z dx                            (5) 

Where 
1( | )t tp x x 

 is the dynamic (motion) model between two consecutive states? Let 

tx  be the six-dimensional parameter vector for affine transformation. We model the 

transformation of each parameter independently by a scalar Gaussian distribution 

between two consecutive frames. Then the dynamic model can be represented by a 

Gaussian distribution
1 1( | ) ( ; , )t t t tp x x N x x   , where  a diagonal covariance matrix is 

whose elements are the variances of the affine parameters.  ( | )t tp z x  Is the observation 

model which denotes the likelihood of the observation tz  at candidate state tx ? We 

formulate ( | )t tp z x  using the reconstruction error in the sparse representation elaborated later. 

One of the contributions of this work is that we handle partial occlusion in an explicit and 

effective way in the construction of the observation model ( | )t tp z x . Figure 3 depicts the main 

components of our tracking algorithm, which consists of three main parts: occlusion 

detection, tracking with occlusion handling and the adaptive updating strategy. The detail will 

be discussed later in this section.  
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Figure 3. Components of the Proposed Tracking Algorithm 

4.1. Tracking with Occlusion Handling 

Be different from the tracker in [11], only the unoccluded patches are used for 

reconstruction and likelihood computation in our method. Let d

iy   be a target candidate, 

and  1...
d n

nT t t    be the set of target templates constructed in the same way as the 

one in the original ℓ1 minimization tracking [11]. We apply the occlusion map to the 

target candidate iy  and all the target templates 
it  in T  simultaneously in order to 

exclude the occluded patches. Note the occlusion map 
oM  constructed in frame t is 

utilized to detect the occlusion status of target at frame t+1. Let k

iy   ( k d ) denotes 

the target candidate with only unoccluded patch, and k nT   denote the corresponding 

target template set, the sparse coefficient vector of 
iy  is given by 

* 2

2 1arg min || || || || , . . 0
i

i i i ii
a

a Ta y a s t a   µ                              (6) 

Where n

ia  . If there is no occlusion, k d . Given a set of target candidates 

1{ ,..., }npY y y  generated by the particle filter framework in each frame, the observation 

likelihood of candidate 
iy  is derived from the reconstruction error of 

iy  as 

* * 21
exp{ || || }i i i

Ta y 


                                               (7) 

where   is a constant that controls the shape of the Gaussian kernel, and   is a 

normalization factor. For tracking at time t, the candidate with the maximum 

observation likelihood is chosen as the tracking result. By solving Eqs. 6 and 7, our 

tracker removes the influence of the occluded patches in likelihood computation, which 

improves the reliability and accuracy of the tracking result. 
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4.2. Template Update 

Since the appearances of the target may change significantly due to factors such as 

illumination variation, pose change, viewpoint variation, etc., it is necessary to update the 

template for adapting to these appearance changes during the tracking process. Many 

approaches have been proposed for template update. Mei and Ling [11, 12] replace the rarely 

used template in the template set when none of the template is similar with the tracking result. 

This update approach does not take any steps to prevent tracking result with large occlusion 

from being added to the template set. Jia et al., [17] use the reconstructed image based on 

only PCA basis vectors to replace the template which is later added to the template set. This 

method is likely to fail when the tracking result is severely occluded or the target appearance 

changes significantly. Using defective samples to update template set or undeservedly 

replacing representative template is the leading cause of drift problem. A good template 

update strategy can not only capture the appearance change of target, but also preserve the 

common information of the target in each frame. Our template update approach takes into 

consideration the occlusion status of the tracking result to prevent template with large 

occlusion from being added to the template set.  

Table 1. Algorithm for Template Update 

Input: Newly tracking result *y , the corresponding coefficient vector *  and observation 

likelihood * , occlusion weight values of all local patches 
1 2 16[ , ,..., ]    , template set T , 

weight vector at the previous Frame 1tw   and predefined thresholds  , 
1 , 

2 . 

Output: New template set T, new weight vector 
tw  

1: Update the weights vector by Eq. 8 

2: If *   then 

3:    Compute the occlusion ratio 
16

1

f( ) /16i

i

 


  where 
0 0

f( )
1

i

i
otherwise





 


 

4:    0 1argmin t

j n jj    

3:    If 
1   then 

4:       
*

oj
t y  /*replace an old template directly*/ 

5:    else if 
1 2     then 

6:       * *avg( , , )y y T   /* replace the occluded patches */ 

7:       
*

oj
t y  /*replace an old template using the recovered sample */ 

8:    end if 

9:    end if 

10: end if 

The template update algorithm is summarized in Table 1. We update the template only 

if the observation likelihood *  (calculated by Eq. 7) of the tracking result *y  is smaller 

than a certain threshold  , which indicates *y  can’t be well represented by current 

template set T. We use the ratio   of the number of occluded patches to the number of 

all patches inside the target region to measure the degree of occlusion. Two thresholds 

1  and 
2 are predefined to describe the degree of occlusion ( 1 0.1   and 

2 0.6  , in our 

experiments). Three kinds of updating operations [19] are adopted according to the 

occlusion ratio  . If 1  , we directly update the template with the tracking result 
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sample. If
1 2    , it indicates that the target is partially occluded. We replace the 

occluded patches by the average of the corresponding parts of the current templates, and 

use this recovered sample for updating. If
2  , it indicates that the tracking result 

target is severely occluded, in this case we do not trust the target sample and discard it 

without updating. In order to keep the stable templates, and exclude the rarely used ones, 

we introduce an importance weight for each template as [11] does, which is given by 

1 *exp( )t tw cw                                                 (8) 

Where
1 2[ , ,..., ]t t t t n

nw     , n is the number of templates, t

j  denotes the importance 

weight of the j-th template at frame t. c  is a normalization constant which makes 

1

1
n

t

j

j




 .The weight of each template increases when the template gets a large 

coefficient in the target reconstruction and decreases otherwise. 

 

5. Experiments 

We evaluate the performance of the proposed algorithm on eight challenging image 

sequences. These sequences cover different kinds of tracking objects with various occlusion 

situations. The proposed approach is compared with six state-of-the-art tracking methods 

including incremental visual tracking (IVT) method [9], ℓ1 tracker (ℓ1) [11], multiple 

instance learning (MIL) tracker [7], the online AdaBoost method (OAB) [24], P-N learning 

(PN) [5] and tracking method with sparse prototypes (SRPCA) [19]. For fair comparison, we 

use the source or binary codes provided by the authors with tuned parameters for best 

performance. 

Our tracker is implemented in MATLAB, which runs at 2.8 frames per second (fps) on a 

PC with Intel Core i7-3770 CPU (3.4 GHz) with 16 GB memory. The target image 

observation is normalized to 32×32 pixels, and the size of the normalized local patch H is 

set to 64. The regularization constant   in Eqs. 3 and 6 is set to 0.01 in all experiments. As 

a trade-off between computational efficiency and effectiveness, 600 particles are used and 

the template set is updated every 5 frames. Only gray scale information is used in our 

experiments. For each sequence, the location of the target object is manually labeled in the 

first frame. Both qualitative and quantitative evaluations are presented in this section. 

 

5.1. Qualitative Evaluation 

Results from two face tracking sequences with partial occlusion, as well as large pose 

variation are shown in Figure 4(I) and (II). For the Faceocc2 sequence, many trackers drift 

apart from the target or do not scale well when the face is heavily occluded. Although the 

MIL tracker is able to track the target object, it is not able to estimate the in-plane rotation 

due to its design. Our and the SRPCA methods are able to track the target accurately 

throughout the video sequence. Our tracker performs well especially when partial occlusion 

and in-plane rotation occur simultaneously (frame 491). This can be attributed to our 

occlusion detection method that alleviates the influence of occlusions. For the Girl sequence, 

the target girl’s face undergoes in-plane rotation and occlusion from a man’s face passing in 

front of it. The IVT method drifts away quickly around frame 119. This result demonstrates 

that the IVT method based on PCA subspace representation is sensitive to in-plane rotation. 

The ℓ1, SRPCA and our methods successfully track the target, while other trackers drifts 
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apart when partial occlusion occurs. Our tracker obtains better tracking accuracy in some of 

the frames (428 and 474). 

Results of different algorithms in surveillance videos are shown in Figure 4(III) and (IV). 

These videos are challenging as they contain partial occlusion, as well as scale change and 

similar objects. In the PETS01_Human sequence, our target object is a man with white shirt 

walking through the square. It can be observed that all trackers except ours fail to track the 

target around frame 96 due to heavy occlusion. The PN algorithm is equipped with a re-

initialization mechanism based on object detection with global search, therefore it may be 

able to track the object again by chance when the target object reappears after occlusion 

(frame 136), and however it loses the target finally due to small size. It should be noted that 

our tracker shows some target drifting when the target man is blocked by the lamp (frame 

264) or the van (frame 292). This result is due to the fact that the target becomes smaller and 

smaller, hence the local patch images may not capture sufficient visual information to 

represent objects for occlusion detection. Even so, our tracker successfully tracks the target 

throughout the video sequence. For ThreePastShop2cor sequence, the target is occluded by 

two people successionally and one of them is similar in color and shape to the target. Most 

trackers fail during the first occlusion occurs (frame 62 to 92) due to the heavy occlusion. The 

sparsity-based trackers perform well before frame 92; however the ℓ1 tracker loses the target 

after frame 124, and locks on the people with similar appearance after occlusion. This can be 

explained by that the simple trivial template set employed by the ℓ1 tracker models occlusion 

less effectively, moreover, the update method of it takes new image observations for update 

without factoring out occlusion. In contrast, the SRPCA and our trackers achieve stable 

performance in the entire sequence, since the update schemes of the both trackers do not 

introduce heavy occlusion which is the main reason for drift problem. 

Figure 4(V) and (VI) illustrate the tracking results using the Woman and Bolt sequences. 

As the objects undergo long-time partial occlusion accompanied with non-rigid pose 

variation, it is difficult to predict their locations. For the Woman sequence, based on the local 

patches occlusion detection method and adaptive template update strategy, our tracker focuses 

more on the upper body which remains almost the same though the lower body changes a lot 

or is heavily occluded. It can successfully track the target throughout the entire sequence. For 

the Bolt sequences, PN tracker drifts away quickly as the target pose changes, since it relies 

heavily on the visual information in the first frame to re-detect the object. Other trackers lost 

the target successively after frame 71. Note that the SRPCA method keeps track of the target 

object at the beginning of occlusion (frame 92), but losts the target finally due to complex 

background. Our tracker drifts apart somewhat around frame 154 due to heavy occlusion as 

well as large pose variation. However, it locks on the target again when the target reappears 

after occlusion. This can be attributed to that our method updates appearance change correctly 

especially when heavy occlusion occurs. 

Results from the football sequence are shown in Figure 4(VII), in which the object 

undergoes partial occlusion in severe cluttered background. The trajectory of the target is 

hijacked by another football player wearing a similar helmet to the target as the two players 

collided with each other at frame 288. Our method overcomes this problem and successfully 

tracks the target. 

We last test our algorithm in the Tud-crossing sequence, and the sample results are 

illustrated in Figure 4(VIII). The challenge in this sequence is multiple occlusions come from 

various directions.  The PN tracker is able to track the target, but with higher tracking errors 

and lower success rate. The SRPCA and our methods track the target successfully and 

maintain target locations stably even with multiple occlusions by pedestrians. Other methods 

are distracted by the occlusions significantly. 

app:ds:accuracy
app:ds:pedestrian
app:ds:pedestrian
app:ds:partial
app:ds:challenge
app:lj:%E6%96%B9%E5%90%91?ljtype=blng&ljblngcont=0&ljtran=direction
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(I) Faceocc2 (frames 1, 171, 271, 491, 731 and 816) 

 
(II) Girl (frames 1, 119, 428, 435, 443 and 474) 

 

(III) PETS01_Human (frames 1, 96, 136, 264, 292 and 490) 

 
(IV) ThreePastShop2cor (frames 1, 62, 92, 124, 143 and 350) 

 
(V) Woman (frames 1, 42, 120, 214, 384 and 552) 

 

(VI) Bolt (frames 1, 71, 92, 154, 164 and 208) 

 

(VII) Football (frames 1, 60, 123, 288, 337 and 362) 

 

(VIII) Tud-crossing-sequence (frames 1, 33, 51, 75, 95 and 127) 

 

Figure 4. Samples of Tracking Results 
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5.2. Quantitative Evaluation 

Performance evaluation is an important issue that requires sound criteria in order to 

fairly assess the strength of tracking algorithms. We employ two typical evaluation 

criteria to quantitatively assess the performance of these trackers. The first one is center 

location error which is approximated by the distance between the central position of the 

tracking result and that of the manually labeled ground truth. Table 2 summarizes the 

results in terms of average center location error. We note that although PN tracker is 

able to relocate on the target during tracking, it is easy to lose the target completely for 

some frames in most of the test sequences. Thus, we only show the center location 

errors for the sequences that PN tracker can keep track all the time. The second 

criterion is the tracking overlap rate which indicates stability of each algorithm as 

taking size and pose of the target object into account. Given the tracked bounding box 

TKROI  and the ground truth bounding box
GTROI , the overlap rate is defined by the 

PASCAL VOC [18] criterion, 
( )

( )

TK GT

TK GT

area ROI ROI
score

area ROI ROI
 . Figure 5 shows the overlap 

rates of each tracking algorithm for all the sequences. Overall, the proposed tracker 

performs favorably against state-of-the-art methods.  

 
Faceocc2 Girl PETS01_ Human ThreePastShop2cor 

    

Woman Bolt Football Tud-crossing-sequence 

    

 

Figure 5. Overlap Rate Evaluation for Eight Video Sequences 

6. Conclusion 

This paper presents a simple but effective method to detect occlusions for visual 

tracking. We provide an effective way to model occlusions via local sparse 

representation. We explicitly take occlusion into account for likelihood computation, 

this helps the tracker locate the target more accurately and be less insensitive to 

occlusion. Our occlusion detection method integrated with a adaptive template update 

scheme prevents the tracking result with heavy occlusions from being added to the 

target template set. Preventing an incorrect update reduces tracking failure. 

Experimental results compared with several state-of-the-art methods on challenging 

sequences demonstrate the effectiveness and robustness of  the proposed algorithm. 

However, the proposed method requires high computational cost due to calculations for 
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ℓ1 minimization. Furthermore, the computational cost grows proportionally as the 

number of local patches increases. The large computational cost prevents the tracker 

from being used in a real time system. We expect further future study along this 

direction. 

Table 2. Average Center Location Error (Pixels). The Best Two Results are 
Shown in Bold and Italic Fonts 

Image sequence IVT ℓ1 MIL OAB PN SRPCA Ours 

Faceocc2 4.9 11.1 14.3 19.2 14.3 4.0 4.6 

Girl 13.4 3.3 13.9 9.6 9.3 3.3 2.7 

PETS01_ Human 256.4 237.2 254.5 259.2 -- 247.6 4.7 
ThreePastShop2cor 65.4 12.4 71.9 92.2 -- 5.5 3.3 

Woman 190.7 198.5 126.7 189.7 -- 131.4 4.9 
Bolt 57.7 41.1 38.6 36.8 -- 37.86 9.1 

Football 18.5 33.6 10.1 80.9 12.3 37.3 6.4 
Tud-crossing-sequence 42.0 10.6 56.9 22.9 8.4 4.1 8.1 

Average 81.1 68.5 73.4 88.8 -- 58.9 5.5 
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