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Abstract 

In this paper Time-varying Auto regressive model (TVAR) based approach for 

instantaneous frequency (IF) estimation of the nonstationary signal is presented. Time-

varying parameters are expressed as a linear combination of constants multiplied by basis 

functions. Then, the time-varying frequencies are extracted from the time-varying parameters 

by calculating the angles of the estimation error filter polynomial roots. Since there were 

many existing basis functions that could be used as basis for the TVAR parameter expansion, 

one might be interested in knowing how to choose them and what difference they may cause. 

The performance of different basis functions in TVAR modeling approach is tested with 

synthetic signals. Our objective is to find an efficient basis for all testing signals in the sense 

that, for a small number of basis (or) expansion dimension, the basis yields the least error in 

frequency. In this paper, the optimal basis function of TVAR Model for the instantaneous 

frequency (IF) estimation of the test signals was obtained by comparing IF estimation precise 

and anti-noise performance of several types basis functions through simulation. 

 

Keywords: Instantaneous frequency estimation, basis functions, Time-varying 

autoregressive model, nonstationarysignal 

 

1. Introduction 

Nonstationary signal modeling is a research topic of practical interest, because most 

temporal signals encountered in real applications, such as speech, biomedical, seismic and 

radar signals have time-varying statistics[1, 2].The problem of time dependency was usually 

circumvented by assuming local stationary over a relatively short time interval, in which 

stationary system identification and analysis techniques are applied. However, this 

assumption is not always suitable, and methods for nonstationary processes are needed. 

Nonstationary signal analysis methods can be categorized into nonparametric and 

parametric [3]. The nonparametric approaches are based on time-dependent spectral 

representations, and include the short-time Fourier transform, the time frequency distribution 

and the evolutionary spectrum due to the uncertainty principle, one cannot get both high time 

and frequency resolutions using these nonparametric methods[4] 

The parametric approaches are based on the linear time-varying (TV) model, in which a 

nonstationary process is represented using an AR, MA or ARMA model with parameters 

changing with time. The TV spectrum can be estimated from the TV model parameters, and 

the instantaneous frequency of the nonstationary signal can be extracted. In contrast with 

nonparametric approaches, good accuracy in signal representation and high frequency 

resolution in spectral estimation can be obtained by using parametric approaches even for 

short data sequences [5] 
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A time-varying autoregressive (TVAR) approach is used for modeling non stationary 

signals, and frequency information is then extracted from the TVAR parameters. Two 

methods are used for estimating the TVAR parameters [6]: the adaptive recursive estimation 

method and deterministic basis function expansion method. The adaptive recursive estimation 

methods are stochastic approach, where the coefficients of the associated models are treated 

as random processes with some stochastic model structure; the most popular methods to deal 

with this class of models are the least mean square (LMS) and the recursive least square 

(RLS),and Kalman filtering algorithms. The basis function expansion method is a 

deterministic parametric modeling approach, where the associated time-varying coefficients 

are expanded as a finite sequence of pre-determined basis functions; generally, these 

coefficients are expressed using a linear (or) nonlinear combination of a finite number of such 

basis functions. The problem then becomes time invariant, and the unknown new adjustable 

model parameters are those involved in the expansions. Hence, the initial time-varying 

modeling problem is reduced to deterministic regression selection and parameter estimation. 

Adaptive algorithms, such as the least mean square (LMS) and the recursive least square 

(RLS) use a dynamic model for adapting the TVAR parameters and are capable of tracing 

signals with weak (or) medium non-stationary dynamics. Adaptive algorithms are sensitive to 

the noise. They also failed to track the time-varying frequency of the signal, if the frequency 

changed very fast. However, they were efficient in tracking the frequency jump [7]. 

The basis function method is capable of tracing both the fast and the slow time-varying 

frequencies. A key advantage of using basis functions is that a considerable reduction in the 

number of parameters needed to track each TV coefficients can be obtained [7]. Hence, this 

model is focused in the present study. However, the selection of the expansion dimension and 

the basis function is questionable since there is no fundamental theorem on how to choose 

them [7].It is ideally expected that when the expansion dimension is infinite, the result of the 

frequencies estimation from any basis function is the same, which will exactly equal to the 

true frequency [7]. But this is impractical, since the computation may require infinite 

memory, and infinite computational time consumption. 

Numerous solutions have been projected, in the literature such as time basis functions, 

Legendre polynomial, Chebyshev polynomial, Discrete prolate spheroidal sequence (DPSS), 

Fourier basis, Discrete cosine basis, Walsh basis, none of these solutions seems to be perfect, 

since the selection of      desires some priori information upon the time variations present 

in   . 

It is generally mentioned in [12] that there are possibly two ways for selecting the basis 

function. If some prior knowledge about the physical process of time variation is available, 

the basis functions should be chosen such that the prominent trends in parameter change is 

retained. If a priori information is unavailable, which might be the case for complicated 

physical systems, Niedzwiecki, [12] suggests that the selection of the basis function should 

rely on general approximation, such as the Taylor and Fourier series approximation, and the 

function most commonly used are the time polynomial and the Fourier, or the cosine 

functions, since their realization is easy, and they can fairly accurate a broad range of 

variations. 

The paper is presented as follows. It explains the Time-varying Autoregressive modeling 

in Section 2. In Section 3 it explains the selection of basis and order determination. In Section 

4 it gives the steps to estimate IF, based on TVAR model. The investigational results of 

estimating IF in noisy environment using different basis functions are presented in Section 5. 

Concluding remarks are given in Section 6. 
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2. TVAR Modeling 

The non stationary discrete-time stochastic process    is represented by p
th
 order TVAR 

model as 

    ∑     

 

   

                                                                                                                            

Here      are time-varying coefficients and     is a stationary white noise process and 

whose mean is zero and variance is   
   According to the time-varying coefficients evolution, 

TVAR is likely to be categorized in to two group’s i.e. adaptive method and basis function 

approach. 

TVAR model based on the basis function technique is able to trace a strong non-stationary 

signal, that’s why this model is focused in the present study. In this technique, each of its 

time-varying coefficients are modeled as linear combination of a set of basis functions [6]. 

The purpose of the basis is to permit fast and smooth time variation of the coefficients. If 

we denote     as the basis function and consider a set of (q + 1) function for a given model, 

we can state the TVAR coefficients in general as  

     ∑        

 

   

                                                                                                                               

From (2) we examine that, we have to calculate the set of parameters     for 
{k=1,2,........,p; m=0,1,2,............,q;    =1} in order to compute the TVAR coefficients 
    ,and the TVAR model is absolutely specified by this set. The TVAR coefficients are 

designed as follows, we consider single  realization of the process   .For a given 
realization of    we can analyze (1) as a time-varying linear prediction error filter and 
consider    to be the prediction error  

  =  - ̂                                                                                                                                                 (3) 

       ̂   ∑     

 

   

                                                                                                                      

The total squared prediction error, which is as well as the error in modeling   , is now 

specified by 

    ∑|  | 

 

   

Substitute (2) in (4) and the prediction error     can be written as 

      ∑ ∑            

 

   

 

   

                                                                                                        

The total squared prediction error can be formulated as 

   ∑|   ∑ ∑            

 

   

 

   

|
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For modeling the non stationary stochastic process           covariance technique, we 

make no assumptions on the data outside [0, N-1]. In equation (6)   is the interval over which 

the summation is performed and set           . By minimizing the mean squared 

prediction error in (6) we can estimate the time-varying parameters      [6]. We can 

minimize the mean squared prediction error in (6) by means of setting the gradient of    with 

respect to    
  zero 

   

    
  ∑

     
 

    
   ∑   

   
 

    
                                                                                                          (7) 

{                   } 

Where 

  
    

  ∑ ∑    
     

     
 

 

   

 

   

       

And the derivative of   
  with respect to    

    

   
 

    
      

     
                                               

Consequently (7) becomes,   

 ∑       
 

     
                                                                                                                                     

The above mentioned condition is similar to the orthogonality law encountered in 

stationary signal modeling. Substitute     in (8) we have 

∑(   ∑ ∑            

 

   

 

   

)

 

    
     

                                                                                

Now we define a function          as shown below, 

         ∑             
     

 
                                                                                                              (10) 

Using the above definition in (9) we have, 

∑ ∑            

 

   

          

 

   

                                                                                                   

The above equation represents a system of p(q+1) linear equations. The above system of 

linear equations can be efficiently represented in matrix form as follows. 

Define a column vector     as follows 

   [                ]
 
     

                                                                                                                                             

We can use the function (10) to find the following matrix for           
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[
 
 
 
 
                             

                         

   
                               ]

 
 
 
 

                                                                          

The above matrix is of size pxp and all the different values for m and g resulting in 

(q+1)x(q+1) such matrices, by means of these matrices, we can now describe a block matrix 

as shownbelow, 

 

  

[
 
 
 
 
           

          

    
    

          ]
 
 
 
 

                                                                                                                   

The above Block matrix C has (q+1)x(q+1) elements and each element is a matrix of size 

pxp, which implies the Block matrix C of size p(q+1)x p(q+1). 

Now we describe a column vector    as shown below       

                                                                                                                      

                     By using the definitions from (12)-(15) we can represent the system 

of linear equations in (11) in a compact matrix form as follows 

[

       

   
       

]

⏟          
 

 [

  

 
  

]
⏟

 

  [

  

 
  

]

⏟
 

                                                                                                   (16) 

         
 

The above equations reduce to the Yule-walker equations (YWE) for a stationary AR 

model, as soon as q=0. By solving the above matrix equation, we can obtain the set of TVAR 

parameters     (elements of  ), the predictor coefficients     can be calculated using (2) 

 

3. Parameter Selection 

The TVAR parameter selection is basically depends on three degrees of freedom, such as 

the TVAR order p, the basis function dimension q, and the set of basis functions     . 

 

3.1. Choice of the Basis Functions 

The basis functions      must be independent and non-zero for n=0,1,…..N-1, and 

    =1, for n=0.If a priori information about the signal variation is known, the basis 

functions should be chosen such that the trends in parameter change is retained. In case, when 

a priori information is unavailable selection of basis is trial and error. According to equation 

(2), no particular constraint is imposed on the basis         consequently one will be able to 

track only variations which are approximable by this set of functions. Numerous solutions 

have been projected, in the literature such as time basis functions, Legendre polynomial, 

Chebyshev polynomial, Discrete prolate spheroidal (DPSS) sequence, Fourier basis, Discrete 
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cosine basis, Walsh basis, none of these solutions seems to be perfect, since the selection of 

     desires some priori information upon the time variations present in   . In this article we 

compare 7 different basis functions. 

 

1. Time Polynomial Basis Function 

     (
   

 
)
 

                                                                                                                                   (17) 

                                                                         
  N denotes the length of the data record that is being modeled. 

 

Figure 1. Time Polynomial Basis Function for q=4 

2. Legendre Polynomial Basis Function 

 

    =1, 

      = 
      

   
  ,                                                                                                                            (18) 

     = 
     

 
 

       = 
                   

     
 

Where   m=0, 1, 2  q  n  , 2.....N   
 

 

Figure 2. Legendre Polynomial Basis Function for q=9 
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3. Chebyshev Basis Function 

        =                                                                                                                         (19)                        

   Where k 
      

     
   and 1     

    m=0, 1, 2  q 

 

Figure 3. Chebyshev Polynomial Basis Function for q=9 

4. Fourier Basis Function 
 

       {
      n                     

  n   n                    
                                                                                (20)   

Where    
 

 
   

    m=0, 1, 2  q  n         N   

 

Figure 4. Fourier Basis Function for q=9 

5. Discrete Cosine Basis Function 
 

       α         (
        

  
) 
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    Where  

α    

{
 

 √
 

 
            

√
 

 
                    

                                                                                                (21)                           

n=1,2.....N   

 

Figure 5. Discrete Cosine Basis Function for q=9 

6. Discrete Prolate Spheroidal Sequence (DPSS): 
 

       =   th  sequences most concentrate in the frequency band | |   2 W , where W is 

half bandwidth. 
 

  Where   n = 0,1,2,....,N 
               m =0,1,2,..........q  
 
           N is the total number of samples 

 

 

Figure 6. Discrete Prolate Spheroidal Sequence for q=9 
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7. Walsh Basis Function 

Walsh functions consisting of a number of fixed-amplitude square pulses interposed with 

zeros. Walsh functions can be generated a number of ways. One is to define Walsh functions 

as the following 

       ∏  n        
 

   

   

  n                                                                                                          

Where        n=0, 1, 2............N ;       m=0,1,2.........q; R=   
 
    ∑    

    
     

 
Here                     

For example,        has the following form: 

 
m=5=1x22+0x21+1x20, 

m2=1,m1=0,m0=1, 

       n     m222      n     m121      n     m020     
 

 

Figure 7. Walsh Basis Function for q=4 

3.2. Order Selection 

In the presence of noise The TVAR model can distinguish several time-varying spectral 

peaks well. However it is sensitive to model order change. False spectral peaks may be 

produced by the TVAR modeling approach, when an erroneous model order is chosen. Thus, 

the determination of right model order in TVAR modeling is a significant issue. There are 

few techniques in choice of TVAR model order. For instance, Bayesian technique [15] and 

Akaike information criterion (AIC) [16] are used for the determination of model orders in 
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TVAR models. In this article, we consider the choice of model order as a Maximum-

likelihood (ML) estimation [17] technique. In this technique, by maximizing the likelihood 

function we can determine the model order   

 

Maximum Likelihood Estimation (MLE) 

 

The TVAR Model for the non stationary discrete-time stochastic process    is 

    ∑ ∑            

 

   

 

   

             

The above can be represented in compact form as 

                                                                                                                                           

Where      is  

                                                                                                                                                

Here,  denote Kronecker multiplication. 

      [               ]
 
                                                                                                          

      [            ]
 
                                                                                                                     

Moreover 

  [  
    

     
 ]                                                                                                                            (27)                                         

Here 

  
   [            ]                                                                                                                          

Step-1: compute  

                   

Step-2: calculate  

    (∑          

 

   

)

  

(∑         

 

   

)                                                                                

Step-3: Estimate  

 ̂  
 

 
∑[         ]

 
                                                                                                                  

 

   

 

 Step-4: Obtain the cost function 
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   (   ̂)  

 

 
   |∑          

 

   

|                                             

Step-5: Maximize the above cost function to select the expansion dimension q=     and 

the model order p=      where 

                     {             }   

                   {               }   

4. Instantaneous Frequency Estimation using TVAR Model 
 

1) Compute TVAR model order p and q using MLE Algorithm choose the basis 

function        m=1, 2……q, n=1, 2………..N 
 

2) For covariance technique of signal modeling set                 

compute          by means of equation (10) to find the matrix      in (13), subsequently, 

set up the matrix C in (14), as well, use           to calculate   in (15) 

 

3) Calculate the TVAR parameters      by solving C   = - d, in (16) and form the 

coefficients     using (2) 
 

4) Solve the roots of the time-varying autoregressive    polynomial formed by TVAR linear 

prediction filter.  A (z; n)   ∑         
   at each instant n to find the time-varying 

poles:    , i=1,2....p 
 

5) The Instantaneous frequency (IF) of the non stationary signal, for each sample instant n 

can be   estimated from the instantaneous angles of the poles using the formula   

              = 
         

  
  for |    | ̃1 

 

5. Simulation Results 

In this section, seven basis functions (time polynomial, Legendre polynomial, Chebyshev 

polynomial, DPSS, Fourier, Discrete cosine, Walsh) are compared based on the accuracy in 

estimating the time-varying frequency of testing signals. Our experience shows that different 

basis functions show their own unique tractability and accuracy. The time-polynomial and the 

Legendre functions yield the same result. This is because both functions are linearly related 

and capable of spanning exactly the same subspace. 

For our comparison in the time-varying frequency estimation, all the seven basis functions 

are tested with synthetic signals. Our objective is to find an efficient basis for all testing 

signals in the sense that, for a small number of basis (or) expansion dimension, the basis 

yields the least error in frequency estimation. 

Order p and dimension q (obtained from the MLE Algorithm) was considered suitable in 

that it is the smallest, but yields approximately the least error in frequency estimation (i.e., 

increasing q higher than this number would not yield much difference in estimation error). 

Basis functions were tested in a noise environment with SNR=20dB, with eight synthetic 

signals. These eight signals were generated such that their time-varying frequencies were 

exactly known. We concluded that the  basis function is best suitable for a given test signal in 

the sense that, the TVAR Model order p and Basis function dimension q  is low to get the 
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least estimation error as compared to other basis, for remaining basis to get the similar error 

we required basis function dimension is high  

 

1) Signal test 1 was a linear chirp that has a linearly-varying frequency from 0.01Fs to 0.45Fs 

over 256 samples. This signal was generated by using equation   (n)=cos(πμn
2
+2πf1n)where 

μ=1.6e5,f0 =100Hz, 

and sampling rate Fs=10000Hz. 
 

IF law  fi(n)=      n                                                                                                            (32) 

TVAR model order for different basis are computed using Maximum likelihood estimation 

(MLE) Algorithm, the results are tabulated below in Table 1 

Table 1. TVAR Model Order Estimation of Signal Test1 using MLE Algorithm 

Basis function TVAR Model Order 

P 

Basis function dimension 

q 

Time polynomial 2 

 

4 

Legendre polynomial 2 4 

Chebyshev polynomial 2 6 

DPSS 2 4 

Fourier 2 4 

Discrete Cosine 2 10 

 

Except the cosine function, all other basis functions have small errors in estimating the 

time-varying frequency of the signal test1.For this signal Best basis function is any basis 

function except cosine basis function since cosine basis function requires high basis function 

dimension (q) to get least error in frequency estimation. 

 

 

Figure 8. Instantaneous Frequency Estimate of Signal Test 1 using Different 
Basis 
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2) Signal Test 2 was a chirp signal with a normalized frequency variation in a parabolic 

shape from 0.02to over 0.46 over 256 samples. It was created by using the equation  

  (n)=cos(
 

 
    n3     0n) , 

Where   =6.4e6. f0=200Hz, Fs=10000Hz. 
 
IF law  fi(n)=      n                                                                                                    (33) 

TVAR model order for different basis are computed using Maximum likelihood estimation 

(MLE) Algorithm, the results are tabulated below in Table 2 

Table 2. TVAR Model Order Estimation of Signal Test2 using MLE Algorithm 

Basis function TVAR Model order 

P 

Basis function  dimension 

q 

Time polynomial 2 

 

10 

Legendre polynomial 2 10 

Chebyshev polynomial 2 10 

DPSS 2 10 

Fourier 2 8 

Discrete Cosine 2 8 

 

For this signal any basis is suitable since in terms of TVAR Model order p and Basis 

function dimension q is same for all basis and also estimation error is also similar for all basis. 

 

 

Figure 9. Instantaneous Frequency Estimate of Signal Test 2 using Different 
Basis 
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3) Signal test 3 was a sinusoid with a normalized frequency change in parabolic shape from 

0.05 to a maximum at 0.3 and then back to 0.05 over 256 samples. This signal may be 

thought of as an example of an ideal Doppler signal. It was given by 

  (n)=       
 

  
  n3    tdn2-   t2dn    0n)  

Where   =1.06e8,f0 =5500Hz, and td= time delay which is of 130 samples.  

 

IF law  

fi(n)=        n      
   n                                                                                                   34) 

 

Table 3. TVAR Model Order Estimation of Signal Test3 using MLE Algorithm 

Basis function TVAR Model order 

P 

Basis function dimension 

q 

Time polynomial 2 

 

16 

Legendre polynomial 2 16 

Chebyshev polynomial 2 14 

DPSS 2 16 

Fourier 2 8 

Discrete Cosine 2 8 

 

For this signal Fourier basis and Discrete Cosine basis are best suitable basis since the 

TVAR Model order p and Basis function dimension q is low to get the least estimation error 

as compared to other basis, for remaining basis to get the similar error we required basis 

function dimension is high as shown in Table 3. 

 

 

Figure 10. Instantaneous Frequency Estimate of Signal Test 3 using Different 
Basis 
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4) Signal test 4 a sinusoid with a normalized frequency piecewise linearly varying over N = 

256 samples, increasing from f0 =0.1 to fmax =0.4 over the first N1=128 samples, then 

decreasing back to f0 =0.1 over the next 128 samples 

 

   (n)={
[       (     

  

 
n ) n]                                

[       (         (
 

 
 N ))n]                 

                                        (35) 

 

Where  =|
           

  
| and  fi(n)={

     n                                     

         n  N                  
                              (36)    

 

Table 4. TVAR Model Order Estimation of Signal Test4 using MLE Algorithm 

 

For this signal Discrete Cosine basis is best suitable basis since the TVAR Model order p 

and Basis function dimension q is low to get the least estimation error as compared to other 

basis, for remaining basis to get the similar error we required basis function dimension is high 

as shown in Table 4. 

 

 

Figure 11. Instantaneous Frequency Estimate of Signal Test 4 using Different 
Basis 

Basis function TVAR Model order 

P 

Basis function dimension 

q 

Time polynomial 2 

 

24 

Legendre polynomial 2 24 

Chebyshev polynomial 2 20 

DPSS 2 24 

Fourier 2 14 

Discrete Cosine 2 10 
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5) Signal test 5 a sinusoid with a normalized frequency nonlinearly varying over N = 256 

samples in a quadratic manner, decreasing from f0 =0.4 to fmin =0.1 over the first N1 =128 

samples then increasing back to  f0 =0.4 over the next 128 samples. 

 

  (n)={
   {  [         

  

 
 nN  N 

 ] n}

   {  [       
  

 
      ]  }          

                                                                     (37) 

 

Where   |
           

  
 |, and  

fi(n)= {
         n  N  

                        

       n  N                             
                                                              (38) 

 

Table 5. TVAR Model Order Estimation of Signal Test 5 using MLE Algorithm 

 

For this signal  Fourier basis and Discrete Cosine basis are best suitable basis since the 

TVAR Model order p and Basis function dimension q is low to get the least estimation error 

as compared to other basis, for remaining basis to get the similar error we required basis 

function dimension high as shown in Table 5. 

 

 

Figure 12. Instantaneous Frequency Estimate of Signal Test 5 using Different 
Basis 

Basis function TVAR  Model order 

P 

Basis function dimension 

q 

Time polynomial 2 

 

24 

Legendre polynomial 2 24 

Chebyshev polynomial 2 18 

DPSS 2 24 

Fourier 2 10 

Discrete Cosine 2 10 
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6) Signal test 6 a sinusoid with a normalized frequency nonlinearly varying in a periodic 

manner over N =256 samples, starting from f0 =0.25 and oscillating between  

 

f max =0.4 and f min =0.1, with a sweeping rate of    = 
   

 
 . 

 

  (n)=cos{  [   n  
 

    
         n ]},    1   n   256,                                                          (39) 

 

W      =|
             

 
|  and 

 

 fi(n)=        n      n  1   n   256                                                                                              (40) 
   

Table 6. TVAR Model Order Estimation of Signal Test 6 using MLE Algorithm 

 

For this signal  Discrete Cosine basis is best suitable since the TVAR Model order p and 

Basis function dimension q is low to get the least estimation error as compared to other basis, 

for remaining basis to get the similar error we required basis function dimension high as 

shown in Table 6. 

 

 

Figure 13. Instantaneous Frequency Estimate of Signal Test 6 using Different 
Basis 

Basis function TVAR  Model order 

P 

Basis function dimension 

q 

Time polynomial 2 

 

26 

Legendre polynomial 2 26 

Chebyshev polynomial 2 18 

DPSS 2 26 

Fourier 2 14 

Discrete Cosine 2 10 



International Journal of Signal Processing, Image Processing and Pattern Recognition  

Vol.7, No.3 (2014) 

 

 

334   Copyright ⓒ 2014 SERSC 

7) Signal Test 7 a sinusoid with a frequency jump. The frequency remains constant at to  

 f0 =0.1 for the first 127 samples and then it jumps to  fN =0.4 at the 128
th
 sample and remains 

constant over the next 128 samples 

 

  (n)={
        n                              

             n              
                                                                                   (41) 

 

 Where   = fN     and fi(n)={
                                                       
                                              

                            (42) 

 
Table 7. TVAR Model Order Estimation of Signal Test7 using MLE Algorithm 

 

For this signal Walsh basis is best suitable basis since the TVAR Model order p and Basis 

function dimension q  is low to get the least estimation error as compared to other basis, for 

remaining basis to get the similar error we required basis function dimension is high as shown 

in Table 7. 

 

 

Figure 14. Instantaneous Frequency Estimate of Signal Test 7 using Different 
Basis 

8) Signal Test 8 was a highly nonstationary sinusoid that has a normalized frequency, 

jumping from 0.1 to 0.4 and then linearly decreasing from 0.4 to 0.1.The length of this signal 

was 256 samples.  

Basis function TVAR Model order 

P 

Basis function dimension 

q 

Time polynomial 2 

 

28 

Legendre polynomial 2 28 

Chebyshev polynomial 2 22 

DPSS 2 28 

Fourier 2 18 

Discrete Cosine 2 18 

Walsh 2 10 
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Table 8. TVAR Model Order Estimation of Signal Test8 using MLE Algorithm 

Basis function TVAR Model order P Basis function dimension q 

Time polynomial 2 32 

Legendre polynomial 2 30 

Chebyshev polynomial 2 26 

DPSS 2 30 

Fourier 2 18 

Discrete Cosine 2 18 

Legendre +Walsh 2 10 

This signal exhibit both fast and slowly varying dynamics at different stages of the signal, 

for this signal the combinations of both Legendre and Walsh basis function are best suitable 

basis since the TVAR Model order p and Basis function dimension q is low to get the least 

estimation error as compared to other basis, for remaining basis to get the similar error we 

required basis function dimension is high as shown in Table 8. 

 

 

Figure 15. Instantaneous Frequency Estimate of Signal Test 8 using Different 
Basis 

Table 9. Summary of the Best Basis Functions that Yield the Least Error for 
each Signal Test 

Signal Best Basis function 

Signal test 1 Any, except cosine function 

Signal test 2 Any 

Signal test 3 Discrete Cosine, Fourier 

Signal test 4 Fourier 
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Signal test 5 Discrete Cosine and Fourier 

Signal test 6 Discrete Cosine, Fourier 

Signal test 7 Walsh 

Signal test 8 Walsh + Legendre 

 

 

Table 9 is a summary of the results from our tests. It is obvious that we cannot decisively 

select the best single basis function that is suitable for all signal tests. It is more(or)less 

dependent on the characteristics of signals. 

 

1) If the signal is a chirp (or) has a frequency that varies linearly, then the, Time polynomial 

basis, Legendre polynomial basis, DPSS basis are suitable as the basis for the parameter 

expansion. 

 

2) If the signal has a frequency that varies periodically, the Fourier basis and Discrete Cosine 

basis are suitable as the basis for the parameter expansion. 

 

3) Walsh basis functions should be used when dynamics are expected to exhibit fast transients 

and burst-like dynamics, whereas Legendre polynomials are more appropriate for smoothly 

changing dynamics. 
 

4) If the signal exhibit both fast and slowly varying dynamics at different stages of the signal, 

then the combinations of both Legendre and Walsh basis functions are suitable as the basis 

for the parameter expansion. 

 

5)If the characteristics of the signals were not known, we recommend the Fourier basis 

function as the basis expansion of the TVAR parameters, since the Fourier basis function 

yielded reasonable accuracy in the frequency estimation for all eight nonstationary signals. 

 

6. Conclusions 

Several basis functions were compared in estimating the time-varying frequency of the non 

stationary signals. It is obvious that we cannot decisively select the best single basis function 

that is suitable for all signal tests. It is more (or) less dependent on the characteristics of 

signals. In conclusion, the polynomial basis is superior to the other basis for IF estimation of 

the signal that has a frequency that varies linearly. If the signal has a frequency that varies 

periodically, the Fourier basis and Discrete Cosine basis are suitable as the basis for the 

parameter expansion, and we also concluded Walsh basis functions should be used when the 

dynamics are expected to exhibit fast transients and burst-like dynamics, where as Legendre 

polynomials are more appropriate for smoothly changing dynamics. If the signal exhibit both 

fast and slowly varying dynamics at different stages of the signal ,then the combinations of  

both Legendre and Walsh basis functions are suitable as the basis for the parameter 

expansion.Ingeneral,if the characteristics of the signals were not known, we recommend the 

Fourier basis function as the basis expansion of the TVAR parameters, 
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