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Abstract 

We propose a new lossless compression algorithm for hyper spectral images based on the 

third-order interband predictor and the backward pixel search scheme (IP3-BPS). 

Specifically, we propose an adaptive search threshold algorithm and a bi-directional pixel 

search scheme. The resulting algorithm takes the bi-directional pixel search and the 

backward pixel search with adaptive search threshold as the last two predictors; its 

performance evaluation on Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 1997 

images shows that it outperforms the original IP3-BPS algorithm, at lower computational 

complexity level. 

 

Keywords: Hyperspectral images, Image compression, Lossless compression, Adaptive 

arithmetic coding, Adaptive search threshold 

 

1. Introduction 

Hyperspectral images have recently received a lot of attention, as their high spectral 

resolution allows one to distinguish different materials, facilitating several image analysis 

tasks, particularly image classification. However, hyperspectral data sets have very large size, 

making acquisition, storage, and transmission of these data problematic. For example, a scene 

data cube recorded by the National Aeronautics and Space Administration Jet Propulsion 

Laboratory Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) contains 224 bands of 

512×614 sized images. The data storage requirement for one scene only reaches 140 MB. 

A possible solution lies in the adoption of compression techniques. The accuracy of the 

hyperspectral data analysis depends on the quality of the hyperspectral data. The accuracy of 

the data analysis might be of interest to different academic, defense, and commercial 

applications. Thus, lossy data compression reducing data quality might not be a proper 

solution for all data reduction purposes. Lossless data compression could be used instead if 

the quality of the data is a concern. Our focus in this paper is on lossless compression. 

In this paper, we propose an effective technique for lossless compression of hyperspectral 

data, which uses IP3-BPS as spatial-spectral compression engine. Specifically, we propose an 

efficient adaptive search threshold algorithm and a modified spatial-spectral predictor, 

suitable for lossless compression of hyperspectral data, which is able to capture most of the 

correlation by performing twice pixel search in current band. Experimental results on AVIRIS 

scenes show that the proposed technique outperforms IP3-BPS, as well as other state-of-the-

art techniques, with very limited memory resources. The rest of this paper is organized as 

follows. Section II reviews previous methods. In Section III, the ground work for the 
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proposed method is prepared by presenting a brief sketch of IP3-BPS. Sections IV and V 

describe the adaptive search threshold algorithm, the bi-directional pixel search scheme, 

respectively. The whole compression method and experimental results are given in Section VI. 

Section VII concludes this paper. 

 

2. Review of Previous Methods 

Compression relies on statistical structure in the data. In hyperspectral images, there are 

basically two types of correlation available. One is spatial correlation in adjacent pixels in the 

same band, and the other is spectral correlation in pixels between adjacent bands. The spectral 

correlation is much stronger than the spatial correlation, and it must be utilized for maximal 

compression performance. Usually, lossless compression of hyperspectral data is performed 

by using prediction-based approaches because transform-based and vector-quantization-based 

methods have not been able to achieve state-of-the-art results. 

Predictive coding approaches usually employ spatial, spectral, or hybrid predictors to 

decorrelate the image, followed by entropy coders. Wu and Memon [1] extend the CALIC 

algorithm [3] from 2-D to 3-D. The algorithm switches between two modes, intraband and 

interband prediction, based on the correlation coefficient. The resulting residual is then coded 

using context-based arithmetic codes. Magli, et al., propose a modified 3-D CALIC (M-

CALIC) [2] for lossless and near-lossless compression. Rather than switching between 

interband and intraband modes, as in 3-D CALIC, M-CALIC works with a full interband and 

a universal spectral predictor. It refines the prediction models and optimizes parameters of 

context coding to achieve a good coding performance. Tate shows that the band order could 

be rearranged and optimized for better interband prediction, and therefore, better compression 

ratios could be achieved [4]. Recently, Zhang and Liu proposed a two-step adaptive spectral-

band-reordering algorithm [5]. First, the bands are classified into groups based on the 

correlation factor of adjacent bands, and then, a reordering algorithm based on the Prim 

algorithm is applied to each group. A prediction method called ABPCNEF is proposed to take 

advantage of the similarity of structure and pixel relationship between two neighboring 

spectral bands and the residual is coded using adaptive arithmetic coding. However, in this 

paper, all the experiments are performed using natural ordering of the bands to facilitate 

comparisons to the other methods in the literature. 

Rizzo, et al., presented an adaptive least-squares optimized prediction technique called 

spectrum-oriented least squares (SLSQ) [6]. The predictor is optimized for each pixel and 

each band in a causal neighborhood of the current pixel. SLSQ-HEU uses an offline heuristic 

to select between intraband and an intraband compression mode. They also presented an 

optimal method for inter/intra mode selection called SLSQ-OPT. Kiely and Klimesh proposed 

a fast lossless algorithm (TSP-W2) [7] focusing on onboard compression, which employs the 

previous band for prediction and adapts the predictor coefficients using recursive estimation.  

The rationale of a purely spectral prediction performed on pre-classified data has led to the 

development of the crisp and fuzzy adaptive spectral predictors, referred to as Spectral-

Relaxation Labeled Prediction (S-RLP) and Spectral-Fuzzy Matching Pursuits (S-FMP) [9]. 

The former is a modified version of 3-D RLP [8], with a hard pre-classified prediction along 

the spectral direction only. The latter is analogous except for the pre-classified prediction, 

which is soft. The two methods slightly differ in performances, better for S-FMP, and in 

computational complexity, lower for S-RLP. 

In a recent publication [10], Mielikainen and Toivanen proposed a clustered differential 

pulse-code modulation (C-DPCM) scheme, where the spectral bands of the image are 

clustered then filtered using an optimum linear filter for each cluster. The output of the filters 

is encoded using an adaptive entropy coder. In their follow-up work, which they called 
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lookup Table (LUT) method [11], the pixel that is nearest and equal to the pixel colocated 

with the one to be predicted in the previous band is taken as the prediction. The locally 

averaged interband scaling (LAIS)-LUT method [12] enhanced the LUT method. First, the 

method computes a LAIS estimate by scaling the pixel collocated in the previous band. The 

scaling factor is an average of ratios between three neighboring causal pixels in the current 

and previous bands. Two LUTs are used, each of which is similar to the one used in the LUT 

method. The second LUT is updated with the past entries of the first LUT. The predictor 

returned by the LUT that is the closest one to the LAIS estimate is chosen as the predictor for 

the current pixel. If the LUTs return no match, the LAIS estimate is used as the predictor. The 

addresses of the two LUTs in the LAIS-LUT method may be quantized to yield a closer, and 

hence more fitting, nearest neighbor (NN) and to improve the selection between the LUTs 

based on the LAIS reference. This method, known as LAIS-QLUT [13], employs either a 

heuristic or an exhaustive strategy to determine the quantization step size, which may vary 

from one band to another. Eventually, the LUT method was further extended to multiband 

and multiLUT [14]. That is, M LUTs are defined on each of the N previous bands, from 

which prediction is calculated. The decision among one of the M•N possible prediction values 

is based on the closeness of the values contained in the LUTs to an advanced prediction 

carried out from the values in the same N previous bands. Such a prediction is provided by 

either of S-RLP or S-FMP. 

 

3. IP3-BPS 

As we all know, the essence of hyperspectral images compression is to reduce their 

redundancies. For calibration-induced hyperspectral images, besides spatial and spectral 

redundancies, they have calibration-induced data redundancy [7]. In [15], Lin and Hwang 

proposed a two-stage prediction method based on these three redundancies, named IP3-BPS, 

consisting of a third-order interband predictor and a backward pixel search scheme, which 

outperforms all other schemes under comparison in this category. First, for interband 

prediction, the third-order predictor (IP3) is adopted and has the following prediction 

formula: 

yxwv
mmxmwmvy  )()()(ˆ                                      (1) 

Where “x”, “w”, and “v” denote the pixels colocated with the current pixel in three previuos bands 

and “m” stands for the expectation value of a random variable. Prediction coefficients  and,,  

can be derived by solving a Wiener-Hopf equation 
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Refer to the context window definition in Figure 1; the statistical parameters can be approximated as 
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Secondly, the backward pixel search (BPS) scheme as the Stage-2 predictor is employed 

specifically for images with pronounced calibration-inducaed artifacts. The prediction 

obtained from the first stage is treated as a prediction reference 
ref
P . The causal pixels in the 

current band are searched, and the one with a pixel value that is closest to 
ref
P  is selected as 

the final prediction. In BPS algorithm, the band scaling factors used to convert from raw 

digital number (DN) values to radiance values are used as the upper bound in searching for 

the optimal threshold value for each band. 

 

y32 y30 y28 y27 y29 y31

y26 y22 y20 y18 y17 y19 y21
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y24 y15 y12 y8 y3 y2 y4
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Figure 1. Definition of Context Window for Interband Prediction 

4. Adaptive Search Threshold 

In general, the compression performance is not proportional to the computational 

complexity for most of lossless compression algorithms, and IP3-BPS is no exception. 

However, it found that the threshod method can speed up the search in BPS algorithm, and as 

the value of threshold is increased, the search gets faster. Thus, in the case of specified 

compression performance, we propose an adaptive search threshold (AST) algorithm in order 

to further accelerate the search. The adaptive search threshold is defined as 
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Where ),,(̂ jikI  is the stage-1 prediction of pixel ),,( jikI , M and N are the width and 

height of each image. Experiments show that 
k
T  can be an effective comprehensive 

assessment of intraband pixel threshold values. Figure 2 shows the adaptive search threshold 

values of four sequences of AVIRIS’97; they all exhibit very similar profiles. Thus, we may 

apply the adaptive search threshold of one sequence to compress all hyperspectral images. 
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Figure 2. Adaptive Search Threshold for the AVIRIS’97 Hyperspectral Images 

5. Bi-directional Pixel Search 
 

5.1. Adaptive Spectral Band Grouping 

We define the spectral correlation factor as )(tC
k

, which is calculated by 
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Where ),,( jikI  and 
k
I  are the pixel value at location (i, j) and mean pixel value of band 

k, respectively. 

 

 

Figure 3. Correlation Coefficient Curves of Adjacent Bands of Cuprite Data 

From Figure 3, we can find that the spectral correlations are not always high. For some 

bands, the spectral correlations are very weak, in which case only interband prediction IP3-

BPS is used and could get good performances. At the same time, the computational time can 

be slightly decreased. Thus, there is need to group the spectral bands. The simple adaptive 

spectral band grouping we used is shown in Figure 4, by performing one step. Namely: 1) 

calculate the spectral band correlation factors )1(
k
C  for all the bands. If 9.0)1( 

k
C , the two 

adjacent bands k and (k+1) belong to the same group n; otherwise, they belong to different 

groups n and (n+1). 
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After execution of the simple adaptive spectral band grouping algorithm, the bands that 

need further carrying out the bi-directional pixel search algorithm are known. 

 

... ...

1 2 3 4 5 96 87 30 3432 220 224222

...
1 2 Ngroups:  

Figure 4. Adaptive Spectral Band Grouping 

5.2. Bi-directional Pixel Search Algorithm 

From section III, we can see that the backward pixel search scheme uses mainly 

calibration-induced data correlation to further compress image data. And in the pixel search 

process, it takes the band scaling factors as the upper bound, which can speed up the search 

and improve the compression performance. However, by further analysis of the BPS 

algorithm, it can be found that taking the band scaling factor as the upper bound of all pixel 

searches in the corresponding band can’t ensure that the searched pixel value is local 

optimization. Namely, pixel with smaller value may be existed in the search scope of ten 

pixel rows. Thus, we propose a bi-directional pixel search scheme based on calibration-

induced data redundancy for further compressing hyperspectral images. 

The block diagram of the proposed bi-directional pixel search scheme is shown in Figure 

5. Here, spectral bands k1-kn belongs to a group, which has high correlation bands 

( 9.0)1( 
k
C ). For the first and final bands in the group, if the group is the first group in the 

spectral band sequence, only intraband prediction JPEG-LS [16] is applied to the two bands; 

otherwise, only JPEG-LS is applied to the final band. For other bands in the group, after 

execution of IP3 and BPS predictors, an additional predictor, bi-directional pixel search, is 

adopted. It uses the previous and final bands as reference bands. For example, band K2 is 

predicted by bands k1 and kn; bands k2 and kn are used to predict band k3 (note that in the 

next text, the prediction of the current pixel is discussed in this group, in which the bands 

have high correlation). 

 

k1 k2 k3 k4 Kn-1 kn... Kn-2... k0

 
(a) 

k1 k2 k3 k4 Kn-1 kn... Kn-2

 
(b) 

Figure 5. Flowcharts of the Proposed Bi-Directional Pixel Search Algorithm in 
(a) the First Group and (b) the other Groups 
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In the prediction process, we define the current pixel as  ),,( nmkf (kth band, mth row, 

and nth column). A prediction of the current pixel ),,( nmkf  using all the causal pixels, 

which are in the previous, current and final bands, is made. First, a pixel value equal to 

),,1( nmkf   and ),,( nmkf
final  is searched in the previous and final bands, respectively. If 

equal valued pixels ),,1(
11
nmkf  , ),,(

11
nmkf

final
 , ),,1(

22
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ttfinal
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 ( NMt 1 , where M is the number of the rows, N is the 

number of the columns) are found. The decision among one of the possible prediction values 
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 is 

based on the closeness of the values to the prediction reference value ref
P . Otherwise, the 

estimated pixel value is equal to the prediction reference value ref
P . The whole search is 

performed in the reverse scanning order. Naturally, these guarantee that the final prediction 

value is rarely more than the prediction reference value ref
P . 

In order to speed up the search, two LUTs for each of the previous and final spectral bands 

are utilized and updated, analogously to [11, 12, 14] in the following way: 

Let ][
)(


k

i
L  (i=1, 2, 3, 4) indicate the set of four LUTs used for prediction of band k. All LUTs 

are of length )),,(1(
maxmax
fnmkff  . Let also ),,( nmkf   denote the prediction value of 

the current pixel ),,( nmkf . The final prediction using LUTs is given by: 

),,(),,(
),,,min( 4321

nmkfnmkf
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After the final prediction value has been produced according to (6), the set of two LUTs is 

updated as follows: 
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Figure 6 shows how two LUTs for each of the previous and final bands are utilized and 

updated. All LUTs are initialized with the 
max
f  value that is outside the range of the data. At 

the decoder, the set of four LUTs and the reference prediction to decode the current pixel 

value are calculated from the previous and final decoded band lossless data, by following the 

same procedure as at the encoder. 
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Figure 6. (a) Prediction, (b) Update Steps of the Proposed Method 

Finally, by adding an additional BDPS scheme, IP3-BDPS-BPSAST and IP3-BPSAST-

BDPS methods are formed. Experiments show that except for IP3-BPSAST-BDPS, the IP3-

BDPS-BPSAST method can achieve some improvement for prediction. 

 

6. Proposed Lossless Compression Method and Experimental Results 
 

6.1. Proposed Method 

Now, we depict that block diagram of the proposed lossless compression system in Figure 

7. It consists of a three-stage predictor followed by adaptive arithmetic coding. The first stage 

attempts to decorelate the high correlated bands so that the redundancy is removed as much as 

possible. The second and third stages are designed to exploit the calibration-induced data 

correlation. The first stage operates in two modes: intraband (JPEG-LS) or interband (IP3). 

Once the prediction is obtained from the first stage prediction, the prediction is treated as a 

prediction reference, and the BDPS scheme as the second stage is applied. In the third stage, 

the prediction obtained from the second stage is still treated as a prediction reference, and the 

BPSAST scheme is employed for the final prediction. 

After prediction, we use an arithmetic coding approach that is effective at encoding a 

source with an arbitrary distribution. Specifically, for each spectral band, we apply a separate 

instance of the adaptive arithmetic coder [17] of using the publicly available software 

implementation (http://www.cs.mu.oz.au/~alistair/arith_coder/). We use the software’s 

adaptive zero-order integer-based model encoding method, setting all parameters to their 

default values. 
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Figure 7. Block Diagram of the Proposed Lossless Hyperspectral Image Compression Method 

6.2. Compression Results 

In order to test the performance of our proposed algorithm, some experiments are carried 

out. The hyperspectral images for test are the standard AVIRIS 1997 hyperspectral images. 

AVIRIS covers the solar-reflected portion of the electromagnetic spectrum: 0.41-2.45 um in 

10-nm bands. The AVIRIS instrument consists of four spectrometers that view a 20-m2 spot 

on the ground from a flight altitude of 20 km. This spot is simultaneously viewed in all the 

spectral bands. A spatial image is formed by moving the spectrometers perpendicular to the 

direction of the aircraft. The images are taken from four areas: Jasper Ridge, Lunar Lake, 

Cuprite and Moffett Field. The spatial size of the images is 614×512, and they contain 224 

bands (these data are publicly available on the AVIRIS website at www.aviris.jpl.nasa.gov). 

First, we experiment with sequence-specific threshold values for compressing all 

hyperspectral images. Table 1 shows the results of changing the sequence threshold values. 

Columns 1-4 show compression results using IP3-BDPS-BPSAST. The final row shows the 

average values. The results are fairly stable with regard to the sequence-specific threshold 

values. That indicates that we can expect the method to perform well on novel data. 

Table 1. Compression Results using Sequence-Specific Threshold Values for 
Compressing all Hyperspectral Images (in Bits Per Pixel) 

Cuprite Jasper Ridge Lunar Lake Moffett Field Average 

3.67 3.99 3.68 4.00 3.84 

3.71 4.03 3.75 4.05 3.89 

3.66 4.00 3.70 4.01 3.84 

3.69 4.02 3.72 4.03 3.87 

 3.68 4.01 3.71 4.02 3.86 

 

Table 2 depicts the compression results in bits per pixel for various different compression 

methods for calibrated images of the AVIRIS’97 image set. Individual bit-rate values for 

SLSQ-OPT, C-DPCM, LUT, LAIS-LUT, LAIS-QLUT, and TSP-W2 are from [7]. Results 

for S-RLP, S-FMP, S-RLP-LUT, and S-FMP-LUT are from [14]. Results for 3D-CALIC, M-

CALIC and IP3-BPS are from [15]. The average bit rates for four 16-bit calibrated images are 

shown in the last column of Table 1. The fact is that IP3-BDPS-BPSAST has the lowest bit 

rates. In the experiments, IP3-BDPS-BPSAST works very well on the following two images: 

Lunar Lake and Cuprite. 
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Table 2. Bit Rates (in Bits per Pixel) Achieved by Various Algorithms for 
Lossless Compression on the Complete AVIRIS Images 

Algorithm Cuprite Jasper Ridge Lunar Lake Moffett Field Average 

3D-CALIC 5.23 5.19 5.18 4.92 5.13 

R-ABPCNEF 4.94 5.03 5.06 - 5.01 

SLSQ-OPT 4.94 4.96 4.95 4.99 4.96 

LUT 4.65 4.95 4.71 5.05 4.84 

M-CALIC 4.89 4.97 4.80 4.65 4.83 

C-DPCM 4.68 4.62 4.75 4.62 4.67 

S-RLP 4.69 4.65 4.69 4.67 4.67 

S-FMP 4.66 4.63 4.66 4.63 4.64 

LAIS-LUT 4.47 4.68 4.53 4.76 4.61 

LAIS-QLUT 4.29 4.61 4.34 4.62 4.46 

S-RLP-LUT 3.92 4.05 3.95 4.09 4.00 

S-FMP-LUT 3.89 4.03 3.92 4.05 3.97 

TSP-W2 3.77 4.08 3.81 4.12 3.95 

IP3-BPS 3.76 4.06 3.79 4.06 3.92 

IP3-BDPS-

BPSAST 

3.68 3.99 3.71 4.00 3.86 

 

In Table 3, the ratio between the IP3-BDPS-BPSAST and IP3-BPS bit rates is shown in 

column 5. IP3-BDPS-BPSAST shows 2% average improvement over IP3-BPS on the four 

16-bit calibrated images. Similarly, the last column compares IP3-BDPS-BPSAST to LAIS-

LUT. The average bit-rate improvement of IP3-BDPS-BPSAST over LAIS-LUT is 17% on 

the four 16-bit calibrated images. 

Table 3. Compression Results for the Complete AVIRIS Images in Bits Per Pixel 
and Bit-Ratios Compared to IP3-BDPS-BPS 

Image IP3-BPS 
IP3-BDPS 

-BPSAST 

LAIS-

LUT 

IP3-BDPS- 

BPSAST/ 

IP3-BPS 

IP3-BDPS- 

BPSAST/ 

LAIS-LUT 

Cuprite 3.76 3.71 4.47 0.98 0.82 

Jasper Ridge 4.06 4.00 4.68 0.98 0.85 

Lunar Lake 3.79 3.73 4.53 0.98 0.82 

Moffett Field 4.06 4.01 4.76 0.98 0.84 

Average 3.92 3.86 4.61 0.98 0.83 

 

The IP3-BDPS-BPSAST method is asymmetric with respect to computational time. 

Comparison between compression times between IP3-BPS and IP3-BDPS-BPSAST can be 

seen in Table 4. The decrease in processing time for the compression phase using IP3-BDPS-

BPSAST compared to IP3-BPS is 3%. Profiling the IP3-BDPS-BPSAST method reveals that 

the average processing time lies in the IP3 prediction function (about 1011s), the bi-

directional pixel search (about 20s), the backward pixel search with adaptive search threshold 

(about 326s) which is 61s less than the backward pixel search. Figure 8 shows the Adaptive 

search threshold and band scaling factor for the Cuprite image. The value of adaptive search 
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threshold is bigger than that of band scaling factor, except for Cuprite image’s bands 1, 3, 7 

and 111. This is also substantiated by the fact that IP3-BDPS-BPSAST is slightly faster than 

IP3-BPS. 

 

 

Figure 8. Adaptive Search Threshold and Band Scaling Factor for Cuprite 
Image 

Table 4. Procession Time for the Compression Part 

Image IP3-BPS [s] 
IP3-BDPS-

BPSAST [s] 

IP3-BDPS-

BPSAST/IP3-BPS 

Cuprite 1397.6 1357.4 97% 

Jasper Ridge 1415.3 1370.7 97% 

Lunar Lake 1437.2 1406.6 98% 

Moffett Field 1408.5 1361.9 97% 

Average 1414.7 1124.2 97% 

 

As for memory usage, as we all know, the LUT method requires a full LUT for each band. 

Assuming 16-bit LUTs, each LUT’s memory requirements are roughly equivalent to four 

lines of an AVIRIS image data [13]. Thus, for our test images, the amount of the memory 

required by LUTs is 1.1% of the memory used by the images. 

 

7. Conclusion 

We have developed an algorithm for lossless compression of hyperspectral images, called 

IP3-BDPS-BPSAST, which uses an efficient calibration-induced and spectral decorrelator on 

top of an IP3-BPS-based compression engine. Results on the AVIRIS’97 image set show that 

the proposed algorithm outperforms previous algorithms; a 2% increase in compression 

efficiency and a 3% decrease in computational complexity are observed compared to the 

original IP3-BPS algorithm, at the expense of a limited amount of memory resources. The 

proposed three-stage prediction approach should be applicable to other two-stage prediction 

methods such as S-FMP-LUT and S-RLP-LUT. Thus, future work includes such 

considerations. 
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