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Abstract 

Deep learning is an emerging approach for finding concise, slightly higher level 

representations of the inputs, and has been successfully applied to many practical learning 

problems, where the goal is to use large data to help on a given learning task. We present an 

algorithm for image denoising task defined by this model, and show that by training on large 

image databases we are able to outperform the current state-of-the-art image denoising 

methods. 
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1. Introduction 

Image denoising can be described as the problem of mapping from a noisy image to a 

noisefreeimage. Various methods have been proposed for image denoising. One approach is 

linear or non-linear filtering methods which are a relatively simple approach based on 

smoothing, such as Median filtering which replace each pixel with the median of the value of 

a set of neighboring pixels [1], linear smoothing and wiener filtering. Another one is methods 

based on wavelet or dictionary decompositions of the image. Wavelet decompositions is to 

transfer image signals to an alternative domain where they can be more easily separated from 

the noise, such as BLS-GSM [2]. The dictionary-based method is to denoise by 

approximating the noisy patch using a sparse linear combination of atoms, including KSVD 

[3] which is an iterative algorithm that learns a dictionary on the noisy image at hand, NLSC 

[4] which is one of the best currently available denoising algorithms in terms of quality of the 

results, but requires long computation times. The last one is methods based on global image 

statistics or other image properties, such as self-similarities. Typical schemes include EPLL 

[5] and BM3D [6] which are often considered the state-of-the-art in image denoising. 

While these models have been successfully in practice, they share a shallow linear 

structure. Recent research suggests, however, that non-linear, deep models can achieve 

superior performance in various real world problems. A few of deep models have also been 

applied to image denoising [7-11]. 

Deep learning is an emerging approach within the machine learning research community 

[12]. Deep learning algorithms have been proposed in recent years to move machine learning 

systems towards the discovery of multiple levels of representation. Learning algorithms for 

deep architectures are centered on the learning of useful representations of data, which are 

better suited to the task at hand, and are organized in a hierarchy with multiple levels. There 

are several motivations for deep architectures: Brain inspiration (several areas of the brain are 

organized as a deep architecture); Cognitive arguments and engineering arguments (humans 

often organize ideas and concepts in a modular way, and at multiple levels.); Sharing of 

statistical strength for multi-task learning; Computational complexity [13]. In fact, it was 

found recently that the features learnt in deep architectures resemble those observed in the 
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areas V1 and V2 of visual cortex [14], and that they become more and more in variant to 

factors of variation in higher layers. Learning a hierarchy of features increases the ease and 

practicality of developing representations that are at once tailored to specific tasks, yet is able 

to borrow statistical strength from other related tasks. Finally, learning the feature 

representation can lead to higher-level (more abstract, more general) feature that are more 

robust to unanticipated sources of variance extant in real data. 

Deep learning uses a lot of data that is often easily obtained even in massive quantities, and 

that thus can provide a large number of “bits” of information for algorithms to try to learn 

from. Thus, we believe that if good deep learning algorithms can be developed, they hold the 

potential to make machine learning significantly more effective for many problems. In this 

paper, we present an algorithm for image restoration task that combines sparse coding and 

deep networks pre-trained with denoising auto-encoder (DAE) defined by this model, and 

show that by training on large image databases we are able to outperform the current 

state-of-the-art image denoising methods. Our algorithms will first learn a large basis 

functions, and then reconstruct any new input image using a weighted combination of a few 

of these basis functions. The weights of these basis functions then give a slightly higher-level 

and more succinct representation of the input; this representation can then be used in image 

restoration task. 

 

2. The Model 

The basic framework for our models is the auto-encoder (AE)[12].An basic auto encoder is 

comprised of an encoder function h    maps an input     to some hidden representation 

        , anda decoder      maps this hidden representation back to areconstructed 

version of , such that         . The parameters of the auto encoders are learned to 

minimize their construction error, measured by some loss  (   (    )) . Examples 

ofreconstruction error include the cross-entropy loss (for binary  ), or like here, squared 

error(for real-valued ) 

                                                     . 

Denoising Auto encoders (DAE) [9] incorporate a slight modification to this setup and 

corrupt the inputs before mapping them into the hidden representation. They are trained to 

reconstruct (or denoise) the original input   from its corruptedversion  ̃ by minimizing 

 (   (   ̃ ))    (   (   ̃ ))  ||   (   ̃ )||
 
. 

Typical choices of corruption include additive white Gaussian noise (AWG) or binary 

masking noise. In this work, we use the former with standard deviation  .This is a rational 

choice for natural images captured by a digital camera. The DAE architecture is shown in 

Figure 1. 
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Figure 1. The DAE Architecture. An Example  is Stochastically Corrupted (via 
  ) to  ̃ 

The auto encoder then maps it to y (via encoder   ) and attempts to reconstruct   via 

decoder  
 
 , producing reconstruction z. Reconstruction error is measured by loss        . 

To use DAE for deep learning, we follow the general greedy layer-wise procedure [16] and 

pre-train each layer of a deep neural network as a DAE. During the greedy pre-training phase, 

when training the ithlayer, each input is mapped to its hidden representation        and is 

used as a training sample to aDAE. Note that this requires the corruption of         

into       ̃ , forcing the hidden units to represent the leading regularities in the data. A layer 

is pre-trained for a fixed number of updates, after which the new representation is used as 

input for the next layer. Greedy pre-training then move son to the next hidden layer. The 

complete procedure for learning and stacking several layers of denoising auto encoders is 

shown in Figure 2. In the following experiments section, we follow this approach to initialize 

the weights and subsequently fine tune the network with the stochastic back propagation. 
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Figure 2. Stacking Denoising Auto Encoders 

After training a first level denoising auto encoder (see Figure 1) its learnt encoding 

function   

second level denoising auto encoder (middle) to learn a second level encoding function 

  
   

From there, the procedure can be repeated (right). 

 

3. Learning to Denoise 

We performed all our experiments on grey-scale images, but there is no difficulty in 

generalizing to colored images. Image denoising aim to map a noisy image to a cleaner 

version. However, the complexity of a mapping from images to images is large, so in practice 

we chop the image into possibly overlapping patches and learn a mapping from a noisy patch 
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to a clean patch. To denoise a given image, all image patches are denoised separately by that 

map. The denoised image patches are then combined into a denoised image. 

To evaluate the model we use a set of 60, 000 images from the CIFAR-bw data set. Our 

system performs the following steps to feature extraction and image restoration: 

a. Extract random patches from training images. 

b. Apply a pre-processing stage to the patches. 

c. Learn a feature-mapping using stacked DAE learning algorithm. 

d. Train a image restoration algorithm. 

We will now describe the components of this pipe line and its parameters in more detail. 

 

3.1. Feature Learning 

We have tested our approach on a benchmark image sets, namely: CIFAR-bw: a gray-scale 

version of the CIFAR-100[17].The CIFAR-100 is labeled subsets of the 80 million tiny 

images dataset. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 

The Sample images are shown in Figure 3. 

 

 

Figure 3. Sample Images from the CIFAR-bw Image Sets 

Next, we get corrupted images. Assuming  ̃ is the observed noisy image and x is the 

original noise free image, we can formulate the image corruption process as: 

 ̃      .                                 (1) 

Where        is an arbitrary stochastic corrupting process that corrupts the input? For 

most of our experiments, we used AWG noise with    . However, we also show results 

for other noise levels. 

Finally, as mentioned above, the system begins by extracting random sub-patches from 

input images. Each patch has dimension      . Each    patch can be represented as a 

vector in    ofpixel intensity values. We thenconstruct a dataset of m randomly sampled 

patches,                     where        . Given thisdataset, we apply the 

pre-processing and unsupervisedlearning steps. 

 

3.1.1. Pre-processing 

Data preprocessing plays a very important in many deep learning algorithms. In practice, 

many methods work best after the data has been normalized. In this work, we assume that 

every patch is normalized by simple re scaling (dividing the patch by 255), subtracting the 

mean and dividing by the standard deviation of its elements. For visual data, this corresponds 

to local brightness and contrast normalization. 

 

app:ds:algorithm


International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.7, No.3 (2014) 

 

 

Copyright ⓒ 2014 SERSC   175 

3.1.2. Feature Extraction 

The basic building block of our framework is a one-layer DAE. The DAE tries to learn a 

function      ̃   , which minimizes the squared reconstruction loss: 

       
 

 
∑ ∥     (    ̃)      ∥  

    
 

 
∑           (2) 

Where 

     ( ∥   )      
 

  
         

   

    
,    

 

 
∑     (    ̃) 

   .     (3) 

The first term in the definition of        is an average sum-of-squares error term. The 

second term is a regularization term (also called a weight decay term) that tends to decrease 

the magnitude of the weights, and helps prevent over fitting. The third term is a sparsity 

penalty term then enforce the average activation of hidden is a small value close to 

zero.        controls the weights of the penalty term. We choose to minimize the squared 

error since it is monotonically related to the PSNR, which is the most commonly, used 

measure of image quality. Thus minimizing the squared error will maximize PSNR values. 

One-layer DAE is a computational unit that takes as input  ̃, and outputs 

   ̃                            (4), 

Where      is activation function. In this work, we will choose     to be the sigmoid 

function:     
 

         
. 

We evaluate different hidden layers, and find that it is not always beneficial to add hidden 

layers. A possible explanation is that SDAE with more hidden layers become more difficult to 

learn. Indeed, each hidden layer adds non-linearities to the model. It is therefore possible that 

the error landscape is complex and that stochastic gradient descent gets stuck in a poor local 

optimum from which it is difficult to escape. In the meantime, we try different patch sizes and 

find that higher noise level generally requires larger patch size. 

 

3.2. Image Restoration 

We use standard testing images that have been used to evaluate other denoising algorithms 

as the testing set. To denoise images, we decompose a given noisy image into overlapping 

patches. We then normalize the patches (see Section 3.1.1), denoise each patch separately and 

perform the inverse normalization on the denoised patches. The denoised image is obtained 

by placing the denoised patches at the locations of their noisy counterparts, then averaging on 

the overlapping regions. 

After denoising an image, we would like to know: How good is the denoising result? A 

possible solution to this problem would be to rely on human evaluation of the image quality. 

However, this solution is too inconvenient for many applications. Hence, one is interested in 

automatic image quality assessment and in particular in objective image quality metrics that 

correlate with subjective image quality. 

There are many image quality metrics, include peak signal-to-noise ration (PSNR [18]), 

structural similarity index (SSIM [19]), information-content weighted PSNR (IW-PSNR 

[20]), the information fidelity criterion (IFC[21]), DIIVINE[22], LBIQ[23], BIQI[24], etc., 
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We employ PSNR which is the most commonly used metric to quantify denoising results. 

The PSNR is computed by 

             
   

  
    

Where   
  is the mean squared error. 

 

4. Experiments 

In this section, we demonstrate the results achieved by applying the above methods on 

several test images. Before we present denoising result, we first show visualizations of the 

learned feature representations. The bases learned by SDAE are shown in Figure 4 for 8 pixel 

receptive fields.  

We have compared our method to two well-known and widely-available denoising 

algorithms: KSVD [3] (a dictionary-based method) and BM3D [6] (a block matching 

procedure). 

Table 1 compares our method against KSVD and BM3D on the test set of 4 standard test 

images. The result from left to right is KSVD, BM3D and our method. 

 

 

Figure 4. Randomly Selected Bases Trained on CIFAR-bw Images Set 

Table 1. Comparison of the Denoising Performance 

 /PSN

T 
Lena(512×512) Barbara(512×512) Boats(512×512) House(256×256) 

10/ 35.4

6 

35.9

2 

35.8

2 

34.4

0 

34.9

6 

34.0

1 

33.6

5 

33.8

9 

33.8

1 

35.9

4 

36.7

1 

35.9

8 

25/ 31.3

2 

32.2

2 

32.2

3 

29.6

0 

30.9

9 

29.6

9 

29.2

8 

30.0

3 

29.9

5 

32.1

5 

32.9

5 

32.5

8 

50/ 27.4

3 

28.9

9 

29.2

8 

25.2

2 

27.2

1 

25.2

9 

25.9

0 

26.7

2 

26.9

7 

27.4

4 

29.7

1 

29.6

2 

75/ 24.8

7 

27.1

6 

27.6

3 

22.6

5 

25.1

0 

23.4

5 

23.5

9 

25.0

4 

25.3

7 

24.5

3 

27.4

6 

27.8

4 

A visual comparison is shown in Figure 5. We set two hidden layers of size 500, AWG 

noise with     , the other hyper-parameters are:      ,       ,      . 
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The experimental results show that BM3D perform better than other methods on average. 

Analyzing the outcomes of those experiments, we conclude than BM3D based on knowledge 

about the image to be denoised perform well on images with regular structure (e.g., image  

“Barbara”), where as our methods based on knowledge about all images perform well on 

images with complex structures(e.g., image “Lena”)or high noise levels.  

 

5. Conclusion and Future Work 

In this paper, we have described an algorithm for image denoising task defined by the deep 

learning framework. We have compared the results achieved by our approach against other 

algorithms, and show that by training on large image databases we are able to outperform the 

current state-of-the-art image denoising methods. 

In our future work, we would like to explore the possibility of adapting the proposed 

approach to various other applications such as denoising and in painting of text and audio. It 

is also meaningful to investigate into the effects of different hyper parameter settings on the 

learned features. 

 

 

Figure 5. Visual Comparison of Denoising Results 
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