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Abstract 

Speckle Noise is a natural characteristic of medical ultrasound images. It is a term used 

for the granular form that appears in B-Scan and can be considered as a kind of 

multiplicative noise. Speckle Noise reduces the ability of an observer to distinguish fine 

details in diagnostic testing. It also limits the effective implementation of image processing 

such as edge detection, segmentation and volume rendering in 3 D. Therefore; treatment 

methods of speckle noise were sought to improve the image quality and to increase the 

capacity of diagnostic medical ultrasound images. Such as median filters, Wiener and linear 

filters (Persona & Malik, SRAD ... ..).The method used in this work is 2-D translation 

invariant forward wavelet transform, it is used in image processing, including noise reduction 

applications in medical imaging. 
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1. Introduction 

Methods of image processing for speckle noise reduction were sought to improve the 

image quality and enhance the diagnostic capabilities of medical ultrasound images. The first 

approach to remove spackle noise is the Wiener filter developed by Jain and adaptive 

weighted median filter proposed by Loupas, but they fail to preserve the details useful 

because of the low-pass filters only. Despite the noise of the speckle is a successful process 

and failed. The statistical noise stains can be useful to distinguish between each type and 

composition of tissues. 

It was also recognized that the linear filtering is far from being an appropriate method used 

to reduce speckle noise. Over the past decade, there has been considerable interest in using 

the wavelet transform as an effective method to reduce noise spots. Zong and others [1] have 

used a logarithmic transformation to separate the noise from the original image. Simoncelli 

and others [2] have developed non-linear estimators, based on formal Bayesian theory, which 

exceed the standard linear processors and simple thresholding estimators in reducing noise 

from natural images. Achime and others [3, 4] have developed a posterior estimator (CARD) 

for ultrasound images, assuming an alpha-stable prior to the signal. Yu made the SRAD [5] 

method (reducing speckle with anisotropic diffusion) based on partial differential equations. 

Most of these techniques assume that after a logarithmic transformation, the stain can be 

approximated by additive Gaussian noise of zero mean and estimators / filters are designed 

accordingly.  

In this paper we have discussed in detail a new method that is used in image processing 

and its applications including noise reduction in medical imaging, this method 2-D translation 

invariant forward wavelet transform. 
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2. Wavelets 

A wavelet function ψ(t) is a small wave, which must be oscillatory in some way to 

discriminate between different frequencies. The wavelet contains both the analyzing shape 

and the window. Figure1 shows an example of a possible wavelet, known as the Morlet 

wavelet. For the CWT several kind of wavelet functions are developed which all have 

specific properties. 

 

 

Figure 1. Morlet Wavelet 

An analyzing function ψ(t) is classified as a wavelet if the following mathematical criteria 

are satisfied: 

1. A wavelet must have finite energy 

  

The energy E equals the integrated squared magnitude of the analyzing function ψ(t) and 

must be less than infinity. 

2. If ψ(f ) is the Fourier transform of the wavelet ψ(t), the following condition must hold 

  

This condition implies that the wavelet has no zero frequency component ψ(0) = 0), i.e. the 

mean of the wavelet  ψ(t) must equal zero. This condition is known as the admissibility 

constant. The value of C ψ depends on the chosen wavelet. 

3. For complex wavelets the Fourier transform ψ(f ) must be both real and vanish for 

negative frequencies[6]. 

 

3. Two Dimensional Dwt (2d dwt) 

At the base of the 2D DWT’s implementation relies the concept of separable 

multiresolutions and of two-dimensional wavelet bases, notions that we will define further. 

Let {Vj }jϵZ be a multiresolution of L
2
(R). A separable two-dimensional resolution is 

composed of the tensor product spaces 

                (1) 

The space  is a set of finite energy functions x (t1 ,t2) that are linear expansions of 

separable functions 

      (2) 
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A separable wavelet orthonormal basis of L
2
(R

2
) is constructed with separable products of 

a scaling function ϕ and a waveletψ, being associated to a one-dimensional multiresolution 

approximation {Vj }jϵZ. Let   be the detail space equal to the orthogonal complement of the 

lower resolution approximation space  in ,  

          (3) 

To construct a wavelet orthonormal basis of L
2
(R

2
), the following theorem builds a 

wavelet basis of each detail space . 

Let h[n] and g[n] be the conjugate mirror filters associated to the wavelet ψ. We denote 

with fd[n] the mirror filter associated to f[n], fd[n] = f[-n]. 

The wavelet coefficients at the scale 2
j+1

 are calculated from the approximation coefficients 

at scale 2
j
, aj, with two-dimensional separable convolutions and subsamplings. 

The decomposition formula are obtained by applying the one-dimensional convolution 

formula  

            (4) 

 And, respectively,  

            (5) 

To the separable two-dimensional wavelets and scaling functions: 

 

 

 

.              (6) 

The convolution equations form 6 are computed with only six groups of one dimensional 

convolutions. The rows of aj are first convolved with hd and gd and subsampled by 2. Then, 

the columns of these two output images are convolved with hd and gd and subsampled, 

resulting four subsampled images aj+1, ,  and . Figure2 illustrates one level 2D 

DWT decomposition. 

Similar to classical DWT, 2D DWT is a non-redundant transform, the wavelet image 

representation of x, at resolution J: 

  

having the same size as the original two-dimensional signal, x. In the coefficients image, 

the coefficients’ repartition is presented in Figure 2.11, where ‘LL’ (a) are the approximation 

coefficients, ‘LH’ (d
1
) the horizontal details, ‘HL’ (d

2
) the vertical details and ‘HH’ (d

3
) the 

diagonal details. A second order statistical analysis of 2D DWT is presented in [7]. 
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Figure 2. One-level 2D DWT Decomposition Scheme 

 

Figure 3. 2D DWT Coefficients’ Image 

In what concerns the reconstruction part, the 2D DWT, same as the DWT, ensures perfect 

reconstruction if the conditions given by theorem of Vetterli [8] are fulfilled. The 

reconstruction formula for the approximation coefficients at level j, aj from the coarser scale 

approximations aj+1 and the wavelet coefficients , 1≤ k ≤ 3 is:  

  

Where, with  [n1; n2] we have denoted the image twice the size of x[n1, n2], obtained by 

inserting a row of zeros and a column of zeros between pairs of consecutive rows and 

columns.[8] 

The corresponding implementation scheme is presented in Figure 4. 
 

 

Figure 4. One-level 2D DWT Reconstruction Scheme 

4. The Translation Invariant Wavelet Representations 

In this section, we describe an alternative wavelet representation, which is an extension to 

the standard wavelet decomposition. It is invariant to translations in the sense that it looks at 

all the translates of the input image and chooses the best set of wavelet coefficients. It 

consists of two key steps: an efficient algorithm for computing the wavelet transforms for all 

the translates and a fast quadtree search algorithm. 
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4.1. Computing the Wavelet Transforms for all the Translates 

Beylkin described an O(NlogN) algorithm to obtain the wavelet transforms for all the 

circular shifts of a onedimensional signal in [9]. Our method described here is an extension of 

this algorithm to the two dimensioinal case. 

We know that the wavelet transform of a NxN image takes O(N
2
) operations. To compute 

the wavelet transforms for all the N
2
 translates of the image seems to take O(N

4
) operations. 

However, due to the periodicity of the rate change operators in the decomposition subbands, 

the computational load can be greatly reduced to O( N
2
logN). 

First, let us look at what happens at the initial decomposition stage: the image is divided 

into 4 channels; then, the four subimages are downsampled by a factor of two both by column 

and by row. The rate-change operator divides the image into 4 cosets. Given any translation 

of the input, the output subimages can be obtained by simply circularly shifting one of these 

four cosets. Therefore, it is sufficient to calculate the outputs for only four different translates 

representing the four different cosets, and the output of any circular shift of the input can be 

reproduced from one of these 4 sets. Note that the four cosets correspond to the outputs for 

the translates: (0,0), (0,l) , (l,0) , (1,l) respectively.  

By the same token, we need only to keep the outputs of four translates at the second stages 

for each of the four inputs from the first stage. At the second stage, the size of the image is 

halved (one fourth the number of coefficients) and the number of subimages quadruples, 

making the total number of coefficients constant, namely 3N
2
. We may repeat this procedure, 

and a complete decomposition tree (Figure.5) will have N
2
(3logN+1) elements. 

On each scale j, (1≤ j≤ logN), we compute 4
j
 vectors of averages and 4

j
 vectors of 

differences.  

Let  A2j+1(k,s), k, s =1, 2, 3, . . . , 2
logN-j+1

 be one of the vectors of averages at the previous 

scale j+1, we compute 4 average outputs. 

     (7) 

       (8) 

        (9) 

                  (10) 

The two-dimensional periodic sequence  contains all the coefficients that appear if 

A2j+1 is shifted by (0, 0), (2,2), (4,4),….The similar statements are true for , , 

. In the same manner, the differences for all the different translates can be obtained by 

just computing the differences for 4 shifts. Repeating this procedure recursively, we can get 

the wavelet coefficients for all translates in logN steps with O(N
2
logN) operations. The 

decomposition procedure leads naturally to a quadtree structure as in Figure5. 

While the quadtree decomposition contains all the coefficients we need to form the wavelet 

transform for any translate, these coefficients are not organized sequentially, and therefore 

must be addressed in a proper manner. Suppose we want the wavelet transform for the 

translate (m, n): 
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root 

(0,1

) 

(0,0) (1,0

) 
(1,1) 

 

 

 

 

 

 

 

 

Figure 5. The Decomposition Tree Contains i information to Form the Wavelet 
Transforms of all the Circular Translates. Each Node Stands for the Three sub-
Band Images at a Given Scale. The Four Children of each Node Correspond to 

the Four Cosets 

4.2. Search for the Minimal Cost Coefficients  

We start from the leaves and work bottom-up for the four child nodes of the same parent, 

we choose the one with the minimal cost, and repeat the operation recursively. The additivity 

of the cost function enables us to complete the search in O(N
2
logN) operations. 

Many additive cost functions exist. The Mean Squared Error is the most popular one. Other 

additive cost functions, such as vector entropy and threshold counting, have also been used. 

Lately, the work by Ramchandran and al [10] proposes to use the Rate-Distortion (R-D) 

criterion. The choice of the cost function affects the wavelet representation resulted, and 

should be chosen with care. In data compression applications, the cost function should be 

related to either the bit-rate or the distortion. In multiresolution detection, the cost function 

may be related to the detection probability or the false-alarm rate [11]. 

 

5. Experiment Results  

For learning, a species of ultrasound images 292x400 pixels is used. We  load our image 

and resize  it where (N=256) is the number of pixels which consist of two different grey level 

values, and we add White Gaussian Noise with different values of sigma  to obtain denoised 

one as shown in Figure 6. 

Then we compute the orthogonal 2D wavelet transform for the noised one and we 

reconstruct it as shown in Figure 7. 

Another way to achieve translation invariance is to replace the orthogonal 2D wavelet by a 

redundant translation invariant wavelet. First we compute the translation invariant wavelet 

transform, We can now reconstruct our image. 

We try to compare the results obtained using a nonlinear filter such as wiener filter 2D 

applied to a noisy and binary image. The results are shown in the Figure 8 below: 

 

 

Figure 6: Original Image and its Noised One 
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Figure 7. Orthogonal 2D Wavelet Transform for the Noised One and its 

Denoised One 

Original Image Noised Image Denoising by wavelet

Invariant Denoising wiener denoising

 
Figure 8. Original Image(a), Noised Image(b), Denoising by Wavelet(c), 

Invariant Denoising(d), Wiener Denoising(e) 

To measure the quality between the original image and the filtered, another comparison is 

performed by calculating the PSNR calculates the peak signal- to- noise ratio between two 

images. The higher PSNR means the quality of the image treated is better. The PSNR is 

calculated using the following equation:  

          (11) 

In the above equation, R is the maximum variation in the data type of the input image. For 

example, if the input image is double, then R is 1. If it is of unit 8, R is 255. MSE is the mean 

square error (MSE) which is the square of the accumulated error between the original and 

filtered image. The lower value of MSE means the error is small. MSE is calculated using the 

following equation:  

         (12) 

In the above equation, M and N are the number of rows and columns in the input images, 

respectively. 
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The mean square error (MSE) and peak ratio of signal to noise (PSNR) are the two error 

parameters used to compare the quality of image compression. 

The comparison results are shown in the following table: 

Tableau 1. Comparison between original image(a), noised Image(b), denoising 
by wavelet(c), Invariant Denoising(d), wiener denoising(e) for sigma=0.06. 

ImagesSigma=0.06 PSNR T=0.01 PSNR T=0.1 PSNR T=0.5 PSNR T=1 

(a,b) 27.1022 
   26.6994 26.8761 

27.1519 

(b,c) 27.0857 
   26.0718 24.7121 

17.5050 

(b,d) 61.3600    29.8321 25.6324    17.8027 

(b,e) 29.0368    28.6649 28.8526    29.1402 

Tableau 2. Comparison between Original Image(a), Noised Image(b), Denoising 
by Wavelet(c), Invariant Denoising(d), Wiener Denoising(e) for Sigma=0.08 

Images Sigma=0.08 PSNR T=0.01 PSNR T=0.1 PSNRT=0.5 PSNR T=1 

(a,b) 24.7846    24.5701    24.9866 24.8231 

(b,c) 24.7735 24.2088 23.6499 17.3312 

(b,d) 62.7815   30.7952 24.4244 17.6818 

(b,e) 29.2147            28.9968 29.3056 29.2302 

Tableau 3. Comparison between Original Image(a), Noised Image(b), Denoising 
by Wavelet(c), Invariant Denoising(d), Wiener Denoising(e) for Sigma=0.1 

 Images Sigma=0.1 PSNR  T=0.01 
PSNR T=0.1 PSNR T=0.5 

PSNR T=1 

(a,b) 22.8787   23.0136    23.5682    23.0843 

(b,c) 22.8717    22.7729    22.6378    17.1116 

(b,d) 63.7546 
   32.1282    23.3586 

   17.5031 

(b,e) 29.5341    29.6286    30.2330    29.7066 

Tableau 4. Comparison between Original Image(a), Noised Image(b), Denoising 
by Wavelet(c), Invariant Denoising(d), Wiener Denoising(e) for Sigma=0.5 

Images Sigma=0.5 PSNR  T=0.01 
PNR T=0.1 PSNR T=0.5 

PSNR T=1 

(a,b) 14.5607 14.7825 15.0051 14.4493 

(b,c) 14.5608 14.7705 14.9626 13.9776 

(b,d) 76.1212 
46.3478 23.9382 

15.7536 

(b,e) 42.7010 42.9635 43.3301 42.7123 

Tableau 5. Comparison between Original Image(a), Noised Image(b), Denoising 
by Wavelet(c), Invariant Denoising(d), Wiener denoising(e) for Sigma=5 

Images Sigma=5 PSNR  T=0.01 
PSNR T=0.1 PSNR T=0.5 

PSNR T=1 

(a,b) 12.5061    13.3000 13.0070    13.0781 

(b,c) 12.5060    13.3000 13.0061    13.0729 

(b,d) 
104.0839    74.8734 53.6177    44.5610 

(b,e) 77.5280    78.1473 78.0564    77.8293 
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Tableau 6. Comparison between Original Image(a), Noised Image(b), Denoising 
by Wavelet(c), Invariant Denoising(d), Wiener denoising(e) for Sigma=30 

Images Sigma=30 PSNR  T=0.01 
PSNR T=0.1 PSNR T=0.5 

PSNR T=1 

(a,b) 12.1704 12.0935    12.1451 12.4132 

(b,c) 12.1704 12.0936    12.1451 12.4129 

(b,d) 
127.2698 97.4059    75.8513 67.1946 

(b,e) 107.2776 107.3828   103.6860 105.3771 

After the comparison between the results obtained when we have used different values of 

sigma, It is clear that the value of PSNR is high in the case of the comparaison between 

(noised Image (b) and Invariant Denoising(d)) where T=0.01 which means that image quality 

is better using the technique of invariant translation denoising than a filter Median to 

eliminate noise in medical imaging. 

 

6. Conclusion 

We have discussed in this paper the use of wavelets especially invariant translation wavelet 

2D in reducing noise which has a bad effect on medical imaging thus the degradation of its 

quality. 

This manuscript is organized in five sections. Section 1 presents an introduction of the 

medical imaging and the methods used in reducing the noise. Section 2 describes the basics of 

wavelets when used as filter. The two dimensional dwt is studied in Section 3 and the 

translation invariant wavelet representations in Section 4. In Section 5 we have applied the 

dwt2d and translation invariant wavelet on the medical image and were completed by 

comparing the results obtained with those obtained by median filter. Section 6 draws the 

conclusion of this study. 

In this paper we have demonstrated that the use of translation invariant wavelet could offer 

better results than those obtained by the commonly used median filter. It still needs a clinical 

trial and verification to demonstrate the additional benefit. 

The main message of this study is to validate this strategy in a simple and a controlled 

experimental environment. 
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