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Abstract 

In recent years, tensor completion problem has received a significant amount of attention 

in computer vision, data mining and neuroscience. It is the higher order generalization of 

matrix completion. And these can be solved by the convex relaxation which minimizes the 

tensor nuclear norm instead of the n-rank of the tensor. In this paper, we introduce the 

weighted nuclear norm for tensor and develop majorization-minimization weighted soft 

thresholding algorithm to solve it. Focusing on the tensors generated randomly and image 

inpainting problems, our proposed algorithm experimentally shows a significant improvement 

with respect to the accuracy in comparison with the existing algorithm HaLRTC. 

 

Keywords: Tensor completion, weighted nuclear norm, majorization-minimization method, 

image inpainting 

 

1. Introduction 

Tensor completion, has become a new research focus area and received considerable 

attention in recent years. It can be treated as a natural generalization of matrix completion. 

Tensor completion is a procedure for filling in missing entries of a partially known tensor 

under a low-rank constraint. This problem emerge naturally in a variety of domains, such as 

neuroscience, computer vision, retail data analysis and information sciences. 

Unlike the matrix completion, the main challenge of tensor is the NP-hardness of 

computing most tensor decompositions, and this challenge pushes researchers to study 

alternative structure-inducing norms in lieu of the nuclear norm [1, 2]. Recently, several 

researchers [1, 3-5] extended the framework of nuclear norm regularization for the tensor 

completion, which leads to a convex optimization problem. In [3], Liu et al., lay the 

theoretical foundation of low n-rank tensor completion and propose the first definition of the 

trace norm for tensors. In addition, they propose a solution for the low rank completion of 

tensors, namely HaLRTC. After that, Gandy et al., [1] use the n-rank of a tensor as a sparsity 

measure and consider the low-n-rank tensor recovery problem. They introduce a tractable 

convex relaxation of the n-rank and propose efficient algorithms to solve the low-n-rank 

tensor recovery problem numerically. Their algorithms are based on the Douglas–Rachford 

splitting technique and its dual variant, the alternating direction method of multipliers. 

Several other efficient algorithms can be found in [2, 6, 7]. 
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In this paper, we also use the n-rank of a tensor as a sparsity measure and consider the 

low-n-rank tensor completion problem. Motivated by the work in [8], we use the weighted 

nuclear norm as an approximation of rank function, and develop a majorization-minimization 

weighted soft thresholding algorithm for solving the relaxation model of the low n–rank 

tensor completion problem. From the computational results on synthetic data and real world 

data given in this paper, we can see that the proposed algorithm can yield more accuracy 

solution. 

The remainder of this paper is organized as follows. Section 2 contains a brief introduction 

to tensor completion. In Section 3 we present our majorization-minimization weighted soft 

thresholding algorithm for tensor completion (TC-MWST). In Section 4 we compare the 

TC-MWST algorithm with HaLRTC [3] on randomly generated tensors and then we display 

the experiments of low-rank image inpainting. Finally we give some concluding remarks in 

Section 5. 

 

2. Notations and Preliminaries on Tensor Completion 
 

2.1. Preliminaries on Tensor 

In this paper, we adopt the nomenclature and the notations in [9] to define the tensor. We 

denote scalars by lower-case letters, e.g., , , ,a b c ; vectors as bold lower-case letters, e.g., 

, , ,a b c ; and matrices as uppercase letters, e.g., , , ,A B C . Tensors are written as 

calligraphic letters, e.g., , , ,A B C . An N-mode tensor is denoted as 1 2 NI I I  X R , whose 

elements are denoted as 
1 k ni i ix , where 1 k Ki I  , 1 K N  . The “unfold ” operation 

along the n-th mode on a tensor 1 2 NI I I  X R  is defined as ( )( , ) nunfold n XX . Specially, 

the tensor element 1 2( , , , )Ni i i  is mapped to the matrix element ( , )ni j , where 

1,1 ( 1)N
k kk k nj i J    , with 1

1,
k

k mm m nJ I
   . 

That is, ( )
nI J

nX R  and 1,
N

kk k nJ I   . The opposite operation “ fold ” is defined as 

( )( , )nfold X n X .  

Another important concept is n-rank of a tensor, which is the straightforward 

generalization of the column (row) rank for matrices. We use nr  to denote the n-rank of an 

N-mode tensor 1 2 NI I I  RX . It is the rank of the mode-n unfolding matrix ( )nX . 

( )( ) ( )n n nr rank rank X X . 

A tensor of which the n-ranks are equal to nr  is called a rank- 1 2( , , , )Nr r r  tensor. 

The inner product of two same-size tensors 1 2, NI I I  RX Y  is the sum of the products 

of their entries, i.e., 

1 2

1 11 21 1 1, N

n k nN k

I I I
i i i i i ii i i x y     X Y . 

The corresponding Frobenius norm is ,
F
X X X . For any tensor 1 2 NI I I  RX , 

( )vec X  denotes the vectorization of X . 
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2.1. Low n-rank Tensor Completion Problem 

In this subsection, we first introduce the case of 2N  , that is matrix completion 

problem, 

min ( )rank X  

s. t. ( ) ( )X M P P ,                         (1) 

where 1 2n nM R  is a matrix with 1n  rows and 2n  columns,   is the set of indices of 

samples and P  is the orthogonal projector onto the span of matrices vanishing outside of 

 . Candès et al., [10] had claimed that, under suitable conditions, the following problem is 

formally equivalent to (1), 

min 
*

X  

s. t. ( ) ( )X M P P .                         (2) 

Several efficient algorithms have been developed to address the above problem (2) in 

recent years, such as [11-15]. Recently, J. Xu [16], S. Ga ï ffas et al., [17] and J. Geng et al. [8] 

proposed to solve the following weighted version of (2) at each iteration: 

min  
1

n

i i
i

w X

  

s. t. ( ) ( )X M P P .                         (3) 

In [1], the author generalized the completion algorithm for the matrix case to higher-order 

tensors by solving the following optimization problem: 

min 
*

X  

s. t.  X T ,                               (4) 

where ,X T  are n-mode tensors with identical size in each mode. In addition, the author 

also proposed the definition for the tensor trace norm: 

                           ( )1* *
: N

i ii XX ,                            (5) 

where i ’s are constants satisfying 0i   and 1 1N
ii   .  

Note that the problem (4) is a special case of affinely constrained minimization problem 

min 
*

X  

s. t. ( ) bXA ,                               (6) 

where 1 2 N pI I I


  R RA :  is a linear transformation and pbR . In the context of the 

tensor completion problem, the linear operator A  is a sampling (or projection/restriction) 

operator and it is in the form of ( ) ( )AvecA X X , where 2 Np I IA R . For a linear 

operator A  we can always write its matrix representation as ( ) ( )AvecA X X , where 
2 Np I IA R . 

 

3. Proposed tensor Completion Algorithm 

In this section, we will introduce the extension of matrix weighted nuclear norm 
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minimization to tensor case, and present the details of the proposed TC-MWST method. 

Hunter et al., [18] introduced majoriziation-minimization (MM) algorithm framework, and 

Geng et al., [8] recently proposed the majoriziation-minimization algorithm for matrix rank 

minimization. Motivated by these works, we will develop a majoriziation-minimization 

algorithm for tensor completion. 

In this paper, we are the first to introduce the weighted nuclear norm minimization to 

tensor completion, and the main problem is to solve the following problem: 

min 
,*w

X  

s. t. ( ) bXA ,                               (7) 

where ( )1,* ,*
: N

i iiw w
XX , and ( ) ( )( ) 1,*

( )i
i

r
j j ii jw

X w X  with ( )( )j iX  denotes 

the j-th largest singular value of matrix ( )iX , ir  is the rank of matrix ( )iX  and ( )iw ’s are 

the weight vectors. In the following, we consider an unconstrained problem: 

                        
2

( )1 2,*
( )N

i ii
w

bX  A X ,                         (8) 

where 0   is a penalty parameter. 

In the following, we write X  in vector form, and then we get the following equivalent 

formation of (8): 

                            min 
2

( )1 2,*

N
i ii

w
b AxX   ,                       (9) 

where 2 Np I IA R is the matrix version of linear operator A , i.e., ( ) ( )AvecA X X . 

Let  

                           
2

( )1 2,*
( ) N

i ii
w

L x b AxX   .                     (10) 

According to the idea of MM method, we should find a function ( )kQ x  that coincides 

with ( )L x  at kx  but otherwise upper-bounds ( )L x . Similar to [8], we choose ( )kQ x  to 

be 

2

( )12 ,*
( ) ( ) ( )( ) NT T

ik k k ii
w

Q x b Ax x x I A A x x X        ,       (11) 

where 1.1max TeigA A  . 

Expanding ( )kQ x  in (11), it holds that 

1
( )1

,*
( ) ( ) 2 ( ( )) NT T T T T

ik k k k iik w
Q x b b x I A A x x A b Ax x x x X    

        . (12) 

Plugging 1 ( )T
k k kz x A b Ax     into (12), we can rewrite (12) as 

         
2

( )12 ,*
( ) ( )N T T T T

ik k i k ki k kw
Q x x z X b b x I A A x z z          . (13) 
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Note that the terms ( )T T T T
k kk kb b x I A A x z z     are independent of x , therefore we 

minimize the following simplified part: 

2

( )12 ,*
ˆ ( ) N

ik k ii w
Q x x z X    .                   (14) 

Now we write x  and kz  in tensor form, and rewrite (14) as  

2

( )1 ,*
ˆ ( ) N

ik k iiF w
Q x X   X Z .                  (15) 

Under the definition of mode-n unfolding , the problem of minimizing (15) can be written 

as 

min 2
( ) ( )( )1 1,*

( )N N
i i k iii iw F

X X Z
N


    .             (16) 

The optimization problem (16) is difficult to solve stem from the interdependent weighted 

nuclear norms. Similar to [3] we introduce additional matrices 1, , NM M  to split these 

interdependent terms such that they can be solved independently. Then we obtain the 

following equivalent formulation: 

,
min

iMX

2

( )11 ,*
( )i i

F

NN
i k iii w

M M Z
N


     

s. t. ,( ) {1,2, , }i iM X i N  .                      (17) 

Next we introduce a penalty parameter 0  , and the optimization problem (17) can be 

relaxed as 

,
min

iMX

2 2

( ) ( )1 11 ,*

1( )
2

i i i
F F

N NN
i k i ii ii w

M M Z M X
N





       .      (18) 

As we known, an optimal solution of (18) approaches an optimal solution of (17) as 

0  . For convenience, in problem (18) we let   , and obtain the following problem: 

,
min

iMX

2 2

( ) ( )1 11 ,*

1( )
2

i i i
F F

N NN
i k i ii ii w

M M Z M X
N





       .     (19) 

Computing Mi: We fixed all variables except , 1, 2, ,iM i N , then iM  is the optimal 

solution of the following problem. 

min
iM

2 2

( ) ( )
,*

1( )
2

i i i i
F F

k i i
w

M M Z M X
N





    .           (20) 

In the following theorem, we will give the optimal solution of (20). 

Theorem 1: Given 0  and 1.1max TeigA A  . Let ( )X
TUDiag VX   be the singular 

value decomposition for X . ( )D X  is the “shrinkage” operator defined as [11]: 
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( ) ( ) TD X UDiag V   

, if 0
:

0, . .

( ) ( )
( )

X X

X

i i i i

o w
s

  
 

  



 


. 

Then for any given {1,2, , }i N , ( )
iI

iw R  is weight vector and iM   is an optimal 

solution of (20) if and only if 

( ) ( )

( )

( )

2 1

2 1

2 1

k i i

i i

Z X

i w

N

N
M D

N

 




 

















 
 
 
 
 

, 

where 
( )( )k iZ  and 

( )iX  are the singular values of the matrix ( )( )k iZ  and ( )iX , 

respectively. 

Proof: In general, we have the following property of singular value decomposition. 

Assume that the matrix X  has r  positive singular values of 1 2 0r      , then 

we have 

                           
2 2

2

2
1

r

n n i
F

i

X  


  ,                       (21) 

where   is a vector formed by , 1, 2,i i r  .  

Let ( )
iM

T
iM UDiag V , 

( )( ) ( )
k ik i Z

TUDiag VZ   and 
( )( ) ( )
ii X

TUDiag VX   be the 

singular value decomposition for iM , ( )k iZ  and ( )iX , respectively. Using the property (21), 

we can solve the following optimization problem instead of (20): 

min
Mi


( ) ( )2 2

2 21
2

, i i k i i ii M M Z M X
N

w





       .        (22) 

Another form of (22) is 

min
Mi


( ) ( )

2 2
( )1 1 1

1( ) ( ) (( ) (( )
2

( ) ) ( ) )i i i

i i ik i ii Z j X j
I I I

i j M j M j M jj j jw
N


     


       . (23) 

Therefore we can solve (23) easily by differentiating it term-wise and using the first-order 

optimality conditions. Then we obtain the solution to (23): 

( ) ( )( )
( )

2 1

( ) , 1, 2, , .
2 21 1

( ) ( )
( )

i

k i iZ j X j
i j

M j i

wN
j I

N N


 




 



 







 

  

Now, we can get easily the optimal solution of (20) is 
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( ) ( )

( )

( )

2 1

2 1

2 1

k i i

i i

Z X

i w

N

N
M D

N

 




 

















 
 
 
 
 

. This completes the proof.                      □ 

Computing X : We fixed all other variables except 1,2, ,,iX i N . Then we can get 

the optimal X  by solving the following problem: 

2

( )1
1

2
min i

F

N
ii M X


 

X
.                   (24) 

It is easy to check that the solution to (24) is given by 

1

1
( )N

ii fold M
N


 X .                     (25) 

We call our algorithm “TC-MWST”, which stands for Majorization-minimization 

Weighted Soft Thresholding Algorithm for Tensor Completion. Based on the above 

discussions, the complete TC-MWST algorithm is given in Algorithm 1 below. 

 

Algorithm 1 TC-MWST: Majorization-minimization Weighted Soft Thresholding Algorithm for Tensor 

Completion 

Input: , , , , , 1,2, ,iA b defac i N   and K  

Output: X  

  Initialization: 0
iw , 0 , 0X  

for 1k   to K  do 

     while not converged, do 

        
1 ( )k k kb


  A AZ X X  

        for 1:i N  

( ) ( )

( )

( )

2 1

2 1

2 1

k
k i i

k
i i

Z X

k
i w

N

N
M D

N

 




 














 
 
 
 
 

 

end 

1
1

1
( )k N k

ii fold M
N


 X  

end while 

     1k kdefac    , ( 1) ( 1)( ) 1 ( ( ) ), 1, 2, ,k k
j ii j iw X j I      

end for 
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4. Numerical Experiments 

In this section, we evaluate the empirical performance of the proposed TC-MWST 

algorithm both on synthetic and real-world data with the missing data and compare the results 

with HaLRTC (High Accuracy Low Rank Tensor Completion) [3]. We separate this section 

into two subsections. In subsection 4.1 the proposed algorithm is tested on the randomly 

generated low n-rank tensors. Subsection 4.2 tests the algorithm on natural images. All 

numerical experiments are performed with Matlab (version 2012b) on a desktop computer 

with a 3.20GHz CPU and 4 GB of memory. 

 

4.1. Synthetic Data 

We first conduct the TC-MWST algorithm on several synthetic data sets for the tensor 

completion tasks. Each test tensor 1 2 NI I I  T R  with rank ( , , , )r r r  is created by the 

Tucker decomposition [9]. We first generate a core tensor r r RA  with each entry being 

sampled independently from a standard Gaussian distribution (0,1)N . Then we generate 

matrices (1) ( ), , NU U , with ( ) iI riU R  by randomly choosing each entry from (0,1)N . 

Then let (1) ( )
1 2: N

NU U   T A . We randomly sample a few entries from tensor T  

and recover the whole tensor with various sampling ratio (SR) by TC-MWST algorithm and 

HaLRTC [3]. In the implementation of TC-MWST, we set 0 0.9 b


  and 

1 , 1,2, ,i N i N   . The parameters of HaLRTC are set to their default values. The 

relative error (RelErr) of the recovered tensor X  is defined by RelErr
F F

 X T T . 

Figure 1 shows the performance of TC-MWST and HaLRTC for random tensor completion 

problem. Figure 1 (a) shows the relative error for 50 50 50   tensor with the n-rank is fixed 

at (r, r, r)=(5, 5, 5) and the sample rate changes form 10% to 85%. On the other hand, in 

Figure 1.(b), we also report the relative error for the same size tensor with the sample rate is 

fixed at SR=30% while n-rank r changes from 2 to 30. As we known, when sample rate is 

fixed, the complexity of the problem increases with the increase of the rank. On the other 

hand, when the rank is fixed, the complexity increases with the decrease of the SR. Observing 

the figures, it is clear that TC-MWST outperforms HaLRTC in all cases. Especially in Figure 

1 (a), we can see that when SR=10%, TC-MWST can recover the tensor with the relative 

error 6.79e-2 while HaLRTC with 7.39e-1. Similar results appear in Figure 1 (b), we can see 

that our proposed algorithm is always able to obtain more accurate solutions. 
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(a) (b) 

Figure 1. The Performance Comparison for 50 50 50   Tensors. (a) The 

Relative Error on Tensors with Sample Rate (SR) between 1% to 85% and Fixed 
n-rank (r, r, r)=(5, 5, 5) . (b) The Relative Error on Tensors with n-rank (r, r, r) 

between 2 and 30 and Fixed Sample Rate (SR=30%). All Results are Averages of 
10 Independent Trials 

In the next experiment we conduct the TC-MWST and HaLRTC algorithms on several 

cases in which the test tensors have different sizes, n-ranks and sample rates. The average 

results of 10 independent runs are shown in Table 1. The order of the test tensors varies from 

three to five, and we also change the n-rank and the sample rate. We can easily observe from 

Table 1 that our TC-MWST method can always yield more accurate solutions. The relative 

error obtained by TC-MWST is about 210  times better than HaLRTC. 

Table 1. Comparison Results of TC-MWST and HaLRTC for Random Problems 

Tensor rank SR 
TC-MWST HaLRTC 

RelErr Time RelErr Time 

20 20 20   (2, 2, 2) 0.2 1.73e-08 8 3.12e-01 4 

50 50 50   (5, 5, 5) 0.3 9.47e-10 94 5.16e-08 36 

100 100 100   (5, 5, 5) 0.2 8.22e-10 592 6.58e-08 291 

20 20 20 20    (2, 2, 2, 2) 0.4 1.01e-09 109 9.16e-08 120 

50 50 50 50    (4, 4, 4, 4) 0.6 1.59e-10 1099 3.42e-08 989 

20 20 20 20 20     (2, 2, 2, 2, 2) 0.3 1.47e-09 935 8.97e-08 912 
 

4.2. Image Simulation 

In order to illustrate the performance of our proposed method, we apply TC-MWST to 

image inpainting [19]. We know that color images can be expressed as third order tensors, and 

if the images are of low rank we can solve this problem as low n-rank tensor completion 

problem. In this experiment, we assume the image be well structured, and apply our proposed 

method on image inpainting of the façade image, which is also used in [3]. The recovery 

experiment using TC-MWST is present in Figure 2. We randomly remove 50% entries from 

the original color image. Then we apply our method to the image. From the figure, we can 

vividly observe that our algorithm is able to recover the natural image with missing 

information. 
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Figure 2. Comparisons in Terms of the Natural Image. From Left to Right: 
Original Image, 50% Corrupted Image, Recovered Image from 50% Corrupted 

Noise by TC-MWST (RelErr=7.15e-2) 

Next we show some example slices of the MRI data in Figure 3. In this experiment, we test 

four slice images. The original images are given in the first line of Figure 3. The observations 

are given in the second line. We randomly remove some entries from the original image, and 

from left to right is 50%, 60%, 70%, 80%, respectively. The third line shows the 

reconstruction using TC-MWST. On all four images, the recovery effect is satisfactory. From 

left to right, the relative error is 2.72e-3, 3.03e-3, 5.95e-3 and 4.38e-2, respectively. From 

images in the second line, we can hardly get any detail information. However, our MMST 

algorithm can effectively recover the details of the low-rank image. 

 

5. Conclusion 

In this paper, we focus on low n-rank tensor completion problem. We extend the weighted 

nuclear norm of matrix to that of tensor and apply the majoriziation-minimization (MM) 

algorithm to solve the tensor n-rank minimization problem. Furthermore, we develop an 

efficient method called majorization-minimization weighted soft thresholding algorithm for 

tensor completion (TC-MWST). The experiment results on synthetic data and image 

processing including natural image and MRI images show the effectiveness of the proposed 

algorithm. 

 

    

    

    

Figure 3. Comparisons in Terms of the MRI Data. The First Line: Original Images. 
The Second Line: Randomly Remove some Entries from the Original Image 

(from Left to Right: 50%, 60%, 70%, 80%). The Third Line: Recovered Image by 
TC-MWST (the Relative Error is 2.72e-3, 3.03e-3, 5.95e-3 and 4.38e-2, 

respectively) 
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