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Abstract 

Bottleneck (BN) feature has attracted considerable attentions by its capacity of improving 

the accuracies in speech recognition tasks. Recently, researchers have proposed some 

modified approaches for extracting more effective BN feature, but these approaches still need 

further improvement. In this paper, motivated by both deep belief networks (DBN) and 

hierarchical Multilayer Perceptron (MLP), we propose hierarchical DBNs based BN feature 

and employed it for keyword spotting task. The hierarchical DBNs based BN feature is 

constructed with two DBNs in series which are sequentially trained. The first DBN outputs 

the posterior probabilities features, as well as the second DBN transforms the posterior 

probability features into a low dimensional representation with the information pertinent to 

classification through the BN layer. Experiments on hierarchical DBNs based BN feature is 

conducted with TIMIT dataset and using Point Process Model as the baseline system. 

Experimental results show that the hierarchical DBNs based BN feature is more robust and 

can achieve better accuracies than other features. 

 
Keywords: Bottleneck Feature, Hierarchical Deep Belief Network, Keyword Spotting, 

Point Process Model 

 

1. Introduction 

Compared with the large vocabulary continuous speech recognition (LVCSR) technology, 

keyword spotting has the advantages such as insensitive to circumstance change; less system 

resources requirement and faster recognition speed in detecting certain desired words in 

continue speech. Hence it has been widely used in audio indexing and speech data mining 

applications. 

The recent research hotspot and difficulty in keyword spotting is focus on developing new 

features [1]; the reason is the state-of-the-art speech features such as Mel-frequency Cepstral 

Coefficients (MFCCs) or Perceptive Linear Predictive (PLP) are sensitive to noise on the one 

hand and have poor classifying capability on the other [2]. Hence aiming at overcoming the 

inherent deficiencies of these features, some researchers employ bottleneck (BN) feature 

which is based on Deep Belief Network (DBN) [3].  

As the name suggest, DBN based BN features is constructed with DBNs in contrast with 

the conventional BN feature which is generated by multi-layer perceptron (MLP). It can be 

considered as a dimensionality reduction and nonlinear feature extraction technique, and the 

goal of BN feature is to derive a set of features with low dimension and higher classification 
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accuracy [3-5]. With the help of the pre-training procedure in DBN training [6, 7], DBN 

based BN feature can conquer the inherent flaws of MLP which is often get stuck in poor 

local optimum and has shown absolute improvements over the other features including the 

MLP based BN feature.   

But the DBN based BN feature still needs further improvement.  Firstly, the DBN based 

BN feature places a BN layer in the middle of the DBN which will degrade the frame 

accuracy at the output targets. Secondly, some researchers report that the probabilistic 

features can achieve same performances or, in some cases, outperform the classical features 

[8]. Last but not the least, the hierarchical MLPs, which constructed with two MLPs in series, 

has been successfully used in both probabilistic feature extraction and phonetic class 

conditional probabilities estimating. It has been proved that the hierarchical MLPs based 

system is more powerful than the single MLP based one [9]. Consider DBN is essentially an 

enhanced version of MLP, we believe that using DBN to take the place of MLP and build 

hierarchical DBNs will improve the performance of conventional BN feature, and achieve our 

goal of getting higher accuracy in keyword spotting.    

In this paper, we propose hierarchical DBNs based BN feature for keyword spotting in 

continues speech. The hierarchical DBNs based BN feature is constructed with two DBNs in 

series which are sequentially trained. The first DBN uses long-term raw feature (e.g., 3-frame 

concatenating features) as input, and output the posterior probabilities feature. In the second 

DBN, the posterior probability feature estimates by the first DBN is transformed into a low-

dimensional representation with the information pertinent to classification through the BN 

layer. Experiments are conducted with TIMIT database and using a Point Process Model 

which is a novel keyword spotting paradigm as the baseline system. The results show that the 

BN feature based on hierarchical DBNs can get better accuracies than other features.  

The rest of this paper is organized as follows: In Section 2, we describe DBN and 

hierarchical DBNs based BN feature system. Section 3 analyzes the operating principle of 

point process model. Experimental results are provided and discussed in Section 4. Section 5 

concludes the paper and discusses future work. 

 

2. Hierarchical DBNs based BN Feature 
 
2.1. DBN [6, 7, 10] 

Output Layer

Input Layer

Hidden Layer of RBM1

(Visible Layer of RBM2)

Hidden Layer of RBM2
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}RBM 1

}RBM 2
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Figure 1. Schematic Representation of a DBN 

DBN can be viewed as a composition of simple learning modules via stacking them, and 

this simple learning module is called Restricted Boltzmann Machines (RBMs). The schematic 

representation of a DBN is shown in Figure 1. A RBM is structured with two layers of 
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neurons, one layer of (typically Bernoulli) stochastic hidden units and one layer of (typically 

Bernoulli or Gaussian) stochastic visible units, where all visible units are connected to all 

hidden units, but there is no connection between the same layer. The joint distribution 

p( , ;θ)v h of a RBM over the visible units v and hidden unitsh , given the model parametersθ , 

is defined in terms of an energy function E( , ;θ)v h of 

( E( , ;θ))
p( , ;θ)

exp

Z




v h
v h                                          (1) 

Where ( E( , ;θ))Z exp   
v h

v h  is a normalization factor. And for a Bernoulli (visible)-

Bernoulli (hidden) RBM, the energy function can be defined as 
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Where ijw represents the symmetric interaction term between visible unit iv  and hidden 

unit jh , ib and ja  are the bias terms. But the Bernoulli-Bernoulli RBM is inconvenient for 

modeling real-valued data such as speech, so we adopt a Gaussian-Bernoulli RBM, and the 

energy function become 

2
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Notice that each visible unit iv adds a parabolic (quadratic) offset to the energy function, 

where i controls the width of the parabola. Then the conditional probabilities can be 

efficiently calculated as 
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Taking the gradient of the log likelihood log ( ;θ)p v , we can derive the update rule for the 

RBM weights as 

( ) ( )ij data i j model i jw E v h E v h                                        (6) 

Where ( )data i jE v h  and ( )model i jE v h  are the expectation observed in the training set 

and the model respectively. In practical use, we employ an algorithm called Contrastive 

Divergence (CD) to approximation the gradient of ( )model i jE v h  where ( )model i jE v h   is 

replaced by running the Gibbs initialized at the data for one full step. 

As we discussed above, a DBN is built up by stacking a number of RBMs layer by layer 

from bottom up. This efficient layer-by-layer greedy learning strategy is called unsupervised 

pre-training, theoretical justification given in [7, 11] show that this procedure can improve a 

variational lower bound on the likelihood of the training data under the composite model. 

After the unsupervised pre-training, we still need a supervised procedure by fine-tuning the 

resulting weights using gradient descent learning to improve the performances of DBN. The 

main idea behind DBN is using unsupervised procedure to set the weights of the network to 

be closer to a good solution than random initialization, thus avoiding local minima. 
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2.2. Hierarchical DBNs based BN Feature 

Hierarchical DBNs based BN feature is constructed with two DBNs in series. As 

shown in Figure 2, the first DBN is pre-trained and fine-tuned to minimize the cross-

entropy between the hypothesized class probabilities and the targets.  

Figure 2. Structure of Hierarchical DBNs based BN Features 

Training of the first DBN is very similar to DBN trainings done for other speech 

recognition applications [3, 10]; the only difference is the input feature we use in this 

paper are 11-frame concatenating features, which are constructed by augmenting the 

current speech frame with its neighboring 3 frames within a context window (1+1+1). 

The reason is according to the latest study on DBN that the gains of DBN are mostly 

attributed to the feature vectors that are concatenated from a long temporal context [12]. 

Additionally, the feature for each frame are 43-dimensional conventional speech feature, 

which is the combinations of 39-dimensional MFCC feature (static, first and second 

derivatives) and 4-dimensional pitch feature. Hence the dimension of the input feature 

is 129(43×3) and the number of nodes of the input layer is configured to be the same. 

Then the structure of the first DBN can be displayed as “129-[2048-2048-2048-2048]-

129” for example, figures in [] is the number of nodes of the 4 hidden layers.  

The second DBN is topologically similar to the DBN based BN features, and the 

posterior probability features estimated by the first DBN are used as the input feature of 

the second DBN.  

As the name suggests, BN feature is generated from the second DBN which one of 

the hidden layers (conventionally the middle layer) has a very small number of hidden 

unites relative to the other layers. This layer is described as BN layer. The benefits of 

BN feature are obvious that it not only embedded the input features with classification 

information which derived from the supervision, but also forced input feature into a low 

dimensional representation. The structure of the second DBN can be displayed as “129-

[2048-1048-43-1048-2048]-129” for example. Particularly, it would be specially 

mentioned that when the training of the second DBN is done, the layers after BN layer 

should be discarded; and the output feature is generated from the BN layer. 

Compared with other speech features, hierarchical DBNs based BN feature has the 

following advantages: firstly, they do not require strong assumptions on data 

distributaries which make them can simply concatenate different distributaries features 

together[13, 14]; secondly, when trained on large amount of data, DBN is invariant to 

speaker characteristics and environment specific information such as noise [13]; thirdly, 

DBN can be trained efficiently and are scalable with large amount of data[13]; fourthly, 
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the posterior probabilistic features produced by the first DBN have lesser nonlinguistic 

variabilities compared to classical spectral features, which make hierarchical DBNs can 

yield higher accuracies to single DBN based system[8]. Last but not the least, the 

proposed BN features is low-dimensional and embedded with classification information, 

which will make them more suitable for keyword spotting task. 

 

3. Point Process Model 

Point process model is a novel keyword spotting approach which operates within the 

sliding model. In recent years, it has attracted extensive attentions in the community of speech 

recognition and cognitive science. Point process model is built on the hypothesis that the 

linguistic contents underlying human speech is coded in event-based point process, and the 

hypothesis is supported by several strands of researches in the fields of linguistics and 

neuroscience [15-18]. The principles of point process model can be simply divided into two 

parts: first is using detectors to generate an efficiently point process representation, which 

encoding the underlying linguistic contents. The detectors are phoneme classifiers essentially; 

second is building a suitable point process statistical model using the point process 

representation, and the model can distinguish keywords from the background utterances 

efficiently. Experimental results in [15, 16] have already proved that point process model has 

the capacity to generalize from a relatively small numbers of training examples and avoid the 

local optima of HMMs, the accuracy levels are comparable with other keyword spotting 

systems.  
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Figure 3. Framework of Point Process Keyword Spotting System Model 

The framework of point process model is shown in Figure 3, and the training procedure of 

point process model can be summarized as follows: 

Step 1: Build Gaussian Mixture Model (GMM) based phoneme detectors using 48 different 

phonemes examples, which are selected from the input hierarchical DBNs based BN feature 

according to [19].    

Step 2: Map the input BN features to a collection of point patterns. The features input to 

the detectors take high values when the phoneme is expressed and take low values otherwise. 

Then mapping the input features to a time series, and by giving a threshold  p, we can 

compute the point process N p for the specific phoneme p according to 

                                   
1,{ | , }, 1p i ip p ip i pN t p p p i n                                            (7) 

Where pip is the detect probability for the ith frame for phoneme p. Figure 4 show the point 

process representation of the keyword “greasy” using Eq. (6). 
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Figure 4. Point Process Representation of the Keyword “greasy” 

Step 3: After obtaining the point process pN of phoneme p , point process model builds an 

inhomogeneous Poisson process for keywords and a homogeneous Poisson processes for 

background utterances respectively. The reason is that we regard the probability distribution 

of the phoneme point process as the event streams in Queuing theory and use a homogeneous 

Poisson process to establish background model which is related with time interval, otherwise 

an inhomogeneous Poisson process models for each keyword which is unable to determine a 

specific time. 

For a specific phoneme p and its point process set pN , suppose that the point set obey the 

homogeneous Poisson process of P , )(tp represents the number of phoneme points in the 

time interval ],0( t . We can have the probability of k phoneme points occurred in 

],( ba tt according to the distribution of homogeneous Poisson process is 

!

)(
])()([)(,
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e
kttPkP
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When  is very small and we can lead to a corresponding density function ( ) pt

pf t e



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 , 

then the likelihood of the point pattern becomes  

( ) p pn T
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P e
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                                                       (9) 

Training homogeneous Poisson process amounts to estimate p for each phoneme p. Given 

N normalized-length training segments and the total number K of landmarks of phoneme p in 

those segments, the maximum-likelihood estimate is given by 

arg max log
p

p p

K
K NT

NT

  




                                           (10) 

The training procedure of inhomogeneous Poisson processes for keywords is very similar 

to the homogeneous one. The difference between them is the p now varies as a function of 

time. We solve this problem by factoring the inhomogeneous Poisson processes into D 

independent homogeneous processes operating in each division. Suppose p, d is the intensity 

function of phoneme p in the d division, then the likelihood of total point pattern becomes 

, ,

,

1

( ) p d p d
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After training the background and keywords models respectively, we can construct the 
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detector function dw (t) in terms of the (log) likelihood ratio for spotting keyword 
( ( ) | , ) ( | )

( ) log[ ]
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k k

w

T b
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d t

T P t T
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O

                                    (12) 

Where O is the set of observations in the utterance, k andb are the indicator function 

when keyword and background utterances presented respectively, T account for the duration 

for a particular keyword, interval  is the sliding windows durations, and the probability 

functions P have been calculated during the training procedure. When dw (t) over a threshold 

w, then we can consider the keyword is expressed in speech. 

 

4. Experiments and Results 
 

4.1. Dataset 

The efficacy of the hierarchical DBNs based BN feature is evaluated by performing 

keyword spotting experiments on TIMIT speech corpora [29].The TIMIT database consists of 

4.3 hours (including 1.1 hours of NIST complete test set )of read speech. The training set has 

4620 sentences collected from 462 speakers while testing set has 1620 sentences collected 

from 162 speakers, and there is no same speaker between the two sets. We analyze the input 

speech using a 25-ms Hamming window with 10-ms between the left edges of successive 

frames. And the features for each frame are 43-dimensional as we discussed in 2.2. The data 

were normalized to have zero mean and unit variance over the entire corpus. 

 

4.2. Computational Setup  

Training DBNs is quite computationally expensive as we mentioned in 2.1; therefore we 

accelerate the training procedure by exploiting a graphics processor (GPU). The experimental 

results show that the training speed of a single GPU is 20 times than an Intel 2.66-GHz Xeon 

mononuclear, which greatly saves time in DBN training. 

 

4.3. Experimental Setup 

Three different experiments are designed to verify the validity of the hierarchical DBNs 

based BN feature. Experiment 1 compares our hierarchical DBNs based BN feature with 

original MFCC, single MLP, single DBN and hierarchical MLPs based BN feature to verify 

the novel BN feature is able to increase the keyword spotting accuracies. 

Aiming at exploiting the relationship between keyword spotting accuracies and the number 

of hidden layers as while as the position of the BN layer in second DBN, experiment 2 

compares our hierarchical DBNs with different hidden layers and position of the BN layer in 

second DBN. 

Similarly, experiment 3 compares the hierarchical DBNs based BN feature with different 

BN layer size in second DBN in order to find out the best size of BN layer. 

 

4.4. Experimental Results 

 

4.4.1. Experiment 1 

In experiment 1, we adopt a 6 layer (with 4 hidden layer) DBN to build up the first DBN of 

the hierarchical DBNs, then the structure of the first DBN can be displayer as 129- [2048-

2048-2048-2048]-129; the second DBN employs a 7 layer (with 5 hidden layer) DBN which 

the topological structure is 129-[2048-1048-43-1048- 2048]-129. For comparison, the 
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structure of the single MLP and single DBN is set to same as the second DBN of our 

hierarchical DBN. The hierarchical MLPs are set to just the same as the hierarchical DBNs. 

The number of Gaussian component in GMM based point process model is set to 8. All 4620 

sentences in TIMIT training database are used in this experiment. Table 1 shows the Figure of 

Merits (FOM) of the five different features in keyword spotting. 

Table 1. Performance Comparison between Hierarchical DBNs, Original MFCC, 
Single MLP, Hierarchical MLPs, and Single DBN based BN Feature 

Features FOM (%) 

Original MFCC 92.17 

Single MLP based BN features 92.66 

Hierarchical MLPs based BN features 93.87 

Single DBN based BN features 93.17 

Hierarchical DBNs based BN features 95.55 

The results in Table 1 demonstrate that the FOM of hierarchical DBN based BN feature is 

at least 2% better than the other features.  

 

4.4.2. Experiment 2 

In order to exploit the relationship between keyword spotting accuracies and the different 

structures of hierarchical DBNs based BN feature. We construct the second DBN with 5, 7 

and 9 hidden layers as while as the BN layer is placed at the middle, in front and in back of 

the middle layer (e.g. for a second DBN with 5 hidden layer, we choose the second, third and 

fourth hidden layer as the BN layer respectively for experiments). The different structures of 

hierarchical DBNs are displayed as 129-[2048-1048-43-1048- 2048]-129 in Table 2 below. 

Other configurations of Experiment 2 are set to same as Experiment 1.  

Table 2. Performance Comparison of Different Structures of Hierarchical DBNs 
based BN Feature 

Different second DBN structures  FOM (%) 

129-[2048-43-1048-1048- 2048]-129 93.67 

129-[2048-1048-43-1048- 2048]-129 95.55 

129-[2048-1048-1048-43- 2048]-129 94.83 

129-[2048-1048-43-512-512-1048-2048]-129 91.31 

129-[2048-1048-512-43-512-1048-2048]-129 93.21 

129-[2048-1048-512-512-43-1048-2048]-129 93.12 

129-[2048-1048-512-43-256-256-512-1048- 2048]-129 91.01 

129-[2048-1048-512-256-43-256-512-1048- 2048]-129 92.14 

129-[2048-1048-512-256-256-43-512-1048- 2048]-129 92.79 
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The results listed in Table 2 show that the second DBN with 5 hidden layers performs 

better than other structures. We believe that when DBN get “deeper”, it not only taking longer 

training time, but also leading to the BN layer get less classification information from 

supervision. Moreover, the BN layer which locates in the middle of the DBN gets high FOM 

than in other positions. It suggests us that symmetric structures maybe the best topological 

structure of the second DBN. 

 

4.4.3. Experiment 3 

Finally, we conduct Experiment 3 to find out the best size for BN layer. Configurations of 

Experiment 3 are set to same as Experiment 1; the only difference is the BN layer size is 

ranging from 20 to 60. The result of Experiment 3 is shown in Table 3 

Table 3. Performance Comparison of Different Size of BN Layer of Hierarchical 
DBNs based BN Feature  

BN layer size FOM (%) 

20 95.23 

30 95.32 

43 95.55 

50 95.63 

60 95.17 

From Table 3, we can see that FOM is not sensitive to the size of BN layer. And the size 

can be set to be same as the dimensionality of the original speech frames. 

 

5. Conclusion 

In this paper, we propose hierarchical DBNs based BN feature, and use this novel feature 

for keyword spotting task. The hierarchical DBNs are constructed with two DBNs in series 

which can combine the advantages of both DBN and hierarchical architecture. Experimental 

results on TIMIT dataset show that the hierarchical DBNs based BN features can yield 2% 

improvement compared with other features including single DBN based BN features. 

Furthermore, we also investigate the performances of our hierarchical DBN based BN feature 

with different DBN structures and size of the BN layer, results show that the second DBN 

with 5 hidden layers and 43 neurons of the BN layer which located in the middle of the whole 

structure achieve the best performances.  

As we discussed above, training DBN is quite computationally expensive, and we also find 

there are only around 5% neurons are active together at a given time in training. Hence in the 

future work, we will focus on introducing the notion of sparse distributed representation and 

build deep architectures with sparse representations in order to improve the efficiency of 

DBN training. 
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