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Abstract 

Most of the noise in speech communication lines can be considered as Gaussian white 

noise. Voice activity detection (VAD) in noisy environment is an important process in many 

speech signal processing algorithms. Unlike the other VAD algorithms, this paper proposes a 

simple and novel VAD algorithm based on the probability distribution function (PDF) of FFT  

magnitudes of both clean speech and Gaussian white noise. When the signal-to-noise ratio 

(SNR) is high enough, the method using Gamma distribution to detect the speech performs 

well, while the method using Rayleigh distribution under lower SNR can be complementary. 

In addition, the threshold to determine which method to use is presented based on the tests 

under different SNR. Simulation results show that the proposed algorithm is efficient. Both 

the hardware and software of a low cost system for VAD are introduced, with the proposed 

algorithm achieved in a digital signal processor (DSP). Each detection takes on less than 100 

ms, which can be used for real-time processing. 
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1. Introduction 

VAD plays an important role in speech signal processing algorithms, such as improving 

the speech intelligibility [1] and speech recognition [2]. Besides, as a real time VAD can 

distinguish the speech and noise on-line, it has been widely used in speech compression [3] 

and noise estimation [4]. 

Traditional VAD algorithms are typically based on the threshold of instantaneous or short 

term power, zero-crossing rate or spectral differences between the speech and noise. A neat 

summary of these strategies are found in [5]. In the last 20 years, with the developing models 

of speech and noise signals, VAD algorithms based on statistical models [6-16] have been 

proposed to get a higher performance than the traditional methods, i.e., Gaussian distribution 

[6-7, 9, 15-16], Laplacian distribution [8-9] and Gamma distribution [9-13]. To be 

approximations of the real signal, these assumed statistical models give a deep 

comprehension of the speech and noise. Currently, algorithms based on statistical models 

have been the main trends for speech signal processing. 

Among them, Sohn et al., [6] assumed the speech signal to be complex Gaussian and 

proposed a VAD algorithm based on likelihood ratio test (LRT). Following this, numerous 

VAD algorithms [7-10, 15-16] have been proposed to further improve the VAD performance. 
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All of these algorithms used the LRT but modified models, such as generalized Gamma 

distribution model for clean speech spectra [10], Gaussian distribution model for the complex 

coefficients derived from complex exponential atomic decomposition of a signal [15] and 

Gaussian mixture model (GMM) for speech with transient noise [16], leading to modified and 

improved VAD outputs. As shown and widely accepted, a super-Gaussian model fits the 

speech signals better than Gaussian model. For instance, based on a two-sided generalized 

Gamma distribution, Almpanidis et al., [12] modeled the speech signals and used the 

Bayesian Information Criterion to determine the boundaries of the speech in noisy 

environment. Unlike the above algorithms that using various models to fit the speech, Li Yu 

et al., [14] assumed the power spectral density of noise to be Rayleigh distribution and 

proposed an adaptive threshold to detect voice activity indirectly. However, the computation 

complexities of these algorithms were both too large for real-time implementation. 

Differing with the above algorithms that use only one model but cannot perform well in a 

large range of the SNR, this paper proposes an algorithm choosing statistical model on the 

basis of the transient SNR to detect voice activity with noise present in speech 

communication lines. The magnitudes of fast Fourier transform (FFT) of speech signal are 

assumed to follow Gamma distribution. The noise is regarded as Gaussian white noise, with 

its FFT magnitudes assumed to be Rayleigh distribution. The proposed algorithm is based on 

three simple observers and the computational complexity is small enough for real time voice 

activity detecting. 

This paper is organized as follows. Section 2 describes the principle of the proposed 

algorithm and gives simulation results and analysis using MATLAB. In Section 3, both 

hardware architecture and software implementation of a DSP-based system are introduced. 

Finally, remarks and conclusions are provided in Section 4. 

 

2. Proposed Method for VAD 

In this Section, VAD methods using Gamma and Rayleigh distribution are discussed 

respectively. As shown, the two methods are complementary with each other under 

different SNR conditions. Three observers are set in this Section. The first two 

observers are used for VAD and the 3rd one is used for choosing a suitable method. All 

of the simulations and tests are achieved in MATLAB 2011A and each frame is selected 

to have 256 points. 

 

2.1. VAD Using Gamma Distribution 

In this paper, the speech and noise are considered independent, and an additive-noise 

signal model is simplified as: 

),(),(),( mknmksmky                                           (1) 

Where ),( mky , ),( mks and ),( mkn denote the thm - sample in the thk - frame of the 

noisy speech, clean speech and noise respectively. 

Implement FFT for ),( mky , we have: 

),(),(),( mkNmkSmkY                                         (2) 

Where ),( mkY , ),( mkS and ),( mkN  are the FFT magnitudes of ),( mky , ),( mks and 

),( mkn . 

Comparing the Gaussian with Gamma distribution assumptions, we use a section of clean 

speech from TIMIT database to test the histogram of FFT magnitudes. As illustrates in Figure 
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1, the estimated PDF of Gamma distribution fit the true signal better than that of Gaussian 

distribution. 

 

 

Figure 1. Estimated Distributions for Speech Signal 

Assumed as Gamma distribution, the FFT magnitudes of clean speech have a PDF as: 
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Where )( denotes the Gamma function,  and  are shape parameter and scale 

parameter of the PDF. 

Find the maximum likelihood estimations (MLE) of  and  . For n  samples, the log-

likelihood function is defined as: 
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  thresholdH ̂:1 , speech present  

As shown in [13], the shape parameter of Gamma-distributed speech signal is less than one. 

Once the voice is non-active, the MLE of  increases to be more than 1, because the FFT 

magnitudes distribution of the Gaussian white noise is Rayleigh distribution, as shown 

in Figure 2. 

 

 

Figure 2. Estimated PDF of Gamma Distribution when Voice is Non-Active 

To examine the observer, non-stationary noise is added to a speech signal. Simulation 

results are shown in Figure 3 and Figure 4. 

Under high SNR, the proposed method based on the first observer performs well in non-

stationary noise (as in shown in Figure 3), but misses some voice active sections when SNR 

decreases (as shown in Figure 4). As a result, this method is limited to be used under high 

SNR.  
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Figure 3. (a) The Additive Non-stationary, Low Level Noise. (b) The Test 
Speech. (c) The VAD Output on Noisy Speech 
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Figure 4. (a) The Additive Non-stationary, High Level Noise. (b) The Test 
Speech. (c) The VAD Output on Noisy Speech 

2.2 VAD Using Rayleigh Distribution 

The proposed method presented in Section 2.1 is unable to fight against with a low SNR. 

That is due to the misalignment of the Gamma distribution model and noisy speech. As the 

noise in speech communication lines is assumed to be Gaussian white, the real and image 

components of the FFT coefficients are assumed independent and identically distributed 

(i.i.d). Hence, ),( mkN  follows a Rayleigh distribution [18] (as  shown in Figure 5), that 

is: 

22 ),(),(),( mkNmkNmkN IR                                     (7) 

Where ),0(~ 2NNR , ),0(~ 2NN I , )(~),( RayleighmkN . 
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Figure 5. Estimated Rayleigh Distribution of Noise FFT Magnitudes 
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Therefore, the FFT magnitudes of noise have a PDF as: 
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For n  samples, the MLE of  is given [19]: 
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The mathematical expectation of the FFT magnitudes of n  samples can be computed 

using:  

2
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NE                                                      (10) 

Because the mean of the samples is the unbiased estimation of the mathematical 

expectation, when the voice is non-active, the mean of the FFT magnitudes must be 

approximately equal to the estimated expectation, that is: 
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Hence, we set )(Nr  as the second observer: 

thresholdNrH )(:0 , speech absent 

  thresholdNrH )(:1 , speech present 

An off-line test is done to find the appropriate value and the threshold is set to be 1.1. To 

test the proposed method, as doing in Section 2.1, both high level and low level non-

stationary noise are added to the test speech signal. Simulation results are shown in Figure 6 

and Figure 7.  

As shown in Figure 6, this method performs well in a low level noise. But the results are 

not reliable, compared with the results shown in Figure 3. Most of voice active regions 

detected in Figure 6 have included a little voice non-active intervals, namely, this method can 

mistake the voice non-active region for active region. However, as shown in Figure 7, when 

the SNR is lower, the voice active region can be indirectly detected using Rayleigh 

distribution to detect which region is voice non-active. The method performs well unless the 

voice has submerged in the noise completely.  
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Figure 6. (a) The Additive Non-stationary, Low Level Noise. (b) The Test 
Speech. (c) The VAD Output on Noisy Speech  
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Figure 7. (a) The Additive Non-stationary, High Level Noise. (b) The Test 
Speech. (c) The VAD Output on Noisy Speech 

2.3. VAD Using the Both Gamma and Rayleigh Distribution 

Methods in Section 2.1 and Section 2.2 turn out to be complementary. The first one 

performs well under high SNR and the second one can be used under low SNR. To 

integrate the two methods can improve the proposed algorithm to be applied to a large 

range of SNR. Then, the problem comes to be the threshold to determine which method 

to use. 

Another test is done to find the threshold. We select a section of the speech randomly, 

add noise in different levels and note the maximum size of the detected voice active 
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region. The true value is about 2000, and the performances of the two methods are 

shown in Figure 8. 
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Figure 8. Performance Comparison of the Two Methods 

In Figure 8, SNR with a range for 0 db to 30 db is shown. Method A denotes the method 

proposed in Section 2.1 and Method B is the method in Section 2.2. As is presented, Method 

A is stable and close to the true value when SNR is high (more than 18 db), but misses more 

and more voice active sections when the SNR decreases. On the contrary, Method B is not 

stable when SNR is more than 24 db. When SNR is between 16.79 db and 24 db, the results 

seem to be stable, but much bigger than the true value. This means that the VAD outputs 

contain voice non-active sections. However, when SNR is under 16.79 db, the VAD outputs 

become close to the true value and stable.  

In this paper, we set the threshold to be 16.79 db. Note that 16.79 is not the unique 

solution, because the performances of the two methods under a SNR between 5 db to 

16.69 db do not have big differences. 

The simulation using both Gamma and Rayleigh distribution is shown in Figure 9. To 

implement the method, a priori SNR needs to be estimated. To reduce the 

computational complexity, in this paper, we only use the latest samples when voice is 

non-active to estimate the power of the noise. The transient SNR (TSNR) is computed 

using: 
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                                     (12) 

Where )(ks  is the mean of the current signal samples, nP̂  denotes the priori 

estimated power of noise. 

Then, the third observer is: 

79.16:0 TSNRH , use Rayleigh distribution model of noise 

79.16:1 TSNRH , use Gamma distribution model of speech 
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Figure 9. VAD outputs Using Both Gamma and Rayleigh Distribution 

3. Implementation of the Proposed Method 

In this section, a DSP-based system is introduced to implement the proposed algorithm. 

The algorithm is achieved in a DSP processor. Both hardware architecture and register set up 

are described in the section. 

 

3.1. Design of Hardware Architecture 

Taking the computing speed and cost into account, we use two low cost micro processors 

to control the system and achieve the proposed VAD algorithm. One of the two micro 

processors acts as the system control unit and another one is used as the kernel algorithm 

processing unit. The hardware architecture and the practicality diagram are shown in Figure 

10 and Figure 11 respectively. 

The system control unit (SCU) uses a 51-kernel micro control unit (MCU) 

STC89LE58RD+, which has up to 80M Hz system clock, 32K on-chip flash and a UART 

interface. The kernel algorithm processing unit uses a DSP TMS320VC5402, which has rich 

hardware resources, including a 16K×16-bit on-chip RAM, two multi-channel buffered 

serial ports (McBSPs), an enhanced 8-bit parallel host-port interface (HPI) and 10-ns single-

cycle fixed-point instruction execution time (100 MIPS)  but not an on-chip flash. To execute 

the program without a simulator, the 8-bit HPI provides the SCU an interface to load the code 

to the dual random memory (DRAM), which is called HPI boot method [20].  

A level translator MAX3232 is used for downloading the code to SCU via DB9 from the 

software named STC-ISP. The two McBSPs of TMS320VC5402 are used for data collection 

(McBSP1) and VAD outputs (McBSP0). To record the important data, a 64×16-bit static 

random memory (SRAM) is used to exchange data with TMS320VC5402. 
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Figure 10. Hardware Architecture of the System for Real-Time VAD 

 
①: TLV320AIC23B   ②: TMS320VC5402   ③: STC89LE58RD+   ④: IS61LV6417  

⑤: Speech Input Interface   ⑥: VAD Output Interface 

Figure 11. The Practicality Diagram of the System for Real-Time VAD 

In order to sample the speech signal, a high-performance stereo audio codec 

TLV320AIC23B is used in the designed system. TLV320AIC23B provides two line inputs 

(left line and right line), but the right line input is reserved here. As the two McBSPs have 

been used, we use four general purpose input/output (GPIO) interfaces of STC89LE58RD+ as 

simulated serial peripheral interface (SPI) to configure TLV320AIC23B.  
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3.2. Software Design and Implementation 

The proposed method in this paper contains a lot of float point operations, such as log 

functions and exacting roots. However, TMS320VC5402 is a fixed-point DSP. When 

computing, truncation errors even fault results may come out if not well treated. A method 

called Q.15 format [21] can do float point operations in fixed-point DSP, at the cost of 

abandoning the relatively smaller value. Similarly, in this paper, the float-point results are 

multiplied by 10,000 and stored in long int type, and divided by 10,000 when used. This is 

simple, efficient and easy to be realized, but less accurate than Q.15 format. 

The code achieved in DSP is compiled in Code Composer Studio V3.3, and the code 

achieved in MCU is compiled in Keil uvision2. The flow chart of the algorithm in DSP is 

shown as Figure 12. 
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Figure 12. The Flow Chart of Software in DSP 

Data collection, VAD algorithm operations and VAD outputs are implemented in the 

receive interrupt handler of McBSP1. TLV320AIC23B is configured to work in master mode 

and DSP data format so that it can provide the communication clock and connect easily with 

TMS320VC5402. The main configurations of TMS320VC5402 and TLV320AIC23B are 

listed in Table 1 and Table 2. 

Table 1. The Main Configuration of TMS320VC5402 

Register Value Remark 

Clock mode register 0x40c7 System clock is 100M Hz 

Software wait-state register 0x4240 2 wait except for on-chip program 

Processor mode status register 0x00a0 MP/MC = 0, IPTR = 001,ovly=1 

Bank-switching control register 0x0802 PS-DS = 1 and Bus holder enable 

Serial port control register 

(SPCR11) 
0x0001 

The serial port McBSP1 receiver is 

enabled 

Serial port control register 

(SPCR21) 
0x0201 

Free running mode and the serial port 

McBSP1 transmitter is enabled 

Pin control register 

(PCR1) 
0x0001 

Receive data sampled on rising edge of 

CLKR 

Receive control register 

(RCR11) 
0x0140 16 bits per word and 2 words per frame 

Interrupt Mask Register 0x0400 Enable McBSP1 Receive Interrupt 
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Table 2. The Main Configuration of TLV320AIC23B 

Register Value Remark 

Left Line Input Channel Volume 

Control 
0x013 Default volume 

Analog Audio Path Control 0x002 
ByPass Disabled, Line input for ADC, 

microphone muted 

Power Down Control 0x00A 
All On but DAC and microphone input 

Off 

Digital Audio Interface Format 0x043 
Master Mode, DSP data format, the 

input bit length is set to be 16-bit 

Sample Rate Control 0x02e 
8.021K Hz Sample rate, Normal clock 

mode and 384 times oversampling 

Digital Interface Activation 0x001 Active interface 

 

In addition, to avoid trigonometry in FFT, we generate a sine table of 5/4 cycles (640 

points) off-line. Based on our tests, each complete operation of the proposed algorithm can be 

done in less than 100 ms, which is suitable for real-time VAD.  

 
4. Remarks and Conclusions 

In this paper, Gamma distribution for speech signal and Rayleigh distribution for noise are 

both used for voice activity detection. Results show that the two methods are complementary 

with each other. Based on this principle with three observers, this paper proposes a simple but 

efficient VAD algorithm. What’s more, to implement the proposed algorithm, a real-time 

DSP-based system is introduced with hardware architecture and software flow described in 

details. The proposed algorithm is simple, fast and has small computational complexity, 

performs well in a large range of SNR.  

It should be noted that, the estimation of noise is executed during the interval of voice non-

active. This is reasonable, because there must exist a short interval of voice non-active when a 

person gives a speech. During the short interval, noise will not change greatly in practical. 

Hence, the estimated TSNR in this paper is priori, but meaningful. 
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