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Abstract 

To further improve the performance of artificial bee colony algorithm (ABC), an improved 

ABC (IABC) algorithm is proposed for global optimization via employing orthogonal 

initialization method. Furthermore, to balance the exploration and exploitation abilities, a 

new search mechanism is also designed. The performance of this algorithm is verified by 

using 27 benchmark functions. And the comparison analyses are given between the proposed 

algorithm and other nature-inspired algorithms. Numerical results demonstrate that the 

proposed algorithm outperforms the original ABC algorithm and other algorithms for global 

optimization problems. 
 

Keywords: Artificial bee colony, Orthogonal initialization, Search mechanism, Differential 

evolution 

 

1. Introduction 

Global optimization problems arise in almost every field of science, engineering and 

business. By now, learning from life system, many optimization methods have been 

developed to solve global optimization problems, such as genetic algorithms (GAs) [1, 2], ant 

colony optimization (ACO) [3], differential evolution (DE) [4] and particle swarm 

optimization (PSO) [5]. These kinds of algorithms can be named as artificial-life 

computation. Recently, Karaboga [6] proposed a new kind of optimization technique called 

artificial bee colony (ABC) algorithm for global numerical function optimization, which 

simulates the foraging behavior of honey bee swarm. A set of comparison experimental 

results show that ABC algorithm is competitive to some conventional bio-inspired algorithms 

with an advantage of employing fewer control parameters [7]. Due to its simplicity, ABC 

algorithm has been applied to solve many kind of real-world problems, for instance, leaf-

constrained minimum spanning tree problem [8], flow shop scheduling problem [9], inverse 

analysis problem [10], radial distribution system network reconfiguration problem [11], 

clustering problem [12], TSP problems [13], a large-scale capacitated facility location 

problem [14], and so on. 

According to the applications showed above, ABC algorithm seems to be a well-performed 

algorithm. However, similar to other population-based algorithms, there still are 

insufficiencies in ABC algorithm, such as slower convergence speed for some unimodal 

problems and easily get trapped in local optima for some complex multimodal problems [7]. 

It is well known that for the population-based algorithms the exploration and the exploitation 
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abilities are both necessary facts. The exploration ability refers to the ability to investigate the 

various unknown regions to discover the global optimum in solution space, while the 

exploitation ability refers to the ability to apply the knowledge of the previous good solutions 

to find better solutions. The exploration ability and the exploitation ability contradict to each 

other, so that the two abilities should be well balanced to achieve good performance on 

optimization problems. So far as we know that the search equation of ABC algorithm is good 

at exploration but poor in exploitation. 

Therefore, accelerating convergence speed and avoiding local optima have become two 

most important goals in ABC algorithm modification. To overcome the issues in ABC 

algorithm and achieve the two goals above, inspired by DE, a new search mechanism is 

proposed in the improved artificial bee colony (IABC) algorithm. In order to balance the 

exploration ability and the exploitation ability, two search equations are designed based on 

DE search strategies, and the usage of these two search equation is according to whether a 

probability 
p

 is larger than a uniformly distributed random number. In addition, to enhance 

the convergence speed, the orthogonal initialization is employed [15]. Experimental results 

and comparisons denote the effectiveness and efficiency of the proposed IABC algorithms. 

The rest of the paper is organized as follows. In Section 2, ABC algorithm is summarized 

briefly. In Section 3, the proposed improved artificial bee colony algorithm is described. In 

Section 4, experiments are presented and the results are discussed. Finally, a conclusion is 

provided in Section 5. 

 

2. Overview of Artificial Bee Colony Algorithm 

In 2005, Karaboga proposed a new swarm intelligence-based algorithm for numerical 

function optimization, artificial bee colony (ABC) algorithm, which simulates the foraging 

behavior of bee colonies [6]. In ABC algorithm, the colony consists of three kinds of bees: 

employed bees, onlooker bees and scout bees. Half of the colony is employed bees, and the 

other half is onlooker bees. The employed bees explore the food source and share the 

information of the food source with the onlooker bees. Based on the information shared by 

the employed bees, the onlooker bees choose a food source to exploit. The employed bee 

whose food source has been abandoned becomes a scout bee. The position of a food source is 

a possible solution to the optimization problem. The main steps of ABC algorithm can be 

described as follows: 

Initialization 

Repeat 

Employed bee stage: Place the employed bees on the food sources in the memory. 

Onlooker bee stage: Place the onlooker bees on the food sources in the memory. 

Scout bee stage: Send the scout bees to the search area for discovering new food sources. 

Until (conditions are satisfied). 

Denote the food source number as SN , the position of the i th food source as ix  

( 1, , )i SN , which is a D -dimensional vector. In the initial stage, each food source is 

generated as follows: 

 min max min(0,1)ij j j jx x rand x x   ,                                   (1) 
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where 
max

jx  and 
min

jx  are the upper and lower bounds of the j th dimension of the problem’s 

search space. These food sources are randomly assigned to the employed bees. 

In the employed bee stage and onlooker bee stage, in order to produce a candidate solution 

ijv  from the old one ijx , the new candidate solution ijv  can be generated as: 

( )ij ij ij ij kjv x x x   ,                                                  (2) 

where  1,2, ,k SN , k i  and  1,2, ,j D  are randomly selected indices, 

 1,1ij    is a uniformly distributed random number. The candidate solution is compared 

with the old one, and the better one should be remained. 

In ABC algorithm, the i th fitness value ifitness  for a minimization problem is defined as: 

1
, 0,

1

1 ( ), 0,

i

ii

i i

f
ffitness

abs f f




 
  

                                         (3) 

where if  is the cost value of the i th solution. 

In the onlooker bee stage, the probability of a food source being selected by an onlooker 

bee is given by: 

1

i
i SN

i

i

fitness
p

fitness





.                                                            (4) 

If the abandoned food source is ix , the scout bee exploits a new food source according to 

equation (1). 

 

3. Improved Artificial Bee Colony Algorithm 
 

3.1 Orthogonal initialization 

Population initialization is an important step in swarm intelligence-based algorithms, 

which can affect the quality of solution. It is desirable that the initial population be scattered 

uniformly over the feasible solution space, so that the algorithm can search the whole solution 

space evenly. Before an optimization problem is solved, there is no information about the 

location of the solution. Notice that an orthogonal array specifies a small number of 

combinations that are scattered uniformly over the space of all possible combinations. The 

orthogonal design can make the initial population be scattered evenly over the solution space. 

Therefore, in this paper we generate initial population by using the orthogonal initialization 

method described in [15, 16]. 
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The algorithm for generating an initial population is given as follows. 

Algorithm 1: Generation of Initial Population. 

Step 1: Divide the feasible solution space [ , ]l u  into S  subspaces 

1 1 2 2[ , ],[ , ], ,[ , ]S Sl u l u l u  based on the following equations: 

( ) ( )
( 1) ,

1,2, , .
( ) ( )

( ) ,

i S

i S

u s l s
l l i l

S
i S

u s l s
u u S i l

S

  
    

  


        

                  (5) 

Here, 
1

( ) ( ) max{ }i i
i D

u s l s u l
 

   . 

Step2: Quantize subspace [ , ]i il u  into 1Q  levels based on 

1

1

1

, 1,

( 1) , 2 1,
1

, ,

i

i i
ij i

i

l j

u l
l j j Q

Q

u j Q






 
       

 
 

                (6) 

where 1Q is odd. Then, construct orthogonal array 
1

1
1( )N

M ij M N
L Q a


     to select 1M  

individuals based on 

11 12 1

21 22 2

1 21 1 1

1, 2, ,

1, 2, ,

1, 2, ,

( , , , )

( , , , )

( , , , ).

N

N

M M M N

a a N a

a a N a

a a N a

  

  

  









                                          (7) 

Here, 
1 1( )N

ML Q  can be generated as follows. Select the smallest 1J  fulfilling 

1

1 1( 1) ( 1)
JQ Q N   . If 1

1 1( 1) ( 1)
JQ Q N   , then 'N N  else 

1

1 1' ( 1) ( 1)
JN Q Q   . Then, construct the basic columns based on 

1

1

1

1
1

1

kQ
j

Q

 
 


, 

1
1

1

1
mod ,ij J k

i
a Q

Q


 
  
 

 for 11, ,i M , 11,k J . Construct the non-basic columns as 

1

1

1

1
1

1

kQ
j

Q

 
 


, 

1( 1)( 1) 1( )modj s Q t s ja a t a Q       , for 1, , 1s j  , 11, ,t Q . 

Thus, the orthogonal array 
1

'

1( )N

ML Q  is constructed. Delete the last 'N N  columns of 

1

'

1( )N

ML Q  to get 
1 1( )N

ML Q  where 1

1 1

JM Q . 
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Step 3: Among the 1M S  individuals, select SN  individuals having the smallest cost as 

the initial population. 

 

3.2 New Search Mechanism 

As we all known that how to balance exploration and exploitation abilities to achieve good 

optimization performance is an important problem for the population based algorithms, such 

as GA, PSO, DE, and so on. The exploration refers to the ability to search the unknown 

regions in the solution space to find the global optimum, while the exploitation refers to the 

ability to discover better solutions based on the information of the previous good solutions. 

Actually, the exploration and exploitation abilities contradict with each other, so that the two 

abilities should be well balanced. 

In ABC algorithm, the employed bees exploit the new food source and send the 

information to the onlooker bees. The onlooker bees select one food source to explore based 

on the information shared by the employed bees. The scout bees explore a new food source to 

replace the old one which abandoned by employed bees. Therefore, in the ABC algorithm, the 

employed bee stage and onlooker bee stage represent the exploitation ability of the algorithm, 

while the scout bee stage represents the exploration ability. While, the search equation 

proposed in ABC algorithm is good at exploration but poor at exploitation. In order to 

improve the exploitation, a new solution search mechanism is proposed based on DE. 

Differential evolution (DE) is a population based algorithm, whose main strategy is to 

generate a new position for an individual by calculating vector differences between other 

randomly selected individuals in the population. It has been shown the efficiency for many 

optimization problems in real-world applications. It follows the general stages of an 

evolutionary algorithm. In DE algorithm, three evolutionary operations including mutation, 

crossover and selection will be executed. There are several kinds of mutation operation, 

which formulates different DE algorithms. Among them, “DE/rand/2” can effectively 

maintain population diversity and “DE/best/2” can improve the convergence speed. Both two 

strategies are used more frequently in literatures, which can be described as follows: 

DE/rand/2: 1 2 3 4 5( )i r r r r rv x F x x x x     ,                              (8) 

DE/best/2: 1 2 3 3( )i best r r r rv x F x x x x     ,                            (9) 

where {1,2, , }i SN ; 1r , 2r , 3r , 4r  and 5r  are different random integer indices 

selected from {1,2, , }SN ; bestx  is the global best solution; [0.5,1]F  is a positive real 

number. 

Motivated by DE and based on the property of ABC algorithm, two new solution search 

equations are proposed as follows: 

, 1, , , 2, , 3, 4,( ) ( )i j r j i j i j r j i j r j r jv x x x x x      ,                          (10) 

, , , , 1, , 2, 3,( ) ( )i j best j i j i j r j i j r j r jv x x x x x      ,                        (11) 

where {1,2, , }i SN ; 1r , 2r , 3r  and 4r  are integers randomly selected from 

{1,2, , }SN , and both of them are different from i ; ,best jx  is the global best solution; 

{1,2, , }j D  is a randomly selected index; and [ 1,1]ij    and [0.5,1]ij   are 

uniformly distributed random number.  
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Similar to DE, the search equation (10) can maintain population diversity efficiently, and 

the search equation (11) can improve the convergence performance which means can improve 

the exploitation ability of the algorithm. Therefore, in order to take advantage of these two 

search equations and avoid the shortages of them, a new search mechanism is proposed by 

hybridizing the two search equations. In the new search mechanism, a selective probability p  

is introduced to control the frequency of using search equation (10) and (11).  

Moreover, as can be seen from the ABC search equation, there is only one different 

element between the new food source and the old one, which is short of sufficient and new 

information such that the search efficiency is poor. To overcome this issue, in the new search 

mechanism, we use the search equation (10) and (11) for every element of food source. Thus, 

the main steps of the new search mechanism are given as follows. 

Algorithm 2: The new search mechanism 

Step 1: Give a food source ix  and selective probability p . Produce new food source iv . 

Step 2: If rand p , then using equation (10) to generate a new food source iv  based on 

the old one ix . 

Step 3: If rand p , then using equation (11) to generate a new food source iv  based on 

the old one ix . 

 

3.3 The proposed algorithm 

Based on the above analysis, the main procedure of improved artificial bee colony 

algorithm is as follows. 

Algorithm 3: Improved artificial bee colony algorithm 

Initialize the food sources by Algorithm 1 proposed in subsection 3.1, evaluate the 

population, and memorize the best food sources found so far, 0itrail  , ( 1,2, , )i SN . 

1Cycle  . 

Repeat 

Step 1: Search the new food source for employed bee according to Algorithm 2 and 

evaluate its quality. 

Step 2: Apply a greedy selection process and select the better solution between the new 

food source and the old one. 

Step 3: If solution does not improve 1i itrail trail  , otherwise 0itrail  . 

Step 4: Calculate the probability according to (3) and apply roulette wheel selection 

scheme to choose a food source for onlooker bees. 

Step 5: Search the new food source for onlooker bees according to Algorithm 2 and 

evaluate its quality. 

Step 6: Apply a greedy selection process and select the better solution between the new 

food source and the old one. 

Step 7: If solution does not improve 1i itrail trail  , otherwise 0itrail  . 
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Step 8: If max( ) limititrail  , replace this food source with a new food source produced 

by equation (1). 

Memorize the best solution achieved so far. 

1Cycle Cycle   

Until(Cycle   Maximum Cycle Number) 

 

4. Numerical Experiments 
 

4.1 Test functions 

In this section, the IABC algorithm proposed in this paper is applied to minimize 27 

benchmark functions, as shown in Table 1 and 2. In Table 1, the dimensions of the 

benchmark functions are given in the third column.  

 

Table 1. Benchmark functions 1f - 16f  used in experiments. D: Dimension,  

C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable. 

Function Range D C Formulation 

Beale 
[-4.5, 

4.5] 
2 UN 

2 2 2 3 2

1 1 1 2 1 1 2 1 1 2(1.5 ) (2.25 ) (2.625 )f x x x x x x x x x          

Bohachevsky 
[-100, 

100] 
2 MS 

2 2

2 1 2 1 22 0.3cos(3 ) 0.4cos(4 ) 0.7f x x x x       

Booth [-10,10] 2 MS 
2 2

3 1 2 1 2( 2 7) (2 5)f x x x x       

Branin 

[-5,10] 

  
[0,15] 

2 MS 

2

2

4 2 1 1 12

5.1 5 1
6 10 1 cos 10

4 8
f x x x x

  

   
         
   

 

Colville [-10,10] 4 UN 

2 2 2 2 2 2

5 1 2 1 3 3 4

2 2

2 4

100( ) ( 1) ( 1) 90( )

10.1(( 1) ( 1) )

f x x x x x x

x x

       

   
 

Easom 
[-100, 

100] 
2 UN 

2 2

6 1 2 1 2cos cos exp( ( ) ( ) )f x x x x        

GoldStein- 

Price 
[-2,2] 2 MN 

2

1 2

7 2 2

1 1 2 1 2 2

2

1 2

2 2

1 1 2 1 2 2

1 ( 1)

(19 14 3 14 6 3 )

30 (2 3 )
       

(18 32 12 48 36 27 )

x x
f

x x x x x x

x x

x x x x x x

   
  

      

  
  

      

 

Hartman3 [0,1] 3 MN 
4 3 2

8 1 1
exp ( )i ij j iji j

f c a x p
 

    
   ;  1.0,1.2,3.0,3.2c  

Six Hump 

Camel Back 
[-5,5] 2 MN 

2 4 6 2 4

9 1 1 1 1 2 2 2

1
4 2.1 4 4

3
f x x x x x x x       

Matyas [-10,10] 2 UN 
2 2

10 1 2 1 20.26( ) 0.48f x x x x    

Perm 
[-

D , D ] 
2 MN 

2
2

11 1 1
( 0.5)(( ) 1)

n k k

ik i
f i x i
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Powell [-4,5] 4 UN 

/ 2 2 4

12 4 3 4 2 4 1 4 4 2 4 11

4

4 3 4

( 10 ) 5( 10 ) ( 10 )

        10( 10 )

n k

i i i i i ii

i i

f x x x x x x

x x

    



     

 


 

PowerSum [0, D ] 24 MN 
2

4

13 1 1
( )

n k

i kk i
f x b

 
  
   ;  8,18,44,114b  

Shekel [0,10] 4 MN 

1
4

2

14 1
1

( )
m

i ij ij
i

f x a c






 
    

 
   

Shubert [-10,10] 2 MN    5 5

15 1 21 1
cos(( 1) ) cos(( 1) )

i i
f i i x i i i x i

 
        

Trid6 [-36,36] 6 UN 
2

16 11 2
( 1)

n n

i i ii i
f x x x  

     

 

In function Hartman3, 

3.0 10 30

0.1 10 35

3.0 10 30

0.1 10 35

 
 
 
 
 
 

T

a , 

0.3689 0.1170 0.2673

0.4699 0.4387 0.7470

0.1091 0.8732 0.5547

0.03815 0.5743 0.8828

 
 
 
 
 
 

T

p ; and in 

function Shekel,

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 5.0 1.0 2.0 3.6

4.0 1.0 8.0 6.0 3.0 2.0 3.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

a

 
 
 
 
 
 

, 

 
1

1,2,2,4,4,6,3,7,5,5
10

T
c  . The benchmark functions presented in Table 2 are tested of 

dimension 30D  . 

 

Table 2. Benchmark functions 17f - 27f  used in experiments. C: Characteristic,  

U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable, n D . 

Function Range C Formulation 

Ackley 
[-32, 

32] 
MN 

2

17 1 1

1 1
20exp 0.2 exp cos(2 ) 20

n n

i ii i
f x x e

n n


 

   
            

   

Dixon-Price 
[-10, 

10] 
UN 

2 2 2

18 1 12
( 1) (2 )

n

i ii
f x i x x 

     

Griewank 
[-600, 

600] 
MN 

2

19 1 1

1
cos 1

4000

nn i
ii i

x
f x

i 

 
   

 
   

Levy 
[-10, 

10] 
MN 

12 2 2

20 1 1

2 2

sin ( ) ( 1) (1 10sin ( 1))

        ( 1) (1 10sin (2 ))

n

i ii

n n

f y y y

y y

 






      

  


 

1
1 , 1, ,

4

i
i

x
y i n


   .

 
Michalewicz 

[0, 

 ] 
MS     

2
2

21 1
sin sin

mn

i ii
f x ix 


  , 10m   
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Rastrigin 
[-5.12 

,5.12] 
MS 

2

22 1
10cos(2 ) 10

n

i ii
f x x


      

Rosenbrock 
[-30, 

30] 
UN 

1 2 2 2

23 11
[100( ) ( 1) ]

n

i i ii
f x x x




     

Schwefel 
[-500, 

500] 
MS  24 1

sin
n

i ii
f x x


   

Sphere 
[-100, 

100] 
US 

2

25 1

n

ii
f x


  

SumSquares 
[-10, 

10] 
US 

2

26 1

n

ii
f ix


  

Zakharov 
[-5, 

10] 
UN    

2 4
2

27 1 1 1
0.5 0.5

n n n

i i ii i i
f x ix ix

  
      

 

4.2 Effects of selective probability 
p

 

In this section, we investigate the impact of selective probability p  on the new algorithm. 

Note that the test function Matyas, Powell, PowerSum and Schewefel are representative, so 

selective probability p  is tested according to these four functions. The IABC algorithm runs 

30 times on each function, and the mean values of the final results are plotted in Figure 1. As 

all the test functions are minimization problems, the smaller the mean values, the better it is. 

From Figure 1, we can see that the selective probability p  can affect the results. For these 

four test functions, better results are obtained when p  is around 0.25. Hence, the selective 

probability p  will be equal to 0.25 for all test functions in the experiments. 
 

 

 

Figure 1: Results on four test functions with different selective probability p  
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4.3 Comparison of IABC with ABC 

In order to verify the performance of IABC algorithm proposed in this paper, this section 

presents a comparison of IABC algorithm with original ABC algorithm. In the experiments, 

both IABC and ABC use the same parameter settings. The population size SN , limit, and 

maximum number of cycle (MSN) are set to 50, ( / 2)*SN D , 1000, respectively. All 

experiments are repeated 30 times and run 45.0 10  function evaluations (FEs) for each test 

function. 

Table 3 shows the optimization results in terms of best, worst, mean and std, which 

represent the best, the worst, the mean, standard deviation of function value, respectively. The 

best results are marked in bold.  

As shown in Table 3, the mean function values of the IABC algorithm are equal or closer 

to the optimal ones than which of the ABC algorithm, and the standard deviations are 

relatively small. Particularly, IABC algorithm outperforms ABC algorithm on unimodal 

function 1f , 10f , 12f , 25f , 26f , 27f  and multimodal function 3f , 13f , 17f , 19f , 20f , 22f , 

24f . At the mean time, the two algorithms have the same mean function values on function 

2f , 4f , 7f  and 8f , which equal to the optimal ones. All these results show that IABC 

algorithm has the better performance than ABC algorithm on unimodal and multimodal 

problems. 

In order to show the performance of IABC algorithm more clearly, Figure 2 shows the 

mean best function value of ten test functions. It is clear that the IABC algorithm has higher 

convergence rate than the ABC algorithm has. 

 

Table 3. Best, worst, mean and standard deviation obtained by ABC and IABC 

 
ABC IABC 

Best Mean Worst Std Best Mean Worst Std 

1f  8.80e-07 6.37e-06 5.97e-05 1.10e-05 2.68e-22 6.62e-20 2.71e-19 7.75e-20 

2f  0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

3f  5.82e-20 2.44e-17 7.00e-17 2.27e-17 1.50e-23 3.09e-20 1.61e-19 4.10e-20 

4f  3.98e-01 3.98e-01 3.98e-01 0.00e+00 3.98e-01 3.98e-01 3.98e-01 0.00e+00 

5f  -2.80e+11 -1.10e+10 -1.63e+05 5.02e+10 -1.00e+166 -5.00e+164 -4.30e+07 6.55e+04 

6f  -1.00e+00 -0.99e+00 -0.99e+00 1.38e-03 -1.00e+00 -1.00e+00 -1.00e+00 0.00e+00 

7f  3.00e+00 3.00e+00 3.00e+00 5.43e-04 3.00e+00 3.00e+00 3.00e+00 2.11e-15 

8f  -3.86e+00 -3.86e+00 -3.86e+00 2.24e-15 -3.86e+00 -3.86e+00 -3.86e+00 2.63e-15 

9f  4.65e-08 4.65e-08 4.65e-08 4.05e-17 4.65e-08 4.65e-08 4.65e-08 6.78e-17 

10f  8.93e-15 4.58e-10 4.82e-09 1.01e-09 6.54e-22 1.60e-20 5.22e-20 1.53e-20 

11f  1.12e+80 2.28e+83 1.93e+84 4.50e+83 1.35e+76 4.59e+85 4.28e+86 1.31e+86 

12f  8.58e-06 9.57e-05 1.94e-04 4.21e-05 2.26e-20 1.83e-18 8.75e-18 2.36e-18 

13f  1.66e-04 2.47e-02 9.26e-02 2.29e-02 6.51e-16 7.99e-09 1.73e-07 3.16e-08 

14f  -10.5364 -10.5347 -10.4967 7.50e-02 -10.5364 -9.10373 -5.12848 2.42e+00 

15f  -186.731 -186.731 -186.731 3.58e-14 -186.731 -186.731 -186.731 3.84e-14 
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16f  -50 -50 -49.9999 1.60e-05 -49.9997 -46.7195 -39.9574 3.27e+00 

17f  7.03e-09 1.57e-07 8.94e-07 2.13e-07 8.88e-16 8.88e-16 8.88e-16 0.00e+00 

18f  2.47e-03 2.88e-02 0.193e+00 3.49e-02 0.16e+00 4.32e-01 6.67e-01 2.55e-01 

19f  2.13e-11 3.36e-04 9.86e-03 1.79e-03 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

20f  1.07e-14 1.82e-13 6.51e-13 1.45e-13 5.98e-20 1.94e-18 1.50e-17 2.87e-18 

21f  -29.3027 -28.9797 -28.6755 1.68e-01 -17.4652 -13.8766 -11.6965 1.49e+00 

22f  3.50e-08 2.53e-01 1.05e+00 4.09e-01 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

23f  3.55e-02 9.49e-01 7.16e+00 1.42e+00 3.12e-20 6.75e+00 2.84e+01 1.12e+01 

24f  5.20e-04 2.77e+02 5.91e+02 1.48e+02 3.82 e-04 3.82e-04 3.82 e-04 0.00e+00 

25f  3.86e-15 2.33e-14 1.09e-13 2.42e-14 3.99e-20 2.39e-18 9.55e-18 2.62e-18 

26f  1.04e-13 2.43e-12 1.62e-11 2.94e-12 1.01e-19 2.00e-18 7.28e-18 2.07e-18 

27f  2.16e+02 2.77e+02 3.45e+02 3.17e+01 2.00e-18 4.19e-01 4.11e+00 9.69e-01 
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Figure 2. The convergence processes of ABC and IABC on some test functions 
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Figure 3. Statistical values of the function values of ABC and IABC on some 
test functions 

 

Figure 3 shows the statistical results of the function values for ten test functions. Here, box 

plots are used to illustrate the distribution of these samples obtained from 30 independent 

runs. The upper and lower ends of the box are the upper and lower quartiles. The line within 

the box represents the median, and thin appendages summarize the spread a shape of the 

distribution. Symbol “ ” indicate for outlier and the notches denote a robust estimation of 

the uncertainty about the medians for box-to-box comparison. From Figure 3, we can see that 

IABC algorithms can obtain the better and more stable solutions than ABC algorithm does, 

which further verifies the discussion obtained in Table 3 and Figure 2. 

 

4.4 Comparison of IABC with other algorithms 

To further test the performance of IABC algorithm, we compare IABC algorithm with 

other population based algorithms, including some proposed ABC algorithms. The 

experiments focus on the comparison of IABC algorithm with DE [7], PSO [7], CLPSO [17], 

CES [18], FES [19], ESLAT [20], CMA-ES [20], GABC [21], I-ABC [22], PS-ABC [22] and 

NABC [23]. For DE and PSO, the parameters are chosen as in [7]. For the rest algorithms, the 

parameter settings are followed the original papers of these algorithm. 
 

Table 4. Comparison of IABC with other algorithms 

 
Ackley Griewank Rastrigin Rosenbrock Schwefel Sphere 

Mean Mean Mean Mean Mean Mean 

DE 3.99e-08 6.15e-04 1.47e+02 4.71e+03 7.27e+03 3.43e-14 

PSO 3.23e-01 1.34e-02 3.85e+01 5.74e+03 4.16e+03 2.13e-16 

CLPSO 2.01e-12 6.45e-13 2.57e-11 1.10e+01 1.19e+01 1.89e-19 

CES 6.00e-13 6.00e-14 1.34e+01 2.77e+01 4.57e+03 1.70e-26 

FES 1.20e-02 3.70e-02 1.60e-01 3.33e+01 1.31e+01 2.50e-04 
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ESLAT 1.80e-08 1.40e-03 4.65e+00 1.93e+00 1.03e+04 2.00e-17 

CMA-ES 6.90e-12 7.40e-04 5.18e+01 4.00e-01 4.93e+03 9.70e-23 

IABC 8.88e-16 0.00e+00 0.00e+00 6.75e+00 3.82e-04 2.39e-18 

Sig. + + +   +   
 

Table 5. Comparison of IABC with other ABC algorithms 

Fun 
GABC I-ABC PS-ABC NABC IABC 

Sig. 
Mean Mean Mean Mean Mean 

Ackley 7.78e-10 8.88e-16 8.88e-16 1.07e-13 8.88e-16 NA 

Griewank 6.96e-04 0.00e+00 0.00e+00 1.11e-16 0.00e+00 NA 

Rastrigin 3.31e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 NA 

Rosenbrock 7.48e+00 2.64e+01 1.59e+00 1.45e-01 6.75e+00   
Schwefel 1.62e+02 3.18e+02 5.30e+00 5.73e-01 3.82e-04 + 

Sphere 6.26e-16 0.00e+00 0.00e+00 5.43e-16 2.39e-18   
 

Table 4 presents the comparison results of DE, PSO, CES, FES, ESLAT, CMA-ES and 

IABC. Table 5 represents the comparison results of IABC with four other ABC algorithms. In 

Table 4, results of DE, PSO, CES, FES, ESLAT and CMA-ES can be found in [7]. Results of 

GABC, I-ABC, PS-ABC and NABC in Table 5, can be found in [23]. In Table 4 and 5, the 

best results among these algorithms are shown in bold. The last row of Table 4 and the last 

column of Table 5 show the statistical significance level of the difference of the mean value 

of IABC and the best algorithm among the other algorithms in the table. Here, “+” indicates 

the t  value of 49 degrees of freedom which is significant at a 0.05 level of significance by 

two-tailed test; “  ” represents the difference of mean values which is not statistically 

significant; and “NA” means two algorithms achieve the same accuracy results [24]. 

From Table 4, it can be seen that IABC algorithm outperforms DE, PSO, and FES on all 

six test functions. For function Sphere, CLPSO, CES and CMA-ES achieve better results; 

while for function Rosenbrock, ESLAT and CMA-ES obtain better solutions. Except function 

Sphere and Rosenbrock, for the rest functions, IABC algorithm performs better than CLPSO, 

CES, ESLAT and CMA-ES. The comparison results show that some algorithms perform 

better than IABC on unimodal functions, such as function Sphere and Rosenbrock. On all 

multimodal functions, i.e., Ackley, Griewank, Rastrigin and Schwefel, IABC outperforms 

these algorithms compared in Table 4. 

From the results in Table 5, IABC outperforms GABC on all six test functions. Even more, 

IABC outperforms all four ABC algorithms on function Schwefel. For function Ackley, 

IABC performs better than NABC and the same as I-ABC and PS-ABC. For function 

Griewank and Rastrigin, IABC has the same results with I-ABC and PS-ABC which achieve 

the optimal results, while I-ABC and PS-ABC perform better than IABC on Rosenbrock and 

Sphere. Compared with NABC, IABC outperforms on all six functions except function 

Rosenbrock. 
 

5. Conclusion 

Artificial bee colony is a new swarm-based optimization technique which has shown to be 

competitive to other population-based stochastic algorithms. However, ABC and other 

stochastic algorithms suffer from the same problems, such as lower convergence speed and 

easily trapped in local optima when handling complex multimodal problems. The main reason 

is that the search pattern is good at exploration but poor at exploitation. To overcome this 
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issue, an improved artificial bee colony algorithm (IABC) is proposed. In IABC algorithm, 

orthogonal initial method is employed and a new search mechanism is designed. 

To verify the performance of the proposed algorithm, a set of 27 test functions are used in 

the experiments. Comparison of IABC with ABC indicates that IABC can effectively 

accelerate the convergence speed and improve the accuracy of solutions. Another comparison 

denotes that IABC is significantly better or at least comparable to other population-based 

algorithms. We also compared the results obtained by IABC algorithm with other improved 

ABC algorithms. The experimental results show that IABC algorithm performs better. 

Therefore, the IABC algorithm proposed in our paper is more effective for global 

optimization problems.  
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