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Abstract 

Fractional order PID controller has two degrees of freedom more than the integer order 

PID controller,and it has better control performance. The paper briefly describes the 

fractional order PID controller, and through Ziegler-Nichols type tuning rules, Padula & 

Visioli tuning rules and tuning by minimization methods to achieve fractional order PID 

controllers respectively. Additionally, the Oustaloup approximation methods are both 

introduced. Based on these methods, we have considered the steam pressure model and the  

vehicle wire control system. The simulation result shows that control system stability can be 

obtained by using the tuning-rules proposed in this paper. 
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1. Introduction 

Nowadays, the better understanding of the potential of fractional calculus and the 

increasing number of studies related to the applications of fractional order controllers in many 

areas of science and engineering have led to the importance of studying aspects such as the 

analysis, design, tuning and implementation of these controllers. Fractional order calculus is 

an area of mathematics that deals with derivatives and integrals from non-integer orders. In 

other tools, it is a generalization of the traditional calculus that leads to similar concepts and 

tools, but with a much wider applicability. 

In theory, the control systems can include both the fractional order dynamic system or 

plant to be controlled and the fractional-order controller. However, in control practice, more 

common is to consider the fractional order controller. This is due to the fact that the plant 

model may have already been obtained as an integer order model in classical sense. In most 

cases, our objective is to apply the fractional order control (FOC) to enhance the system 

control performance.  

In this paper, basic ideas of fractional order PID controllers are presented first. 

Additionally, design of FOPID controllers is presented via different approaches including 

Ziegler-Nichols tuning rules, and the Padula & Visioli method. According to the 

characteristic of main steam controlled object such as large inertia and delay, a fractional PID 

controller is designed by using the Ziegler-Nichols type tuning rules. Rely on the Oustaloup 

approximation, we have considered Vehicle wire control system. Finally, conclusions are 

drawn in part 4. 

 

2. Basic Ideas of Fractional Order PID Controller 

According to a survey of the state of process control systems in 1989 conducted by the 

Japan Electric Measuring Instrument Manufacturer’s Association, more than 90 percent of the 
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control loops were of the PID type. It was also indicated in that a typical paper mill in Canada 

has more than 2,000 control loops and that 97 percent use PI control. Therefore, the 

industrialist had concentrated on PI/PID controllers and had already developed on-button type 

relay auto-tuning techniques for fast, reliable PI/PID control yet with satisfactory 

performance [1-4]. 

The most common form of a fractional order PID controller is the PI
λ
D

μ 
controller [4], 

involving an integrator of order λ and a differentiator of order μ where λ and μ can be any real 

numbers. The transfer function of such a controller has the following form  
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                                                                            (1) 

where the E(s) is an error,  and U(s) is controller’s output. The control signal u(t) can then be 

expressed in the time domain as 

     ( ) P I Du t k e t k D e t k D e t   
                                         (2) 

Clearly, selecting λ = 1 and μ = 1, a classical PID controller can be recovered. Using λ = 1, 

μ = 0, and λ = 0, μ = 1, respectively, corresponds to the conventional PI & PD controllers. All 

these classical types of PID controllers are special cases of the PI
λ
D

μ 
controller given by (1). 

It can be expected that the PI
λ
D

μ 
controller may enhance the systems control performance. 

One of the most important advantages of the PI
λ
D

μ 
controller is the possible better control of 

fractional order dynamical systems. Another advantage lies in the fact that the PI
λ
D

μ 

controllers are less sensitive to changes of parameters of a controlled system [4]. This is due 

to the two extra degrees of freedom to better adjust the dynamical properties of a fractional 

order control system. It is pointed out in [5] that a band-limit implementation of fractional 

order controller is important in practice, and the finite dimensional approximation of the 

fractional order controller should be done in a proper range of frequencies of practical 

interest. 

 

3. The Tuning Rules of Fractional-order PI
λ
D

μ Controller 

 

3.1 A Fractional Order PID Controller Design Method-- Tuning by minimization 

Tuning by minimization is a tuning method for fractional PIDs [6], in with we begin by 

devising a desirable behavior for our controller system, described by five specifications: 

1) The gain-crossover frequency        is to have some specified value : 

    dBjGjC cgcg 0
                                                    (3) 

2) The phase margin        is have some specified value: 

    cgcgm jGjC  arg
                                             (4) 

3) To reject high-frequency noise, the closed loop transfer function must have a small 

magnitude at high frequencies       , its magnitude is to be less than some specified gain 

H:    
h

m

cg
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4) To reject output disturbances and closely follow references, the sensitivity function must 

have a small magnitude at low frequencies; hence, at some specified frequency      ,its 

magnitude is to be less than some specified gain L: 

   
L

jGjC ll


 1

1

                                                    (6) 

5) To be robust when gain variations of the plant occur, the phase of the open-loop transfer 

function is to be (at least roughly) constant around the gain-crossover frequency: 

     0arg 
cg

jGjC
d

d


                                               (7) 

Then the five parameters of the fractional PID are to be found using the Nelder-Mead 

direct search simplex minimization method. This derivative-free method is used to minimize 

the difference between the desired performance achieved by the controller. 

 

3.2 Example 

The optimal FOPD model (fit it with a fixed model structure known as first-order plus 

delay) is given as follows: 

  ssG 50-e
1s53.433

13.3


                                                         (8) 

Now, let us consider the PI
λ
D

μ
  controller. Here, the design specifications required for the 

system are:      =60°,     =0.008rad/s. 

Selecting λ= 0.8968 and μ=0.4773, the fractional order PID controller can be designed by 

the proposed method in this paper. Thus, using our tuning algorithm in the paper, one can 

have Kp =0.6152, Ki =0.0100, and Kd =4.3867. The fractional order PID controller is then 

designed as         

  4773.0

89680
3867.4

0100.0
6152.0 s

s
sGC 

。
                                     (9) 

The step response of the closed-loop system is illustrated in Figure 1. The Bode plots of 

the open-loop system                 are shown in Figure 2. As can be observed, specifications of 

gain crossover frequency and phase margin are met. Besides, the phase of the system is 

forced to be flat at       and hence to be almost constant within an interval around       .  

l

m cg

cg
cg

   sGsC 
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Figure 1. Step Response of the Closed-loop 

The fractional PID tuning by minimisation have five conditions. To satisfy them all 

numerical optimisation algorithms may be used. This is effective, howere allows local 

minima to be obtained. In practice most solutions found with this optimisation method are 

well enough, but they strongly depend on initial estimates of the parameters provided. Some 

may be discarded because they are unfeasible or lead to unstable loops, but in many cases it is 

possible to find more than one acceptable fractional PID; in others, only well-chosen initial 

estimates of the parameters allow finding a solution.  
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Bode plots of the closed loop system

Bode plots of the open loop system
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Figure 2. Bode Plot of FOPID Controller Designed 

3.3. Vehicle wire control system with the Oustaloup approximation 

Gc(s) G(s) δ'(s)δ(s)

Tr

E(s)

 

Figure 3.System Structure with Fractional PI
λ
D

μ
 Controller 
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For fractional order simulation, usually use the approximation of high order system to 

replace, Oustaloup approximation algorithm is the most commonly used method. Based on 

the approximation algorithm, fractional-order of higher order integral system can be directly 

calculated. Because of the limitations of Oustaloup algorithm itself,                 should be 

chosen. 

The simulation system structure diagram was shown in Figure 3.The plant considered was 

 
sss

sG
03.148.00042.0

1
23 


                                                 (10) 

Parameters of controller used in the design process are as follows: 

sradl /001.0
,

sradh /100
,  9.45m , dBH 10 , dBN 20 .We can 

obtain the transfer function of controller 

  3858.0

6029.0
4994.0

7973.0
182.0 s

s
sGcf 


                                        (11) 

The open-loop Bode diagram and the closed-loop Bode diagram are shown in the Figure 4 

and Figure 5.Using fractional order control, System response time and overshoot volume are 

almost unchanged. Therefore adopt the PI
λ
D

μ
 fractional order control system that can track 

signal more accurately and the effect is more ideal. 

The Oustaloup approximation has the superiority. However the quality of the this 

approximation method may not be satisfied in high and low frequency bands near the fitting 

frequency bounds. 
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Figure 5. Bode of Closed Loop System 

3.4. Ziegler-Nichols Type Tuning Rules 

In the previous a tuning method for fractional PIDs are presented. This rule is effective but 

allows local minima to be obtained. Even if a model is known rules quickly provide a starting 

point for fine tuning.  The two methods of the two previous subsections require a model of the 

plant to control. On the contrary, the tuning rules of the two following subsections try to 

emulate what happens with existing tuning rules for integer PIDs. They bear similarities to 

the first rule proposed by Ziegler-Nichols for integer PIDs, making use of the same plant time 

response data: that rule assumes the plant to have an S-shaped unit-step response. The 

simplest plant to have S-shaped step response can be described by 

  sLe
Ts

K
G 




1
s

                                                          (12)  

Valerio and Costa have employed the minimization tuning method to plants given by (12) 

for several values of L and T, with K=1. They were designed for the following specifications: 

a) Gain crossover frequency        =0. 5 

b) Phase margin         =2/3 

c)       =10rad/sec,       =0.01rad/sec 

d)                           ,                             

 

3.5 Example: the steam pressure model 

The steam pressure model can be modeled by the following FOPDT dynamic: 

  se
s

sG 1.0

1

1 




                                                             (13) 

m

  dBjT 10  dBjS 20


cg

t s
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Figure 6.Bode plot of the orders 
varation—integral order 

Figure 7.Bode plot of the orders 
varation—differential order 

From the frequency characteristic of fractional order Figure 6, the Bode plot of the 

fractional order controllers with λ=0.25, 0.5, 0.75, μ=0.5                                         . The 

Figure 7 shows the Bode plot of the fractional order controllers with μ=0.25, 0.5, 0.75, λ=0.5 

                               . In general control system of the low-frequency and the high-

frequency, the characteristics of phase frequency and amplitude frequency are affected by λ 

and μ. Fractional order controllers have two more factors than the traditional integer order 

PID controller, and make the design more flexible, this makes the fractional order controller 

can better apply in the steam pressure model. 

The step response of the process is of S-shaped type and we can use the Ziegler-Nichols 

type tuning rules for our FOPID controller. Controllers obtained with the first and the second 

set of tuning rules and with the first Ziegler-Nichols rule are 
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Figure 8.Step response of the steam pressure model with the first set of tuning 
rules and the second and with the first Ziegler-Nichols rule 
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Corresponding step responses are given in Figure 8. It is to be noticed that fractional PIDs 

can deal with a clearly broader range of values of K. This is likely because the specifications 

the integer PID tries to achieve are different: that is why responses are all faster, at the cost of 

greater overshoots. More important is that the overshoot is fairly constant with fractional 

PIDs, at least for those values closer to 1. This is because fractional PIDs attempt to verify 

(11), which the integer PID does not. 

 

3.6. The Padula & Visioli Tuning Rules 

A new set of tuning rules are presented for FOPID controllers by Padula & Visioli [7, 8]. 

Based on FOPDT models, the tuning rules have been devised in order to minimise the 

integrated absolute error with a constraint on the maximum sensitivity. We consider the unity-

feedback control. In case an unstable process is considered, the process is assumed to have a 

UFOPDT dynamics as one given by (13).  
The process dynamics can be conveniently characterized by the normalized dead time and 

define

d as 

T

L
                                                             (15) 

which represents a measure of difficulty in controlling the process. 

The FOPID controller is defined as 
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                                           (16) 

where Kp is the proportional gain, Ti is the integral time constant, Td is the derivative time 

constant, λ and μ are the non-integer orders of the integral and derivative terms respectively. 

The parameter N is chosen as N=10T
(μ-1)

. The performance index is integrated absolute 

error which is defined as follows 

   
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M s
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1
max                                              (17) 

Obviously, the higher value of Ms yields the less robustness against uncertainties. If only 

the load disturbance rejection task is addressed, we have  
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For the FOPID controllers, it is   1
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for the series form, and 

245.11508.006326.0

2
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for the ideal form. 
 

3.7 Examples: 

The transfer function 
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                                                          (23)  

The normalized dead-time of the process is obtained as 0.4224 which implies that we can 

utilize the proposed tuning rules. The following FOPID can be obtained for the case of 

Ms=1.4 and Ms=2.0. 
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4. Conclusion 

In this paper some of the well-known tuning methods of FOPID controllers are presented 

and several examples are illustrated, verifying the effectiveness of the methods are given. The 

optimization methods, Ziegler-Nichols tuning rules and the Padula&Visioli methods were 

introduced. Based on these methods, we have considered the steam pressure model and the 

Vehicle wire control system. From these results, the potential of the fractional order 

controllers in practical industrial settings, regarding performance and robustness aspects, is 

clear. However, the design method proposed here involves complex equations relating the 

specifications of design and, sometimes, it may be difficult to find a solution to the problem. 

For this reason, the purpose now is to simplify the design method so that the controller can be 

tuned very easily, with very simple relations among its parameters, and preserving the 

robustness characteristics regarding performance, gain variations and noise.  
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