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Abstract 
Since introduction, the Support Vector Machines (SVM) has been popularly used in 

machine learning and data mining tasks due to their strong mathematical background and 
promising result. Nevertheless, they are noticeably slow in the prediction stage. The speed is 
influenced by number of support vectors determined in the training phase. Motivated by this 
fact, several studies are done to reduce the number of support vectors. The reduction should 
consider the degeneration of learning quality and preserve it at much as possible. Most 
previous methodologies either reduce the training set or apply a post-processing step to 
reduce the number of support vectors. In this paper, we proposed a new SVM cost function 
called Step Regularized Support Vector Machine (SRSVM), which is a standard SVM with 
extra constrained to reduce the number of support vectors, which can be defined by user. 
Experimental results are done to evaluate the efficiency and speed of proposed algorithm. 
SRSVM are also compared to other related SVM algorithms. The comparisons showed that 
the proposed method is effective in reducing number of support vectors while preserving the 
high performance of the classifier. 
 

Keywords: Classification; Support Vector Machine; Reduce Complexity; Number of 
Support Vectors 
 
1. Introduction 

C Machine learning is divided into two main field of research including Classification and 
Clustering. A classification algorithm tries to build a predictor so that it can predict the 
correct labels for each data point based on the previously seen set of training data points 
whose category memberships are known. An example of such task would be predicting the 
corresponding category of given email and assigning it into "spam" or "non-spam" classes. 
This can be done by analyzing the previous emails with known category and extracting some 
useful quantized features. Regularly this part is out of machine learning scope and will be 
done by the expert in that specific domain (e.g., the users of Email provider in this example). 
Next, these extracted features will be used to train the corresponding predictor. 

Since the last three decades, many different types of classifiers are proposed in the 
literatures. Some of them are including: Artificial Neural Network (ANN) [1], Decision Tree 
(DT) [2], Naïve Bayes (NB) [3], K-Nearest-Neighbors (KNN) [4] and Support Vector 
Machines (SVM) [5]. Each of these classifiers has specific properties, which make them 
valuable for variety of problem. For example, the ANN classifiers are capable of learning the 
predictor without explicit specification of functional or distributional form for the underlying 
model [6]. Decision Trees are known for their ability to solve the classification problem by 
divide-and-conquer approach that will greatly reduce the computational cost in the training 
and testing phase [7]. On the other hand, along with these capabilities, each category suffers 
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from set of drawbacks. For example although KNN classifiers are very simple and effective 
in classification, their performance are greatly influenced by selection of 𝑘 value [4]. 
Similarly, the Support Vector Machines (SVM) classifiers are known for their high degree of 
generalization, which is backed by strong mathematical foundation [8]. This important 
property has made the SVM a very popular classifier in the machine learning studies and real 
world applications. Although, these classifiers provide a high degree of performance, they are 
slow in the test phase [9]. This is because after training phase, the closest data points to the 
separator hyperplane called Support Vectors (SV) need to be utilized to determine the 
discriminator function.  

Many different methodologies have been proposed to reduce the number of support vectors 
without loss of much generalization performance. However, these previous methods either 
provide a sparse predictor function using an estimation to the solution of standard SVM 
classifier or learn this predictor on the nested subsets of the training set [10]. Recently, the 
Sparse Support Vector Classifier (SSVC) is also proposed which is based on approximating 
the zero norm with an Expectation–Maximization (EM) algorithm from a two-level 
hierarchical Bayes model [10]. Although it was a powerful model, utilizing the EM algorithm 
to optimize the cost function may cause the algorithm to get stuck in local minima. In this 
paper, inspired by SSVC, we propose a modified SVM called SRSVM to approximate the 
zero norm. In the contrary to SSVC, the SRSVM cost function is formulated as a constrained 
nonlinear multivariable function, which can be globally solved. Another remarkable property 
of SRSVM is that it provides an option for user to determine his desired number of support 
vector. This is crucial in environments with specific amount of memory or computation 
resource. 

The rest of this paper is organized as follows. In the preliminary section, the SVM 
formulation and its properties are discussed. Further, its computational dependency on 
the number of support vectors is demonstrated. We present a review of previous works 
aimed to provide a sparse discriminator function in Section 3. Section 4 is dedicated to 
SRSVM algorithm and its corresponding discussions. The experimental results are 
given in Section 5. Finally, Section 6 concludes this paper. 
 
2. Preliminary 

First, we define our notations along with the assumptions made in this paper to 
provide a proper perspective for our contribution. Scripted letters such as 𝒳 represent 
sets. Capital letters like 𝑋  and 𝑊  are matrixes, while bold lower case letters like 𝒙 
and 𝒖 show column vectors. Lower case letters indicate scalars e.g., 𝑛 and 𝑑. In this 
paper, we represent functions with a bar sign above their name e.g., 𝑁𝑒(. ). Similar to 
popular notation, we use subscripts to index elements of a matrix or vector. For 
example, 𝑥𝑖 is i-th element of vector 𝒙 and 𝒘𝑗 is the j-th column vector in matrix 𝑊. We 
will use a subscript below the vector norm notation to show its class. For example, ‖. ‖0 
indicate the zero norm while ‖. ‖1 will be a 𝑙1 norm. For simple representation, the 𝑙2 
norm will be denoted by ‖. ‖ e.g., ‖𝒙‖ = √𝒙𝑇𝒙. There are 𝑙 training samples where the i-
th data point denoted by 𝒙𝑖  is from 𝑑  dimensional space e.g. 𝒙𝑖 ∈ ℝ𝑑×1  with its 
corresponding label 𝑦𝑖 . We assume two class in the dataset e.g., 𝑦𝑖 ∈ {+1,−1} . 
Therefore, the training dataset 𝒳 ∈ ℝ𝑑×𝑙 is divided into two sets represented by 𝒳+ and 
𝒳− respectively. Next, we will review the SVM formulation and its properties. 
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2.1. Support Vector Machines and their Computational Cost 

The SVM classifier tries to find a linear-hyper plane to discriminate between data points 
with negative and positive labels [5]. A hyperplane definition can be formulized as follows: 

𝑓(𝒙) = 𝒘𝑇𝒙 + 𝑏 

Where 𝒘 is the vector containing hyperplane weights and 𝑏 is the bias. For any point lies 
on this hyperplane we have 𝑓(𝒙) = 0. The goal is to find optimal values for 𝒘∗ and 𝑏 such 
that the following relation holds. 

𝑓(𝒙𝑖) = 𝒘∗𝑇𝒙𝑖 + 𝑏∗ > 0      if 𝑦𝑖 = +1 

𝑓(𝒙𝑖) = 𝒘∗𝑇𝒙𝑖 + 𝑏∗ < 0      if 𝑦𝑖 = −1 

These conditions can be rewritten as (1): 

(1) 

𝑦𝑖�𝒘∗𝑇𝒙𝑖 + 𝑏∗� > 0,     ∀(𝒙𝑖,𝑦𝑖) ∈ 𝒳 

Assuming that such linear function exists to correctly classifies every point in 𝒳, (1) can 
be reformulated to construct a Margin between two classes. 

𝑦𝑖�𝒘∗𝑇𝒙𝑖 + 𝑏∗� ≥ 1,     ∀(𝒙𝑖,𝑦𝑖) ∈ 𝒳 

The distance from the hyperplane to a vector 𝒙𝑖 can be calculated as 𝑓(𝒙𝑖)
‖𝒘‖

. Therefore, the 
margin can be formulized as (2) [11]. 

(2) 

𝑀𝑎𝑟𝑔𝑖𝑛 =
1

‖𝒘‖
 

Maximizing (2) is equal to minimizing ‖𝒘‖. Thus a constrained optimization problem, 
which is called Primal problem, can be defined as (3) [12]. 

(3) 

min
𝒘,𝑏

 𝐽(𝒘) =
1
2
‖𝒘‖2

𝑠. 𝑡. 𝑦𝑖�𝒘∗𝑇𝒙𝑖 + 𝑏∗� ≥ 1,     ∀(𝒙𝑖,𝑦𝑖) ∈ 𝒳
∀𝑖 ∈ {1, … , 𝑙}

 

Where the 1
2
 in the cost function is used for mathematical convenience. In case of non-

linear separable data points, we need to add slack variables 𝜉𝑖 as (4). 

(4) 

min
𝒘,𝑏,𝜉𝑖

 𝐽(𝒘) =
1
2
‖𝒘‖2 + 𝑐𝟏𝑇𝝃

𝑠. 𝑡. 𝑦𝑖�𝒘∗𝑇𝒙𝑖 + 𝑏∗�+ 𝜉𝑖 ≥ 1,     ∀(𝒙𝑖,𝑦𝑖) ∈ 𝒳
𝜉𝑖 ≥ 0
∀𝑖 ∈ {1, … , 𝑙}

 

Wshere 𝜉𝑖  are the slack variables. The vector 𝝃  contains these variables e.g., 𝝃 =
[𝜉1 𝜉2 … 𝜉𝑙]𝑇  and vector 𝟏  is a column vector with its elements equal to 1. The 
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parameter 𝑐 is a trade-off constant between the margin and training set error. The kernel trick 
can be easily incorporated to SVM cost function as follows. 

min
𝒘,𝑏,𝜉𝑖

 𝐽(𝒘) =
1
2
‖𝒘‖2 + 𝑐𝟏𝑇𝝃

𝑠. 𝑡. 𝑦𝑖�𝒘∗𝑇𝜑(𝒙𝑖) + 𝑏∗�+ 𝜉𝑖 ≥ 1,     ∀(𝒙𝑖,𝑦𝑖) ∈ 𝒳
𝜉𝑖 ≥ 0
∀𝑖 ∈ {1, … , 𝑙}

 

Where 𝜑(. ):𝓧 → ℋ  is a non-linear function, which transforms the input space to the 
higher dimensional space to provide a better class separation. The Dual problem can be 
formulized as (5). 

(5) 

max
𝜶

 𝐷(𝒘) =
1
2
𝜶𝑇𝐻𝜶− 𝟏𝑇𝜶

𝑠. 𝑡. 𝒚𝑇𝜶 = 0
0 ≤ 𝛼𝑖 ≤ 𝑐
∀𝑖 ∈ {1, … , 𝑙}

 

Where 𝒚 = [𝑦1 𝑦2 … 𝑦𝑙]𝑇  and 𝜶 = [𝛼1 𝛼2 … 𝛼𝑙] . The matrix 𝐻  is symmetric 
with its element defined as follows. 

𝐻𝑖𝑗 = 𝑦𝑖𝑦𝑗𝐾(𝒙𝑖, 𝒙𝑗) 

𝐻𝑖𝑗 = 𝑦𝑖𝑦𝑗𝜑(𝒙𝑖)𝑇𝜑�𝒙𝑗� 

Finally, after solving (5) the discriminator function will take the form (6). 

(6) 

𝑓(𝒙) = �𝑦𝑖𝛼𝑖∗𝐾(𝒙𝑖,𝒙𝑗)
𝑙

𝑖=1

+ 𝑏∗ 

Where 𝛼𝑖∗ and 𝑏∗ is the optimal solution of (5) cost function. 
As described, the coefficients 𝛼𝑖  are the Lagrange multipliers. Regularly, many 𝛼𝑖  with 

low values will appear after solving (5) [10]. The data points with corresponding coefficient 
𝛼𝑖 ≠ 0 are called Support Vectors (SV). Geometrically, these data points lay on the margin 
boundaries. In the other word, the data points of each class with smallest distance to the 
discriminating hyperplane are support vectors. According to (6), the computational cost for 
predicting the label for each test data point is directly related to the number of support 
vectors. Fortunately, there may be a situation where some support vectors can be deleted 
without loss of much accuracy or generality. An example of such cases are represented in 
Figure 1. 
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Figure 1. Demonstration of Redundant Support Vectors. In this Case, Data 

Point 𝒙𝟏 or 𝒙𝟐 or 𝒙𝟑 can be Removed without Loss of Accuracy or Generality 

The number of these redundancies greatly increases when the SVM classifier is trained on 
a non-separable training set. Therefore, many studies are done to reduce the number of 
support vectors in the final result of SVM classifier. In the next section, we will review the 
recent proposed algorithm to find redundant support vectors. 
 
3. Related Work 

Burges method can be considered as one of the early works in support vector reduction 
[13]. His algorithm computes an estimation of discriminator function with a reduced set of 
vectors. For the discussion on the reduced set selection and reduced set construction, please 
refer to Schölkopf study [14]. The Burges method suffers from two main issues. First, it has a 
high computation cost and second it may be stuck at local minima. An improved version of 
Burges algorithm is introduced by Nguyen et al., [15]. Their reduction algorithm iteratively 
selects two nearest support vectors from same class and replaces them by a newly constructed 
vector. In 2002, Downs et al. proposed an algorithm to detect the support vectors with linear 
dependency properties [16]. These unnecessary support vectors can be deleted from solution 
without any degeneration of accuracy or generalization. Instead of finding the important 
support vectors, Li and Zhang proposed an iterative procedure to train an SVM classifier with 
the most important training points [17]. In their procedure, a preprocessing step is utilized to 
detect the outliers to increase the convergence speed of the iterative algorithm. This process is 
repeated until the SVM classifier reaches a minimum acceptable accuracy or the number of 
support vectors stabilizes for a several consecutive iterations. 

Lee and Mangasarian proposed Reduced Support Vector Machines (RSVM) algorithm 
[18]. In RSVM, a random subset of the training data points is selected. Next, an SVM 
classifier is trained using this set and their optimal set of 𝛼𝑖  is determined using the 𝑙1 
regularizer ‖𝜶‖1. As the training set is chosen randomly, this method requires many more 
training data points compared to standard SVM in order to achieve a degree of accuracy close 
to the standard SVM classifier trained over whole training dataset. The RSVM model is 
theoretically explored by Huang and Lee from the viewpoint of robust design in model 
building [19]. Their investigation showed that the uniform random selection of a reduced set 
in RSVM is the optimal robust selection scheme in terms of three main criteria including 
minimum model variation, maximal model bias and the minimal test power [19]. Keerthi et 
al., suggested a righteous modification to RSVM, which was basically a greedy approach to 
iteratively select the subset of the training data point to form the representation [20]. Similar 
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to Li model, the Keerthi’s iterative method can be stopped when the accuracy of trained SVM 
reaches to a certain amount of complexity. 

Brank et al., studied the possibility of using linear SVM for feature selection problem [21]. 
They showed that how this method and other feature selection algorithms could be used to 
develop a tradeoff between the training dataset size and the sparsity of the document 
representation for the fixed amount of system resource. Li et al., improved this idea and 
proposed an adaptive greedy method called Feature Vector Selection (FVS) to choose 
appropriate feature vectors from the solution’s support vectors based on vector correlation 
principle [22]. Their method can determine the structure of the feature space by resembling a 
basis of the support vector solutions. Therefore, the statistical information in the trained SVM 
classifier is maintained. Similar to our algorithm, in FVS, the number of the support vectors 
can be selected adaptively according to resource specification. 

In 2010, Huang et al., proposed Sparse Support Vector Classification (SSVC) [10]. 
Unlike the previous methods that find an approximation solution of SVM classifier or 
train it on the nested subsets of the training set, SSVC imports the 𝑙0  norm 
regularization term of support vectors into the primal optimization problem and 
iteratively compute the enhanced cost function on the training set until it converges to a 
highly sparse solution. The SSVC is essentially an extension of Sparse Probit Classifier 
(SPC) proposed by Figueiredo [23, 24]. Although the SSVC is a powerful model, it 
utilizes an Expectation Maximization algorithm to find the optimal solution. Therefore, 
it may stuck to local minima and need to be executed with several starting point to 
reach a good enough solution. Inspired by SSVC, we propose SRSVM by modifying the 
cost function of standard SVM classifier. The SRSVM cost function is a constrained 
nonlinear multivariable function, which can be globally solved. On the other hand, 
similar to FVS, the SRSVM provides an option for user to determine his desired 
number of support vector. Thus, the trade-off between generalization and complexity of 
the SRSVM model can be directly controlled by user. 
 
4. Proposed Algorithm 

In this section, we present SRSVM to reduce the number of support vectors in the final 
solution of SVM classifier. This is done by reformulating the standard SVM cost function to a 
constrained nonlinear multivariable function, which enforce the sparseness of SVM model. 
Following the general goal, we would like to find the solution of SVM cost function where 
number of support vectors be an small as possible without loss of much generality or 
accuracy. This goal can be formulated as (7). 

(7) 
min
𝜶

 ‖𝜶‖0
𝑠. 𝑡.

⎩
⎪
⎨

⎪
⎧max

𝜶
𝐷(𝒘) =

1
2
𝜶𝑇𝐻𝜶− 𝟏𝑇𝜶

𝑠. 𝑡. 𝒚𝑇𝜶 = 0
0 ≤ 𝛼𝑖 ≤ 𝑐
∀𝑖 ∈ {1, … , 𝑙} ⎭

⎪
⎬

⎪
⎫

 

However, using ‖𝜶‖0 makes (7) a non-convex function and therefore the analytic solution 
cannot be found. Instead, the number of Lagrange multipliers that is not equal to zero will be 
controlled by adding a new constraint to the problem. The 𝑙0 norm of a vector is equal to sum 
of a step function applied to each elements of that vector. In the other word, we have (8). 
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(8) 

‖𝜶‖0 = �𝑠𝑡𝑒𝑝(𝛼𝑖)
𝑙

𝑖=1

 

Where the sign function is defined as 

𝑠𝑡𝑒𝑝(𝑞) = �+1 𝑞 > 0
0 𝑞 ≤ 0 

As discussed, we would like to provide a parameter for user to control the tradeoff between 
generalization and complexity of the model. Therefore, the goal is to find the solution of 
standard SVM classifier where (9) hold. 

(9) 

‖𝜶‖0 = �𝑠𝑡𝑒𝑝(𝛼𝑖)
𝑙

𝑖=1

≤ 𝑘 

Where 𝑘 is the tradeoff control parameter defined by user. However, this constrain is still a 
non-convex function. We suggest using an approximation of 𝑙0  norm. To approximate 𝑙0 
norm we propose 𝑔(𝑥) which can be defined as follows. 

𝑔(𝑥) =
1

1 + 𝑒−𝜂𝑥
 

This function can provide a close approximation to the step function. In addition, 𝑔(𝑥) is a 
convex function while effectively stimulate the behavior of sign function. This fact is 
demonstrated in Figure 2. Using  

 
Figure 2. Approximating the Step Function (red) with 𝒈(𝒙) Function (green) 

The modified constrain can be defined as follows. 

‖𝜶‖0 ≈�𝑔(𝛼𝑖)  ≤ 𝑘
𝑁

𝑖=1

 

(10) 

‖𝜶‖0 ≈�
1

1 + 𝑒−𝜂𝛼𝑖
≤ 𝑘

𝑁

𝑖=1
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The constrain 0 ≤ 𝛼𝑖 ≤ 𝑐 in (7) implies that every coefficient 𝛼𝑖 to be positive. Therefore 
using a large enough value for 𝜂, the ‖𝜶‖0 can be closely approximated by 𝑔(𝑥) function. 
We will use 𝜂 = 102 in our experiments. By applying the above modification, (7) can be 
reformulated as (11). 

(11) 

max
𝜶

𝐷(𝒘) =
1
2
𝜶𝑇𝐻𝜶− 𝟏𝑇𝜶

𝑠. 𝑡. 𝒚𝑇𝜶 = 0

�
1

1 + 𝑒−𝜂𝛼𝑖
≤ 𝑘

𝑁

𝑖=1
0 ≤ 𝛼𝑖 ≤ 𝑐
∀𝑖 ∈ {1, … , 𝑙}

 

This cost function is in form of constrained nonlinear multivariable function and therefore 
its globally optimal solution can be found. There is also several toolbox to solve such 
functions including: fmincon (Matlab), NLopt (C++) and bfgsmin (Octave). 
 
5. Experimental Result 

Although SRSVM algorithm is studied theoretically in previous section, but it needs 
to be experimentally examined to represent its effectiveness. In this section, we discuss 
about the experiments that have been done to investigate the efficiency of SRSVM 
algorithm and report their corresponding results. 
 
5.1. Setup 

We will compare the SRSVM with the closest algorithms in support vector reduction. 
These rival algorithms that are discussed in the related work section are including: Nguyen’s 
algorithm (NSVM), Downs’s algorithm (DSVM), Lee and Mangasarian’s iterative model 
(RSVM) and Lee’s procedure (FVS) and Huang’s methodology (SSVC). In our experiments, 
we will measure the accuracy of final solution and the speed of training such model. To reach 
a fair comparison, this measurement will be done based on the number of support vectors 
provided by each algorithm. In the other word, for algorithms with a 𝑘  parameter for 
enforcing the exact number of support vectors e.g., SRSVM and FVS, the 𝑘 will be set to a 
specific value. For other approaches e.g., SSVC and DSVM, we will adjust the regularizer 
parameter until the exact number of support vectors is returned by each algorithm. In all 
experiments, we will use a constant range for acceptable number of support vectors. This 
range starts from 𝑘 = 5  with increase of 5 in each step until 𝑘 = 60 . Therefor we will 
examine each algorithm twelve times i.e., 60

5
= 12. The accuracy in larger number of support 

vectors did not examined because with larger number of support vectors, the accuracy would 
be close to the standard SVM. 

We have used 10-Folds cross validation in the experiments. The whole dataset is divided 
into 10 partitions. One partition is the test set and the other nine parts are considered as 
training sets. Next, the number of support vectors 𝑘 will change and the accuracy of each 
specific algorithm is measured by 10-Folds cross validation using new value for 𝑘 . The 
measurement is repeated 5 times with randomly selected set of labeled data points in the 
training set. This process is done for each folds, therefore the experiment will be repeated 50 
times (5 × number of folds). We will name the results with the number of support vector 𝑘. 
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For example, the result indicated with 5 indicates that the algorithms are forced to provide 
only 5 support vectors. In all experiments, each dataset is normalized to have zero mean and 
unit variance. For input datasets, we used synthetic and UCI datasets. Further to examine the 
effectiveness of SRSVM in real world problems, it is applied to English-Persian Sentence-
Aligning problem [25]. Finally, as the SVM classifier is only capable of discriminating two 
classes, we need a method to convert the datasets with higher number of classes into two-
class dataset. To do this, we merged two classes with smallest number of data points together 
and constructed a new class. This process is repeated until two classes remain. 
 
5.2. Performance Measure 

For performance measure, we used F-Measure. F-Measure is a very popular measurement 
in machine learning experiments. It can be defined as follows. 

𝑓𝑚(𝑐𝑚) = 2 ×
𝑟(𝑐𝑚) × 𝑝(𝑐𝑚)
𝑟(𝑐𝑚) + 𝑝(𝑐𝑚)

 

Where 𝑐𝑚 is the confusion matrix that is calculated from ground truth and predicted labels. 
𝑟(. ) and 𝑝(. ) are precision and recall respectively which can be calculated as follows. 

𝑟(𝑐𝑚) =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

𝑝(𝑐𝑚) =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

In this formulation 𝑡𝑝 , 𝑓𝑝  and 𝑓𝑛  are true positive, false positive and false negative 
respectively. 
 
5.3. Datasets 

For input dataset, three main types of data are considered in the experiments. The first 
category is the synthetic datasets including two moons, four clusters and two rings. These 
datasets are represented in Figure 5. In this figure, the data points belong to each cluster are 
depicted with different colors and markers. 

  
a b 

Figure 5. Three Synthetic Datasets used for Comparisons. a) Two Moons, b) 
Two Rings 

The second category is UCI repository dataset. We used a variety of datasets with low, 
medium and high amount of sample sizes and features. Table 1 represents the selected UCI 
datasets. In the last column of this table, we represented how several classes is merged to 
form a two-class dataset. The last category is a real world dataset, which is prepared by Web 
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Technology Lab (WT-LAB) in Ferdowsi University of Mashhad. This dataset consist of 3235 
aligned bilingual English–Persian sentences with 26 dimensions and 3 main classes of 1-2, 2-
1 and 2-3. We have merged 2-1 and 2-3 classes to reach a two-class dataset. 

Table 1. The Collection of UCI Datasets Selected for Comparison 
Name Instances Cluster Attribute Merged Classes 

Soybean 47 4 35 {1, 2} {3, 4} 
Iris 150 3 4 {1, 2} {3} 
Wine 178 3 13 {1, 3} {2} 
Sonar 208 2 60 {1} {2} 
WDBC 569 2 30 {1} {2} 
Scale 625 3 4 {1, 2} {3} 
Vehicle 846 4 18 {1, 4} {2, 3} 
Vowel 990 11 10 {1, 2, 3, 4, 7, 10, 11} {5, 6, 8, 9} 
Waveform 5000 3 21 {1, 2} {3} 

 
5.4. Experiment on Synthetic Dataset 

In this experiment, we will examine the effect of reducing the number of support vectors 
with SRSVM compared to standard SVM. Here the number of allowed support vector is set 
𝑘 = 30. Result of such experiment is given in Figure 6. 

 
a 

 
b 

 
c 

 
d 
 

Figure 6. Result of Running Standard SVM and SRSVM in Two Synthetic 
Datasets. a, b are Result of SVM and c, d are Result of SRSVM 

In the next experiment we will measure the result of considering different values for 𝑘. As 
described, the number of allowed support vector is started from 5. In the next iteration, 𝑘 
value increases by 5. These iterations are repeated until 𝑘 reaches 30. The accuracy of each 
selected algorithm with 10-Fold cross validation is measured in each iteration. We did not 
continue this procedure because the experimental result for all algorithm reached 100% 
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accuracy and investigation with larger number of support vectors would return 100% 
accuracy. Figure 7 shows the F-Measure result of running selected algorithms with specific 
value for 𝑘 on the synthetic datasets. 

 
a 
 
 

 
b 
 

Figure 7. Result of Running each Selected Algorithm with Different Amounts of 
Allowed Support Vectors. a) Two Moons, b) Two Rings 

According to these experiments, SRSVM provides promising results. However, the 
effectiveness of these algorithms in simple datasets cannot be a dependable measure. In the 
next section, we will measure these algorithms with UCI repository datasets. 
 
5.5. Experiment on UCI Dataset 

In this part, we examine our algorithm with UCI repository 1  datasets. Each set of 
experiments for specific number of support vectors is repeated 5 times with 10-folds cross 
validation. The average F-Measure is reported in Figure 8. 

   
a b c 

                                                      
1http://archive.ics.uci.edu/ml/ 
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g h i 

Figure 8. Result of Running each Selected Algorithm 5 Times with 10-folds 
Cross Validation with Different Amounts of Allowed Support Vectors on UCI 

Repository Datasets. a) Soybean, b) Iris, c) Wine, d) Sonar, e) WDBC, f) Scale, 
g) Vehicle, h) Vowel, i) Waveform 

These results show that the FSV, SSVC and SRSVM algorithms can provide a more 
suitable support vectors in compared to other algorithms (e.g., NSVM, DSVM and RSVM). 
Interestingly, the SRSVM provides a higher F-Measure with some exceptions.  
 
6. Conclusion 

In this paper, we introduced a novel support vector reduction method called SRSVM. We 
claimed that the zero norm can be approximated with exponential function. Next we 
incorporated this function into the constrains of SVM dual form. The resulting cost function 
is in form of nonlinear multivariate function and its global solution can be easily found. We 
showed that SRSVM could be considered as an efficient method to reduce the number of 
support vector in an SVM classifier. Experimental results on the synthetic, UCI, datasets 
along with FEP-the sentence-aligning corpus-showed the superior performance of the 
proposed support vector reduction method. In the future, we will investigate other forms of 
constrains to better approximation of zero norm. We also intend to investigate the 
performance and efficiency of our method on the other real-world applications. 
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