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Abstract

Coastal surveillance and harbour defence are the most complex and challenging opera-
tional issues for modern navy in the current turbulent global political climate. In most of the
coastal surveillance and harbour defence systems, long sea-bed arrays consisting of hundreds
of pressure sensors are deployed along the coastal belt to capture the low frequency compo-
nents emanating from the sub-surface targets. Deployment of these sensor-arrays along
with its associated signal conditioning hardware at the ocean-bed is a challenging task. The
output of the sensor-array is to be conditioned and then digitized using multi-bit analog
to digital converters (ADC). Further, the digitized channel data are required to be send to
a base station through a radio frequency link. In this paper, we propose a compressively
sampled (CS) architecture of acoustic vector sensor (AVS) array, to estimate the direction
of arrival (DoA) of multiple acoustic sources, in a range independent shallow ocean using a
one-dimensional search without prior knowledge of the ranges and the depths of the sources.
We extend the high resolution angular spectral estimators MUSIC, MVDR and subspace in-
tersection method (SIM) to suit the compressively sampled AVS array architecture operating
in a shallow ocean environment. This architecture promises a significant reduction in the
number of sensors, analog signal conditioning hardware, data rate or bandwidth, the number
of snapshots and the software complexity, leading to easy installation and maintenance.

Keywords: Acoustic vector sensor array, Coastal surveillance, Compressive sampling,
Subspace intersection method.

1 Introduction

High resolution bearing estimation or direction of arrival (DoA) estimation is one of the
primary problems in coastal surveillance and harbour defence systems to protect the coastal
resources. The demands of these challenges are growing, which requires effective surveillance
to detect incursions from underwater, accurate determination and characterisation of the
threat, the provision of suitable deterrence and, ultimately, the launch of an appropriate
neutralising response. All this has to be taken care of in a very short time window.

Traditionally, the passive surveillance approach comprises of deploying long, uniform or
multi-octave linear arrays of scalar pressure sensors, at the bottom of the ocean to localize
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the low frequency components emanating from sub-surface targets. Multi-octave array
structure provides constant beamwidth across the octave bands. Usually a large number of
sensors are used to improve the array gain or directivity index of the array. Each sensor in
the array is associated with its own front-end signal conditioning hardware consisting of a
pre-amplifier, programmable gain amplifier, anti-aliasing filter and an ADC. The digitized
output from the array is transmitted to the base-station through a RF link. The deployment
of long arrays along with its front-end hardware at the ocean bottom is a complex task
involving huge cost and effort. Therefore, any reduction in the number of sensors, front-end
circuitry, data rate or bandwidth, drastically reduces the investment. Also, any reduction
in the number of snapshots (time samples) to localize an underwater threat significantly
improves the anti-submarine warfare strategic performance.

In this paper, an efficient seabed array architecture, which greatly reduces the complex-
ity of the waterside security (WSS) system is proposed. The new architecture utilizes a
compressively sampled acoustic vector sensor array, along with high resolution spatial pro-
cessing algorithms modified for compressive spatial filtering in a shallow ocean environment,
where the plane wave acoustic propagation model assumption is not valid.

An acoustic vector sensor provides complete characterization of the acoustic field at
a point in space through simultaneous measurement of the tri-axial components of the
particle velocity along with the scalar acoustic pressure. In order to reduce the number

of sensors, an AVS array is used which requires roughly 1
4

th
the number of sensors [1]

compared to the traditional scalar pressure sensor array to achieve the same localization
performance. Though an AVS array utilizes lesser number of sensors, the major issues to be
addressed in conjunction with AVS array deployment for a given localization performance
are; (1) number of channels and the associated analog hardware remains same as that of the
pressure sensor array. This is due to the fact that, an AVS simultaneously measures three
orthogonal components of the particle velocity along with the scalar acoustic pressure and
hence each AVS provides 4 channels, (2) transmission data rate through RF link and the
size of the spatial correlation matrix remains same as that of pressure sensor array. Thus,
it is noteworthy that, though an AVS array drastically reduces the number of sensors, the
number of channels and the associated signal conditioning hardware, transmission data
rate, and spatial correlation matrix dimension remains same as that of pressure sensor
array for achieving a bearing performance.

The applications of compressed sensing was initiated by Donoho [2] and Candes et al. [3]
in the year 2006. Compressive sampling is a method to recover a sparse signal vector from
very few non-adaptive, linear measurements by convex optimization [3, 4, 5], greedy algo-
rithms [6, 7] or combinatorial algorithms [8, 9]. Compressive array processing algorithms
presented in [10, 11] assumes the plane wave acoustic propagation model, which is not
suitable for the sea-bed array deployed in shallow ocean supporting multi-modal acoustic
wave propagation. High resolution spectral estimation array processing algorithms tailored
for shallow ocean application, namely NM-MUSIC, NM- MVDR [12, 13] and SIM [14] re-
quires a 4N × 4N sample correlation matrix estimated from the array observation data
vector ∈ C4N×1. In [15], the authors have shown the advantage of compressively sampling
a vector sensor array considering a plain wave model. In this paper, we attempt to unify
three frameworks to realize a hardware efficient seabed array architecture:- vector sensor
array, compressed sensing and compressive spatial filtering algorithms, for high resolution
bearing estimation of multiple acoustic sources in shallow ocean.

Outline of the paper is as follows. In section 2, we present the AVS array measurement
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model for a horizontally stratified, range independent shallow ocean. Review of compres-
sive sensing, benefits of the compressive sensing on AVS array processing and compressive
sampling on AVS array is discussed in section 3. High resolution angular spectral estima-
tion algorithms tailored for the compressively sampled AVS array operating in the shallow
ocean is described in section 4. Simulation results and discussions are detailed in section
5. Finally, section 6 contains our conclusions.

2 AVS array data model for shallow ocean

The AVS array data model for shallow ocean, derived in [14] is used. Consider a uniform
horizontal AVS array of N sensors at depth z. The scenario under consideration is shown
in Figure 1.

Figure 1: Source and receiver array geometry.

ρ1 and ρ2 are the densities of the water and the sediment/fluid half space respectively;
while c1 and c2 are the sound speeds in water and sediment/fluid half space respectively.
The array signal vector due to a source of unit strength at range rj , depth zj and bearing
φj with respect to the end-fire direction of the array when there are M modes propagating,
is given by

sj = A(φj)b(rj , zj), (1)

for j=1,. . . ,J , where J is the number of sources, A(φj) is the array manifold matrix and
b(rj , zj) is the modal pressure vector. Expressions for A(φj) and b(rj , zj) are given by

A(φj) = [a1(φj), . . . ,aM (φj)], (2)

am(φj) = cm(φj)⊗ dm(φj), (3)

cm(φj) = [1, eikmdcosφj , . . . , ei(N−1)kmdcosφj ]T , (4)
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where ⊗ denotes the Kronecker product, d is the inter-sensor spacing and km the wave-
number of the m-th mode; for m=1, 2, . . . , M . Now,

dm(φj) = [1,
√

2ξm cos(φj),
√

2ξm sin(φj),
−iΨm(z)

′

kΨm(z)
]T , (5)

Ψm(z) = sin(mγz), (6)

γ =
π

he
, (7)

where the parameter he is the frequency-dependent ‘effective’ depth of the water column.
Also,

ξm(φj) =
km
k

=
kmc

2πf
, (8)

b(rj , zj) = [b1(rj , zj), . . . , bM (rj , zj)], (9)

bm(rj , zj) = Bψm(z)ψm(zj)e
ikmrj−δmrj . (10)

Let ηj(t) be the slowly varying complex amplitude of the signal from the j-th source
at time t. The amplitudes ηj(t), j=1, . . . , J , are modelled as jointly stationary and
uncorrelated circular complex narrow-band Gaussian random processes with mean zero
and variance σ2j = E[|ηj(t)|2]. The array data vector inclusive of the received signals from
all sources and the i.i.d circular complex random noise can be written as

y(t) = Sηηη(t) + w(t), (11)

where S = [s1, . . . , sJ ], ηηη(t) = [η1(t), . . . , ηJ(t)]T , w(t) = [w1(t), . . . , w4N (t)]T and w1(t), . . . ,
w4N (t) are the i.i.d circular complex random variables with variance σ2. The SNR for the
j-th source is defined as

(SNR)j =
σ2j s

H
j sj

4Nσ2
. (12)

The correlation matrix R4N is defined as

R4N = E[y(t)y(t)H ]. (13)

In practical calculations, considering the received data is finite, the acoustic vector sensor
array correlation matrix can be estimated as

R̂4N =
1

L

L∑
t=1

[y(t)y(t)H ], (14)

where L is the number of snapshots.
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3 Compressive sampling

The concept of Compressive Sampling (CS) [2] is reviewed here. Compressive sampling
is a sampling method used in the transform coding, which converts the input signals that
are embedded in a high-dimensional space, into signals that lie in a space of significantly
smaller dimensions. Examples of transform coders are wavelet transforms and the ubiqui-
tous Fourier transform.

If y ∈ CN has a sparse representation in some orthonormal basis, then y can be rep-
resented as y = ΨΨΨz, where ΨΨΨ is the N × N sparsity basis matrix and z is a N × 1 vec-
tor with K � N non-zero entries. The CS theory states that y can be recovered using
H = KO(logN) non-adaptive linear projection measurements on to an H × N random
matrix ΘΘΘ that is incoherent with ΨΨΨ and that is usually over the field of real numbers. The
measurement vector yc can be written as

yc = ΘΘΘy = ΘΘΘΨΨΨz. (15)

According to CS theory, the signal can be reconstructed using optimization strategies aimed
at finding the sparsest signal that matches with the H projections.

3.1 Benefits of compressive sampling on AVS array processing

Use of AVS array significantly reduces the number of sensors to achieve a given perfor-
mance factor in the form of estimation error and bearing resolution. However, the analog
signal conditioning hardware complexity and the data transmission rate increases by 4
times. The data transmission rate of the AVS array is given by

Transmission-rateAVS = 4NFsG bits/second, (16)

where N is the number of AVS sensors, Fs is the sampling frequency in Hz, G is the number
of bits/sample. Generally 16-bit or 24-bit sigma delta converters are used for digitization.

The above issues are efficiently tackled by the proposed compressive sampling or sensing
receiver architecture. The proposed architecture uses only around J log (4N) analog front-
end signal conditioning hardware and two bits of phase precision [16] instead of 16 or 24
bits. The data rate of the compressively sampled AVS array is given by

Transmission-rateCS-AVS = J log (4N)Fs2 bits/second, (17)

where J is the maximum number of expected acoustic sources.
CS array has the effect of compressing a large sized array into a smaller sized array. This

in turn reduces the hardware complexity on account of the much smaller number of front-
end circuit chains. Also, due to the smaller dimension of the array data vector, the software
complexity is greatly reduced. The high resolution DoA estimation algorithms consist of
inverse and eigenvalue decomposition of the spatial correlation matrix with computational
complexity O(n3) for an n × n matrix. The CS array architecture with CS beamformers
needs to work with the correlation matrix R̂yc of size H×H only, where H � 4N , while the

conventional AVS array needs to work with R̂4N of size 4N×4N . Figure 2 shows the block
diagram of the CS-AVS array architecture. Table. 1 summarises the hardware requirement
of the proposed CS-AVS array architecture and compares it with the conventional AVS
array and scalar pressure sensor array.
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Figure 2: Block diagram of the CS-AVS array architecture.

Table 1: Comparison of the different array architectures

Parameter Scalar Sen-
sor Array

AVS Array CS-AVS Array

No. of Channels N 4N J log (4N)
No. of signal
conditioning hardware N 4N J log (4N)
Data rate (bits/sec) NFsK 4NFsK J log (4N)Fs2
Spatial Correlation Ma-
trix

N ×N 4N × 4N J log (4N)× J log (4N)

Minimum number of
snapshots N 4N J log (4N)

Note: The hardware requirement for the CS-AVS array is greatly reduced for large values of N

and K

It is clear that with greatly reduced complexity, the CS array can still achieve similar
results in DoA estimation as a conventional large size AVS array.

3.2 Applying compressive sampling to the AVS array data model for shallow
ocean.

On application of the compression matrix ΘΘΘ of size H × 4N to the original array signal
vector yyy(t) of size 4N × 1, it is transformed to a compressed signal vector of size H × 1

yc(t) = ΘΘΘy(t). (18)

The elements Θh,n of the compression matrix ΘΘΘ are drawn independently from a random

distribution. If Ĵ is the expected number of sources, then we can take H = Ĵ log(4N), so
that embedding of the sparse signal into the compressed subspace ΘΘΘ does not destroy the
essential information in the original signal.
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Next, we compute the sample spatial correlation matrix R̂yc of the compressed signal yc.

R̂yc =
1

L

L∑
t=1

[yc(t)yc(t)
H ], (19)

where L is the total number of time snapshots taken.

4 DoA estimation

4.1 Modified Subspace Intersection Method applied to CS-AVS Array

In this section, the subspace intersection method [14] is customized to suit the com-
pressively sampled AVS array architecture. By applying an eigenvalue decomposition on
the compressed sample spatial correlation matrix R̂yc ∈ CH×H , we compute the eigen val-
ues and their corresponding eigen vectors. Construct the signal subspace using the eigen
vectors corresponding to the higher Ĵ eigen values. The remaining H − Ĵ eigen vectors
span the noise subspace. The number of sources Ĵ can be estimated using methods like
Gerschgorin’s disk method [17].

The compressed signal subspace Ec is then defined as

Ec = span{uc1 , . . . ,ucĴ}, (20)

where uc1 , . . . ,ucĴ are the eigen vectors of R̂c corresponding to the Ĵ sources.
Now, the compressed modal subspace for the azimuth φ is defined as

Mc(φ) = span{ac(φ, k1), . . . ,ac(φ, kM )}, (21)

where ac(φ, k1), . . . ,ac(φ, kM ) are the compressed modal steering vectors given by

ac(φ, km) = ΘΘΘa(φ, km), (22)

where a(φ, k1), . . . ,a(φ, kM ) are the modal steering vectors as defined in Eqs. (2-5).
We see that Ec and Mc(φ) intersect only if a non-trivial linear combination of the linearly

independent basis vectors of Ec and Mc(φ) is a null vector.
Now, to estimate the DoA, we need to construct a H× (M + Ĵ) matrix Dc(φ) defined as

Dc(φ) = [ac(φ, k1), . . . ,ac(φ, kM ),uc1 , . . . ,ucĴ ]. (23)

The firstM columns of Dc(φ) are the linearly independent basis vectors of the compressed
modal subspace Mc(φ) and the remaining Ĵ columns are the orthonormal basis vectors of
the compressed signal subspace Ec.

We now perform a QR decomposition on Dc(φ) so as to factorize Dc(φ) as

Dc(φ) = Qc(φ)Rc(φ). (24)

Here,

Qc(φ) = [qc1(φ), . . . ,qcM+Ĵ
(φ)], (25)
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is a H × (M + Ĵ) matrix whose columns qci(φ) are orthonormal vectors and Rc(φ) is a

(M + Ĵ)× (M + Ĵ) upper triangular matrix with elements rcij (φ).
The columns of Dc(φ), denoted by dcj (φ), are related to the columns of Qc(φ) through

the equations

dcj (φ) =

j∑
i=1

rcij (φ)qci(φ), (26)

for j = 1, . . . ,M + Ĵ ; hence,

dcj (φ) ∈ span{qc1(φ), . . . , qcĴ (φ)}. (27)

If dcj (φ) ∈ span{dc1(φ), . . . ,dcj−1(φ)}, the diagonal element rcjj (φ) of the matrix Rc(φ)
is zero. It is this property that is utilised to estimate the DoA. The subspaces Mc(φ) and
Ec intersect only if φ ∈ {φ1, . . . , φĴ}. Therefore, φ ∈ {φ1, . . . , φĴ} only if any one of the
following conditions is satisfied:

• dcj (φ) ∈ span{dc1(φ), . . . ,dcM (φ)}, for j ∈ [M + 1, . . . ,M + Ĵ ]

• dcM+Ĵ
(φ) ∈ span{dc1(φ), . . . ,dcM+Ĵ−1

(φ)}

This implies that dcj (φ) ∈ span{dc1(φ), . . . ,dcj−1(φ)} for j ∈ [M + 1, . . . ,M + Ĵ ] only if
φ ∈ {φ1, . . . , φĴ}. As rcjj (φ) is zero only if dcj (φ) ∈ span{dc1(φ), . . . ,dcj−1(φ)}, it follows

that rcjj (φ) = 0 for some j ∈ [M + 1, . . . ,M + Ĵ ] only if φ ∈ {φ1, . . . , φĴ}. Hence, the
response function of the CS-SIM is given as

PCS−SIM (φ) =

[
min

M+1≤j≤M+Ĵ
|rcjj (φ)|

]−1

. (28)

4.2 Compressive beamforming

We estimate the angle pseudo-spectrum by modifying NM-MUSIC [12] for use with
compressive sampled AVS array. Let Enoise be a matrix whose columns are the H − Ĵ
noise eigenvectors of R̂yc . If we perform a one-dimensional scanning of the function A(φ)
along φ, where A(φ) is given by Eq. (2), we get Ĵ different A(φj) (for j=1, . . . , Ĵ) which
lie nearest to the signal sub-space. In compressive beamforming, we use V(φ) instead of
A(φ), where

V(φ) = ΦA(φ), (29)

is the compressed array manifold matrix.
The projection of V(φ) on the noise sub-space is given by

projection = ‖V(φ)HEnoiseE
H
noiseV(φ)‖F , (30)

where ||•|| denotes Frobenius norm. The estimated DoAs are given by

φCS−NM−MUSIC = arg min
φ
‖V(φ)HEnoiseE

H
noiseV(φ)‖F . (31)
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Therefore, the spatial pseudo-spectrum estimate of NM-MUSIC is given by

PCS−NM−MUSIC(φ) =
1

‖V(φ)HEnoiseE
H
noiseV(φ)‖2F

, (32)

where φ = φ1, . . . , φNs (Ns is the total number of scanning angles).
Keeping the requirement of the MVDR [18], the pseudo-spectrum of the compressive

sampling array can be derived similar to [12] and is given by

PCS−NM−MVDR(φ) =
1

‖V(φ)HR−1
yc V(φ)‖2F

. (33)

Therefore, DoA estimation using compressive beamforming in shallow ocean using AVS
array can be summarized as:

• Compute the spatial correlation matrix R̂yc of the compressed signal yc using Eqs.
(18)-(19).

• Determine the eigenvectors corresponding to the H − Ĵ smaller eigenvalues of R̂yc

and form the Enoise matrix.

• Calculate PCS−NM−MUSIC(φ) using Eq. (32) or
PCS−NM−MVDR(φ) using Eq. (33).

• Find the highest Ĵ peaks PCS−NM−MUSIC(φ) or
PCS−NM−MVDR(φ)

• The Ĵ azimuth angles corresponding to the peaks of
PCS−NM−MUSIC(φ) or PCS−NM−MVDR(φ) are the DoA estimates of the Ĵ targets.

5 Results and discussions

In the simulations, we use Pekeris channel for modelling the horizontally stratified, range
independent oceanic waveguide as detailed in section 2. The ocean depth is assumed to be 75
m. Sound speed in the water column is taken as 1500 m/s while that in the sediment is 1700
m/s. We assume an attenuation of 0.5 dB/wavelength. The density ratio of the sediment
to that of the water is taken as 1.5. The source is fixed at 37.5 m and horizontal receiver
array at 25 m from the top of the ocean. The compression matrix ΘΘΘ has entries drawn from
an i.i.d Gaussian random process with mean= 0 and variance= 1

H . Throughout the Monte-
Carlo simulations, we use 200 snapshots or time samples (L=200) for the conventional AVS
array and 20 for CS-AVS, unless otherwise stated, to demonstrate its superior strategic
performance.

First, we compare the pseudo-spectrum performance of SIM, using 36 element conven-
tional AVS array and the CS-AVS array (N=36, H=10) architecture. We consider two
sources at 87◦ and 92◦ with respect to the array end-fire direction with 15dB SNR. Fig-
ure 3 shows the pseudo-spectrum response or SIM response function. Response of the
10-element conventional AVS array is also shown in Figure 3 for comparing the bearing
resolution performance of SIM and CS-SIM using the same number of elements. It is seen
that, (1) the performance of CS-AVS, which utilizes 10 measurements is not adversely
affected in comparison with the conventional 36-element AVS array, consisting of 108 mea-
surements, and (2) the conventional 10-element AVS array delivers a poor performance,
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showing a prominent false alarm at the middle of the simulated targets. This clearly in-
dicates the superior performance of the CS-AVS architecture which utilizes only 10.8% of
the front-end signal conditioning hardware, and requiring only 2% data rate compared to
the conventional AVS array configuration.

Figure 3: SIM and CS-SIM pseudo-spectrum of the conventional AVS array (N=36, L=200),
conventional AVS array (N=10, L=200) and the CS-AVS array (N=36, H=10, L=20). Two sources at 87◦

and 92◦. SNR=15 dB each, f=50 Hz.

Figures 4 and 5 show, respectively, the plots of pseudo spectrum response of NM-MUSIC,
NM-MVDR with the same source and array parameters used in the previous experiment.
It shows that, (1) standard deviation or variance of the pseudo spectrum with respect
to the source bearing, is large for CS algorithm compared to the conventional AVS array
processing, (2) source signal level to the mean pseudo spectrum level is almost same for
both conventional and CS algorithm and, (3) 10-element conventional AVS array has poor
bearing resolution capability.

10

International Journal of Signal Processing, Image Processing and Pattern Recognition 
Vol. 6, No. 4, August, 2013 
 
 

50

Regin
Text Box



Figure 4: NM-MUSIC pseudo-spectrum of the conventional AVS array (N=36, L=200), conventional
AVS array (N=10, L=200) and the CS-AVS array (N=36, H=10, L=20). Two sources at 87◦ and 92◦.

SNR=15 dB each, f=50 Hz.

Figure 5: NM-MVDR pseudo-spectrum of the conventional AVS array (N=36, L=200), conventional
AVS array (N=10, L=200) and the CS-AVS array (N=36, H=10, L=20). Two sources at 87◦ and 92◦.

SNR=15 dB each, f=50 Hz.

Higher fluctuation in the CS methods are primarily due to the error in the estimation
of the spatial correlation matrix using significantly reduced number of measurements and
snapshots. It can be also viewed as a probabilistic reduction of signal entry into the reduced
dimensional subspace. It is seen that, the conventional algorithm requires atleast 4N (i.e.,
L ≥ 4× 36 = 144) snapshots, to compute the inverse of the spatial correlation matrix used
in these algorithms. It is noteworthy that, in the conventional AVS array processing, higher
bearing resolution is obtained by increasing the array aperture or increasing the number
of sensors. It adversely affects the strategic performance of the system and also increases
the size of the spatial correlation matrix. However, the CS-AVS processing ensures the
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bearing resolution with minimum number measurements and hence achieves a high degree
of strategic performance.

Figure 6 compares the pseudo-spectrum performance of SIM, using 36 element conven-
tional AVS array with that of the CS-AVS array (N=36, H=10) architecture. We consider
three sources at 30◦, 35◦ and 60◦ with respect to the array end-fire direction and with 15
dB SNR. It is seen that, both conventional SIM and CS-SIM can resolve and localize two
sources at 30◦ and 35◦. However, it is noteworthy that, the hardware complexity of the
proposed CS-SIM architecture is very less.

Figure 6: SIM and CS-SIM pseudo-spectrum of the conventional AVS array (N=36, L=200) and the
CS-AVS array (N=36, H=10, L=200). Three sources at 30◦, 35◦ and 60◦. SNR=15 dB each, f=50 Hz.

The superior strategic performance of CS-SIM algorithm is demonstrated in Figure 7.
We consider two sources at 87◦ and 92◦ with respect to the array end-fire direction with 15
dB SNR. The pseudo spectrum response function of CS-SIM is plotted with 2 snapshots or
time samples (L=2). This experiment ensures the instantaneous attack time capability of
the proposed CS-SIM architecture
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Figure 7: CS-SIM pseudo-spectrum of the CS-AVS array (N=36, H=10, L=2). Two sources at 87◦ and
92◦. SNR=15 dB each, f=50 Hz.

Figures 8 and 9 show, respectively, the plots of bias vs. bearing angle and root mean
square error (RMSE) vs. bearing angle for a 36-element conventional AVS array along with
that of the CS-AVS array (N=36, H=10) architecture. We use a single source with 0 dB
SNR. It is seen that, the bias and the RMSE of the bearing estimate is slightly higher
with CS-SIM, especially near the end-fire direction. It is also seen that, both in SIM and
CS-SIM algorithm, the RMSE approaches CRB towards the broadside direction.

Figure 8: Bias vs. source bearing of SIM and CS-SIM on the conventional AVS array (N=36, L=200)
and the CS-AVS array (N=36, H=10, L=20). One source at 60◦. SNR=0 dB, f=50 Hz.
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Figure 9: RMSE vs. source bearing of SIM and CS-SIM on the conventional AVS array (N=36,
L=200) and the CS-AVS array (N=36, H=10, L=20). One source at 60◦. SNR=0 dB, f=50 Hz.

Figures 10 and 11 show, respectively, the plots of bias vs. SNR and root mean square
error (RMSE) vs. SNR of SIM and CS-SIM for a 36-element conventional AVS array along
with with that of the CS-AVS array (N=36, H=10) architecture. For this experiment, we
use a single source located at 60◦. It is seen that, the bias and the RMSE of the bearing
estimate is slightly higher with CS-SIM. It is also seen that, both in SIM and CS-SIM
algorithms, the RMSE approaches CRB as SNR increases.

Figure 10: Bias vs. SNR of SIM and CS-SIM on the conventional AVS array (N=36, L=200) and the
CS-AVS array (N=36, H=10, L=20). One source at 60◦, f=50 Hz.
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Figure 11: RMSE vs. SNR of SIM and CS-SIM on the conventional AVS array (N=36, L=200) and the
CS-AVS array (N=36, H=10, L=20). One source at 60◦, f=50 Hz.

Figures 12 and 13 show, respectively, the plots of bias vs. SNR and RMSE vs SNR of CS-
SIM, CS-NM-MUSIC and CS-NM-MVDR for a 36-element CS-AVS array (N=36, H=10)
architecture. A single source at 60◦ is used to compare the bias and RMSE performance
of all the three high resolution angular spectral estimators in the compressive sampling
framework. It is observed that, CS-SIM shows much better performance when compared
with CS-NM-MVDR and CS-NM-MUSIC. For example, at -2 dB SNR, RMSE for CS-SIM
is 0.5022 ◦ and the corresponding CRB is 0.1× 10−3. This is primarily due to the inherent
capability of SIM which uses both signal subspace and modal subspace to compute its
response function.

Figure 12: Bias vs. SNR of CS-SIM, CS-NM-MUSIC and CS-NM-MVDR on the CS-AVS array (N=36,
H=10, L=20). One source at 60◦, f=50 Hz.
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Figure 13: RMSE vs. SNR of CS-SIM, CS-NM-MUSIC and CS-NM-MVDR on the CS-AVS array (N=36,
H=10, L=20). One source at 60◦, f=50 Hz.

Figures 14 and 15 show, respectively, the plots of bias vs. number of snapshots and
RMSE vs number of snapshots of CS-SIM, CS-NM-MUSIC and CS-NM-MVDR for a 36-
element CS-AVS array (N=36, H=10) architecture. A single source at 60◦ is used to
compare the bias and RMSE performance of all the three high resolution angular spectral
estimators. It is clear that, CS-SIM performs better with fewer snapshots when compared
with CS-NM-MVDR and CS-NM-MUSIC.

Figure 14: Bias vs. snapshots of CS-SIM, CS-NM-MUSIC and CS-NM-MVDR on the CS-AVS array
(N=36, H=10). One source at 60◦. SNR=0 dB, f=50 Hz.
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Figure 15: RMSE vs. snapshots of CS-SIM, CS-NM-MUSIC and CS-NM-MVDR on the CS-AVS array
(N=36, H=10). One source at 60◦. SNR=0 dB, f=50 Hz.

The significant hardware reduction capability of the proposed CS-SIM algorithm is shown
in Figure 16. For this experiment, we use a single source located at 60◦ with 15dB SNR.
The RMSE is computed by varying the number of channels or measurements (H). It is
seen that, CS-SIM algorithm estimates the source bearing with a greater accuracy with
minimum number of measurements. Superior performance of the CS-SIM in comparison
with CS-NM-MVDR and CS-NM-MUSIC is mainly due to the fact that, signal localization
is performed in both signal subspace and modal subspace.

Figure 16: RMSE vs. H of CS-SIM, CS-NM-MUSIC and CS-NM-MVDR on the CS-AVS array (N=36,
L=144). One source at 60◦. SNR=15 dB, f=50 Hz.
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6 Conclusions

In this paper, we have presented an economic, hardware efficient coastal surveillance
architecture, capable for high resolution bearing estimation of multiple acoustic sources.
The bearing angles are estimated using a one-dimensional search which does not require
prior knowledge of sources ranges and depths. We have exploited the potential advantages
of the inherent capabilities of acoustic vector sensor, compressed sensing and subspace
intersection method. The high resolution shallow ocean spatial filtering techniques are
modified to suit the compressively sensed AVS array. In this work, we have extensively
reported the shallow ocean performance of high performance algorithms with and without
compressive sensing. It is found that, the bias and RMSE performance of the high resolution
techniques, NM-MVDR, NM-MUSIC shows highly inferior performance near the end fire
direction in both the conventional and the compressive sampling framework. We have
customized the SIM to suit the compressive sensing framework, and proved its superior
performance with drastically reduced hardware. It is seen that the Cramer-Rao bound is of
the order 10−4; CS-SIM achieves around 0.5022◦ RMS error at -2 dB SNR while the high
resolution estimators show much inferior performance.
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