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Abstract 
This paper presents signal decimation and interpolation techniques under a 

multiresolution frame work for both lower and higher dimensional applications. New classes 
of non-linear basis functions have been derived from the sigmoid activation function 
extensively used in artificial neural networks (ANN). It has been shown that the proposed 
non-linear basis functions are well suited for interpolation/approximation of band limited 
signals. An efficient scheme for band limited signal interpolation has been introduced.  Fast 
IIR digital filters (inverse filters) have been derived from the combinatorial theory in 
connection with the proposed basis functions. The proposed inverse filters can easily be 
implemented recursively with three multiplications and additions only. Further, the 
factorization of higher order filters for easy implementation has also been considered.  
Frequency response characteristics for the pre-filters and their corresponding interpolators 
are presented to reveal the quality of interpolation. An experiment has been carried out to 
interpolate a discrete sequence of length 33 into a sequence of length 257 (with a zooming 
factor of 8). Second part of the paper presents another efficient scheme for image decimation 
and interpolation. Experimental results on image data compression have been presented to 
justify the use of the proposed technique.   
 

Keywords: Decimation, interpolation, combinatorial theory, IIR and FIR digital filters, 
signal processing, higher dimension applications, image compression. 
 
1. Introduction 

Decimation and interpolation of band limited signals play the key role in many digital 
signal and image processing applications. It is seen from the literature that estimation of 
intermediate values from discrete samples (data) so as to provide a continuous display or 
representation of the given signal is crucial in the fields of digital signal and image processing 
[1,2]. In fact, non-linear signal interpolation/approximation is more precise than a linear 
scheme since it maintains the equal resolution throughout the entire signal support. Hence, 
such schemes are more useful for signal processing applications. Due to the advent of 
fractional signal processing [3,4], there is also a strong need for devising new decimation and 
interpolation schemes dealing with fractional numbers. In this context, we present an efficient 
scheme for decimation and interpolation of band limited signals in fractional domain using 
non-linear basis functions.  
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In recent years, image interpolation/approximation has become inevitable in both signal 
and image processing. It is found from the literature that the geometrical transformations are 
important fields where it is necessary to resample the higher dimensional signals from their 
discrete samples to an undistorted or reference coordinate system [1, 2]. These techniques are 
applicable to geometrical corrections in different zooming applications.  Due to the advent of 
technology, image interpolation and approximation operations are also useful for the rapidly 
emerging digital image processing techniques used for television for the preparation of 
special effects footage and page make-up activities in the publishing industry. Image 
decimation and interpolation techniques are also useful for biomedical applications.  

The past decade has witnessed renewed research activities in the field of multiresolution 
signal representations which are very effective for analyzing image details at different 
resolution [5, 6]. It is interesting enough to note here that multiresolution signal 
decomposition techniques have become popular due to the developments in wavelet theory 
and applications [5, 6]. In this paper, we have been motivated to introduce a multiresolution 
signal decomposition technique for image decimation and interpolation. Early development of 
image pyramid has been carried out by Burt and Adelson [7]. Image pyramids provide 
multiple copies of an image at different resolutions and, thus, give us a hierarchical data 
structure. However, the image pyramid generation scheme (proposed by Burt and Adelson 
[7]) deals with image representation at a lower sampling rate, which cause image artifacts and 
loss of resolution in the subsequent lower resolution versions of the image. Recently, Yang 
and Nguyen proposed the interpolated Mth-band filters as the interpolating filters that are 
used for image size conversion [8]. However, these methods [7, 8] suffer from loss of 
resolution and need more computation depending on the length of the filters. Further, these 
techniques deal with only integers and use linear mathematical models. Lee et al [9] presented 
wavelet based interpolation scheme for resolution enhancement of medical images using 
interpolation and decimation filters. Adaptive filtering based on selective decimation and 
adaptive interpolation is proposed in [10]. These ideas are useful for echo cancellation. An 
area efficient 4-stream FIR Interpolation/decimation for IEEE 802.11n WLAN is recently 
proposed in [11] which is useful for wireless applications. Recently, multirate signal 
processing approaches are presented in [12] which describe usefulness of decimation and 
interpolation techniques.  

This has motivated us to develop a discrete framework for multiresolution signal 
decomposition and reconstruction in fractional domain using fast recursive filters. The main 
thrust is to maintain equal resolution throughout the entire signal support. Hence, we have 
also been motivated to introduce non linear mathematical models for signal decimation and 
interpolation. Such non linear interpolation models may be useful for different biomedical 
signal processing applications. Here, we introduce a method which is based on the idea of 
low-pass filtering followed by down sampling to avoid aliasing in the subsequent lower 
resolution versions of the signal. The proposed scheme uses a pre-filter to take care of the 
aliasing problem. The proposed pre-filter offers better bandwidth. Thus, the proposed 
technique may be used to generate improved image pyramids. The method may also be useful 
for image decimation and interpolation with improved SNR. 

In this paper, we propose a new decimation/interpolation scheme which is a four stage 
process. First, the signal undergoes through a non-linear mapping to facilitate signal 
approximation within the interval [0, 1]. In the second stage, the signal is passed through a 
pre-filter. In the third stage, the signal is reconstructed by interpolating the sampled data with 
a post filter. Before the third stage, the signal is up sampled by a factor of ‘m’ (resolution 
factor) to facilitate signal interpolation and representation. Finally, the signal is again mapped 
back to the original case through a nonlinear transformation process.  
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This paper presents a discrete framework for signal decimation and interpolation under non 
linear setting. That is why we are using the sigmoid function for dynamic compression at the 
first stage. And in the last stage, we expand back the signal dynamic by using the inverse 
operation. In between, we use linear digital filters for pre filtering and post filtering. Since 
pre-filtering is being done recursively, the output from the post-filter may fall outside the 
range [0, 1] (range of ‘y’). So rescaling has been done (before the last stage) to restrict the 
output within the range [0, 1]. Then we expand back the signal dynamic by means of inverse 
operation. 

The single-dimensional sigmoid function is defined as: 

  xe
y ω−+
=

1
1

             (1) 

 
where w is the weight . The non-linear activation function (sigmoid function) has been 

extensively used in artificial neural networks [13, 14] derived from its utility in Bayesian 
estimation of classification of probabilities [15, 16]. This sigmoid function with three 
different weights has been shown in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The Sigmoid Function for Three Different Weights W=0.0, W=3.1 And 
W=9.9 

New classes of non-linear basis functions have been derived from this sigmoid function. 
Digital IIR and FIR filters have been derived from the coefficients of non-linear basis 
functions. These filters are used for decimation and interpolation of discrete signals with an 
expansion factor ‘m’. The present paper also provides interesting results showing 
factorization of the transfer function of the higher order digital filters. Frequency response of 
the proposed analysis filter has been shown to justify the quality of signal decimation and 
interpolation. 

It has been shown that the basic symmetrical filters can be implemented recursively with 
only three multiplications and additions per sample point, which is an additional advantage of 
the proposed scheme. Higher order filters are decomposed into a set of basis symmetrical 
filters and are implemented recursively. The method of decomposition of higher order filters 
has been explained in this paper. Experimentally it has been shown that the decimation and 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 6, No. 4, August, 2013 

 

 

418 

interpolation of signals (fractional domain) with reduced amount of error can be achieved 
using the proposed technique.  

The organization of the paper is as follows. Section 2 deals with the problem formulation. 
Function approximation on [0, 1] using nonlinear basis functions has been explained in 
Section 3. An example for signal interpolation has been discussed in Section 4. The recursive 
implementation of proposed filters is shown in Section 5. An efficient scheme for image 
decimation and interpolation has been described in Section 6. Section 7 presents results on 
image interpolation and image data compression. Section 8 is the concluding part of this 
paper. 
 
2. Problem Formulation  

In this Section, we present the problem formulation. Explicitly we construct the nonlinear 
basis functions by using the properties of lower order derivatives of the sigmoid function 
discussed in the introduction section. The first derivative of the sigmoid function ‘y’ is 
written as  

),1(
)1( 2 yyw

e
ew

dx
dy

x

x

−=
+

= −

−

ω

ω

                                                 (2) 

The second derivative of ‘y’ is: 

.)1()1(])1([ 11 lklklk ywlyywkyyy
dx
d

−−−=− ++                                              (3) 

Following Eqs. (1), (2) and (3), one can compute higher order derivatives easily. From the 
knowledge of these derivatives, we define the following non-linear basis functions. 

 

Definition 1: The non-linear basis functions of degree ‘n’ are defines as 

( ) ,1)( 1)(

1

)( knkn
k

n

k

nn yyCwxB −+

=

−= ∑                                                      (4) 

where ( )n
kC  are coefficients.  

These coefficients for different higher order basis functions for odd ‘n’ are displayed in 
Table 1. 

Table 1. The Coefficients )(n
kC  

 
            Degree                        k 
              (n)    1  2 3        4          5             6          7          8        9 

 
  3     1         4         1 
  5             1        26       66      26       1 
  7             1       120     1191   2416   1191       120       1 
  9             1       502   14608  88234  156190  88234  14608   502     1 
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From these coefficients ( )n
kC , we have developed different symmetrical FIR and IIR digital 

filters. Filter transfer functions for symmetrical IIR digital filters for different odd values of 
‘n’ are displayed in Table 2. Note that )()( )( zE n  represents the transfer function of the 

digital FIR filter and )()( 1)( zE n −  denotes the transfer function of the digital IIR filter. Some 
important observations of the filters of Table 2 are as follows. These filters (displayed in 
Table 2) are linear phase IIR filters. Therefore they have some poles outside the unit circle 
and , thus, are unstable when used as causal filters. However they can be used in a non causal 
way. This will be clearer when we see the implementation of the basic symmetrical IIR filters 
later in this paper. 

Table-2. Filter Transfer Functions )()( 1)( zE n −  

Degree 
  (n) 

        )()( 1)( zE n −  

3 1/ (z+4+z -1) 
5 1/ (z2+26z+66+26z -1+z -2 ) 
7 1/ (z3+120z2+1191z+2416+1191z-1+120z-2 +z-3) 

9 1/(Z4+502Z3+14608 Z2+88234Z+156190 + 
     88234Z-1+ 14608Z-2+502Z-3+ Z-4) 

 
Theorem 1 : The coefficients ( )n

kC  in Eq. (4) are Eulerian numbers. 

Proof : From definition 1, we observe that the coefficients ( )n
kC  of the power pair 

knk yy −+− 1)1(  can be obtained by using the following recursion. 
( ) 0=n
kC   for  all n if  n<0  or  k<1; 
( ) 11
1 =C ; 
( ) )1(

1
)1( )1( −

−
− −++= n

k
n

k
n

k CknCkC      (5) 
Using the above recursion, one can generate the numbers given in Table 1. On the other 

hand, from the combinatorial theory [16,17], the Eulerian numbers  jlC −  are written as  

( ) ( )n
jl

i

i
jl ijl

i
n

C −−






 +
−= ∑

−−

=
−

1
1

1

0
      (6) 

where 






 +
i

n 1
 are binomial coefficients, 

2
1+

=
nl  and j varies from – l  + 1 to l  – 1 . 

Interestingly, both Eq. (5) and Eq. (6) are equivalent. In fact, Eq. (5) is the recursive relation 
to generate Eulerian numbers given in Eq. (6). Thus, the coefficients ( )n

kC  of the power 

pair knk yy −+− 1)1( are nothing but Eulerian numbers. This proves Theorem 1.  
 
Theorem 2: The higher order filter transfer functions can be expressed in factored form 

given by 
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Proof: Here, we provide a proof for Theorem 2. The main objective of the present paper is 

to provide a non linear function approximation technique. It may be noted here that any 
function can be approximated in terms of the linear combination of the proposed shifted non 
linear basis functions defined in Eq.(4). It is well known from the literature [16,17] that the 
approximated function kf


 (discrete samples) can be written as  

jl

l

lj
jkk Csf −

−

+−=
+∑=

1

1

ˆ        (8) 

where C is the system matrix generated by non-linear basis functions, ks ’s are coefficients 

of approximation, 
2

1+
=

nl  and  11 −≤≤+− ljl . Let ck are the coefficients of the system 

matrix C. Due to the symmetry of Eulerian numbers, we define kd  as  

11 +− ++= kkkk ssrsd        (9) 

where ‘r’ is a variable.  From Eqs. (8) and (9), we obtain a recursive relation of the form 
given by 

21 −− −−= iiii prpcp , for 1,...,5,4,3 −= li     (10) 

with 111 == cp  and   .22 rcp −=  Note that ci  are the elements of the system matrix C.  
In general, kp can be expressed as  

( ) ( ) 12
0

1

0

2
2

11 −−−

≤
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=
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


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Eq.(11)  is a polynomial in r  of degree ( )1−  and can be written as : 

0......3
3

2
2

1
1 =−+− −−−


 grgrgrg      (12) 

By equating the coefficients of Kr −  in Eq. (12) with that of Eq. (11), one can obtain a 
recursive relation for kg  given by 

ik

ki

i

zik

i
kk gcg 2

2
1

1
−

−
≤

=

+−

∑ 





−=


  for  lk ≤≤3                                                (13) 

Eq. (13) has ( )1−  real and positive roots )1,...,3,2,1( −= iri . 
The coefficients kc (same as kC ) are tabulated in Table 1. The coefficients kg  are 

evaluated by using Eq. (13). Then the roots of polynomial given in Eq. (12) can be 
determined by any standard root finding subroutine or by using MATLAB. The coefficients 

kc , kg  and the roots ir  are displayed in Table 3. For a display purpose only, we have 
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provided truncated values of the roots ir  for different higher order filters. However one can 
find out exact values through nay standard root finding algorithm. 

By using the roots ir  displayed in Table 3, the higher order filter transfer functions can be 
expressed in factored form given by 

( ) ( )
( )11

1

1)( 1
−−

=

−

++
=
∏ zrz

zE
ii

n


       (14) 

This proves Theorem 2. 

Interestingly enough, the generic symmetrical IIR digital filter ( ) ( )zE n 1)( −
 can be 

decomposed into a cascade of elementary (basic) IIR filters ( ( )1
1

−++ zrz i
 ) with i = 

1,2,…, .1−  Each elementary (basic) IIR filter can be easily implemented recursively with 
three multiplications and additions. The denominator of the basic symmetrical IIR filter is a 
quadratic polynomial z. Hence, we can find two distinct roots. We have to consider a pole 
which is inside the unit circle to provide stability. This basic IIR filter    may be again 
decomposed into a sum of a causal and an anti causal filters. This kind of decomposition is 
used for efficient implementation of digital IIR filters [18,19]. The recursive implementation 
of such symmetrical IIR filters will be discussed later in Section 6. 

Table 3 
     Degree  
        (n) 

kc   [k = l,….,2,1] kg   [k 
=l,…,2,l] 

ir     [ i 
=1,2,…,l-1] 

       5 66 
26 
1 

64 
26 
1 

2.753049 
23.246951 

       7 2416 
1191 
120 
1 

2176 
1188 
120 
1 

2.403464 
8.282187 
109.314356 

       9 156190 
88234 
14608 
502 
1 

126976 
86728 
14604 
502 
1 

2.252749 
5.158374 
23.179267 
471.409632 
 

      11 15724248 
9738114 
2203488 
152637 
2036 
1 

11321344 
9280208 
2195344 
152632 
2036 
1 

2.173521 
3.946214 
11.230634 
60.006012 
1958.643638 

      13 2275170000 
1505620000 
423282000 
45533500 
1479730 
8178 
1 

1431570000 
1369060000 
417363000 
4549600 
1479720 
8178 
1 

2.126663 
3.335037 
7.338326 
23.183971 
148.417999 
7993.597656 
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Using Eq.(4) one can generate non linear basis functions of any degree ‘n’. The Eulerian 
numbers )(n

kC can be generated using the recursive relations given in Eq.(5). The newly 

introduced non-linear basis functions )()( xB n of four different degrees have been displayed in 
Figure 2 (a)-(d). For a display purpose only we have considered the value of w=2.0. There is 
no indication that the chosen value is optimal. The magnitude and shape of the non linear 
functions varies with the value of the weight ‘w’. To the best of our knowledge, these non 
linear basis functions are not reported in the literature. 
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Figure 2. Non-linear Basis Functions of Different Degree. Note that the weight 
w=2.0 

3. Function Approximation on [0, 1] using Non-Linear Basis Functions 
In this section, the approximation of a signal f(x)=x with a linear combination of the shifted 

non-linear basis functions of degree '3' =n  has been considered. Figure 3 shows the plot of 

the approximated signal ∑
−

=

−=
1

0

)3( ).()()(
N

k
kxBkfxf Note that ‘N’ denotes the number of 

samples.  
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Figure 3. Approximation of the Monomial x with a linear combination of Shifted 
non-linear basis Functions of Degree '3' =n . Note that the Weight Factor w=1.5 

Note that we have chosen the value of weight w=1.5 to get the well approximated results. 
It is observed from Figure 3 that there is no exemplification at the beginning and end data 
points although we consider a typical example here. In this sense, the proposed non linear 
approximation technique seems to be better than other linear approximation techniques 
reported in the literature. The proposed technique can be used to maintain equal resolution 
throughout the entire signal support as shown in Figure 3. Further, this method can also be 
used for signal approximation in fractional domain. The significance of the proposed scheme 
can be further explored if we see the error plot. An error plot for the approximation example 
has been displayed in Figure 4. 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

               x

   
   

   
   

   
   

  E
rro

r

 
Figure 4. Error in Approximation of the Monomial x with a Linear Combination 
of Shifted Non-linear Basis Functions of Degree '3' =n . Note that the Weight 

Factor w=1.5 
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It is noteworthy to mention here that the proposed scheme may be efficiently used for 
uniform approximation of signals by linear combinations of shifted non-linear basis functions 
displayed in Figure 2. To the best of our knowledge, efficient non-linear signal approximation 
techniques using nonlinear basis functions are not available till date.  On the other hand, non-
linear signal approximation is more precise than a linear approximation technique in practice, 
because it maintains the equal resolution throughout the entire signal support. Hence, it is 
useful for both signal and image processing applications. The above approximation example 
(Figures 3 and 4) depicts the fact that the proposed scheme may be useful for signal 
approximation in fractional domain. The best approximation can be achieved by properly 
choosing the weight factor ‘w’. 

 
4. Signal Interpolation Example 

In this Section, an interpolation example has been presented. In this experiment, we use the 
proposed method shown in Figure 5 for interpolation of discrete data. First, the discrete 
samples xk are mapped unto yk through the non-linear transformation. Then it is passed 
through the symmetric IIR digital filter )()( 1)( zE n − . After that the signal is up sampled with 
a factor of ‘m’. Then the signal is passed through a moving average filter for (n+1) times.  
The Eulerian numbers are also written as a generalized binomial kernel )()( ku n whose Z-
transform is given as |1+z-1|(n+1) . This tells us to implement a moving average filter for (n+1) 
times.  The output from the moving average filter is then convolved with the sequence n

mkb . 

Note that the sequence n
mkb  has been derived from the non-linear basis functions with degree 

‘n’ and an expansion factor ‘m’ by sampling. Finally, the signal is mapped back to the 
continuous domain through the inverse mapping shown in Figure 5. 

Here, we consider an example to interpolate a sequence f(m), m=0,1,…,N, of length (N+1) 
into a sequence of length (PN+1) using the proposed technique. Note that P is a positive 
integer to be decided by the user. Eight different test functions have been considered for 
performance evaluation. Usually, the following test functions are considered for interpolation 
experiments. The test functions considered are – (1) f(x) = cos(5πx/32+1) exp(-x/12); (2) f(x) 
= 2 cos (3.1πx/32+1)+ cos (6.8πx/32-2); (3)  f(x) = -0.5 cos(3πx/32): (4) f(x) = x/32; (5) f(x) 
= 4-(x-16)^2/64 ; (6) f(x) = (x+1) ; (7) f(x) = 1.7 sin(3πx/32); (8) f(x) = log(1+x).  These test 
functions have been sampled at unit intervals in between x=0 to x=32. The interpolation of a 
discrete sequence of length 33 into a sequence of length 257 (for this particular experiment) 
has been considered. The following performance measure has been proposed to evaluate the 
performance of the method used. This is given as 

 NMSE [dB] = 10

















 −

∑

∑

=

=

2256

0

2256

0

10

)
8

(

)]()
8

([
log

xin

xoutxin

x

x
    (15) 

where NMSE [dB] is the normalized mean square error expressed in  decibels (dB).The 
performance results are presented in Table 4.  
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         Input Mapping              Pre-filtering         up sampling            
  

                  
  

 ymk            zmk      mkx̂  
 
           
            (n+1) times            post-filtering                   Output mapping 

Figure 5. Block Diagram of an Interpolator 

Table 4. Performance Evaluation 
Test 
function 

  1    2    3    4     5     6    7   8 

NMSE 
[dB] 

-37.73 
 

-39.22 -52.22 -53.43 -85.55 -55.21 -71.92 -69.46 

5. Fast Recursive Implementation 

The transfer function of the symmetric stable IIR filter of order 3 )()( 1)3( zE − is 
decomposed as : 

               ( )( ) 







−

+
−

= −

−

)1()1(
1)( 1

13

az
az

az
lzE       (16) 

The net impulse response is the superposition of a causal sequence c+(k) and an anti causal 
sequence c– (k) , given by 

 
c+(k) = x(k) + a c+(k)   (k = 2, ……k) 
c– (k) = a (x(k) +c– (k))  (k = k – 1,……..,1) 
c (k) = l(c+ (k) + c– (k))   ( k = 1,2,….k)            (17) 

 
where  

l = - a/(1-a2) and a = - 0.2679. The proposed boundary conditions are 
 
  δ=+ )(kC  

  )()( kCkC +− =         (18) 

where δ  is some predefined value. Note that the proposed method can be extended to 
higher dimension. Thank God, these recursive filtering can be successively applied along the 
row and column coordinates of a digital image. Similar decomposition of  B-spline filter is 
also reported in [20]. 

kwxk e
y −+

=
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1
 )()( 1)( zE n −  
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6. Image Decimation and Interpolation 

The image pyramid generation for computing image details at multiple resolutions was 
reported by Burt and Adelson [7]. Burt’s unimodal function [7] used for image approximation 
at a lower sampling rate cause loss of resolution in the subsequent lower resolution copies of 
the image. Here, we introduce a discrete framework (shown in Figure 6) for image decimation 
and interpolation. This approach may provide us decimation and interpolation techniques 
applicable to higher dimension. The important feature of the proposed method is to use 
antialiasing filters in the analysis stage so as to reduce aliasing in the subsequent sub-sampled 
signals. This feature enables us to reduce image artifacts in the lower resolution copies of the 
image under consideration. Thus, the proposed method is more useful in a signal processing 
point of view. In this scheme, such an arrangement of filters is mainly based on the idea of 
low-pass filtering followed by a down sampling to avoid aliasing in the lower resolution 
copies of the image.   
         
           xk                                       yk/m 
 
 

     
Analysis       

             (a) 
 
  
 

yk/m      )(ˆ xf    f(x)
  

 
       
 

Synthesis  
 

   (b) 

Figure 6. Block Diagram of the Filter based Scheme 

In the proposed scheme, symmetrical IIR filters derived from the coefficients of non-linear 
basis functions have been used in the first stage as shown in Figure 6. Different filter transfer 
functions for different odd values of ‘n’ have been displayed in Table 2. 

First, the signal undergoes through the nonlinear transformation. Then it is passed through 
the FIR digital filter )()( zE n

m with an expansion factor of 2, i.e., m=2. After that the signal is 
down sampled by a factor of 2.  The lower version copy of the low-pass filtered image is then 
passed through an IIR digital filter )()( 1)( zE n − .   In   the second stage (synthesis), the signal 

is up sampled by a factor of 2. Then it is convolved with the nonlinear sequence n
mb . The 

digital filter ))(( )( zE n
m with an expansion factor of 2 (m=2) is given by [20] 
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where  )(zM m is a moving average filter expressed as 
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The transfer function of the pre-fitter (analysis filter) is given by  
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Note that the operator [.]↑m represents up-sampling by a factor of m.  The corresponding 

interpolator (synthesis filter) is the convolution operation shown in the Figure 6 (b). 
Normalized gain versus frequency responses of the pre-filter order n=3 has been shown in 

Figure 7. It is observed from Figure 7 that the pre-filter is a low- pass filter which acts as an 
antialiasing filter. It exhibits better bandwidth and cutoff rate.  Interestingly enough, 
maximally flat frequency response can be achieved by considering higher order filters. The 
first stage (shown in Figure 6(a) can be used as the analysis filter for decomposition of images 
into multiple resolution, i.e., fine-to-course resolution.  In the second stage, i.e., the synthesis 
stage, the proposed non-linear basis functions can be used for interpolating the lower 
resolution copy back to the original image size.   

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Normalized Frequency Response of the Analysis Filter 

7. Experimental Results 
In this section, two different examples have been presented to show the potential of the 

proposed scheme. 
 
7.1. Image Interpolation Example 

This example provides interpolation results using zero order, bilinear and the proposed 
interpolation scheme. In this experiment, the magnification of a 32 × 32 detail with a zooming 
factor of 8 has been considered. The test image of size 256 × 256 used for this experiment has 
been shown in Figure 8(a). The result obtained by zero order interpolation has been displayed 
in Figure 8(b). Figure 8(c) shows the result obtained by using bilinear interpolation scheme. 
Finally, Figure 8(d) display the result obtained by the proposed scheme.  
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Figure 8. Image Interpolation Results. (a) Test Image of Size 256 × 256, (b) 

Result Obtained by Zero Order Interpolation, (c) Result Obtained by Bilinear 
Interpolation Method, (d) Result Obtained by the Proposed Scheme 

7.2. Image Compression Examples 

In this Section, image data compression examples using the proposed method have been 
presented. Two different gray level images of size 256x256 have been considered for this 
experiment. Note that the images are subsampled after pre-filtering (i.e., the analysis stage 
shown in Figure 6) and then interpolated with the post filter (i.e., the synthesis stage shown in 
Figure 6). A detailed performance measure using a wider range of compression ratios has 
been displayed in Table 5 in terms of the signal-to-noise ratio (SNR) in decibels. It is 
observed from Table 5 that the performance of digital filters increases with the increase in 
degree ‘n’.  

Table 5. Performance Of The Proposed Scheme Using Digital Filters Of 
Different Order ‘N’ For Image Compression In Terms Of Their Signal-To-Noise 

Ratio (Decibels) For Gray Level Images “Brain” And “Lena” 
Image Compression 

Ratio 
Burt’s 
Method 

               Proposed filters of order ‘n’ 
  n=3                    n=5                   n=7 

 
Brain 

1:4 22.31 27.9
7 

28.2
2 

29.64 

1:16 16.82 22.8
1 

21.7
1 

21.94 

1:64 13.72 17.8
2 

18.3
2 

18.90 

 
Lena 

1:4 20.21 25.9
8 

26.3
5 

27.91 

1:16 14.83 24.5
6 

25.9
2 

26.40 

1:64 12.11 21.8
8 

21.9
8 

23.23 
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8. Conclusion 
In this paper, we have presented a novel scheme for signal decimation and interpolation in 

fractional domain using non-linear basis functions. This approach is simpler and effective for 
signal decimation and interpolation. Factorization of the denominator polynomial of higher 
order filters has been shown. This part of the algorithm makes it easy to implement higher 
order filters. It is observed from Figure 7 that the cut-off rate and the band-width of the filter 
increase with the increase in the degree ‘n’. These higher order filters possess the maximally 
flat characteristics. Interpolation results presented in Table 4 reveal the suitability of the 
method used. 

A discrete frame work for multiresolution signal decomposition using fast recursive filters 
has been presented. New types of symmetrical FIR and IIR digital filters have been presented 
utilizing combinatorial theory. From the frequency response characteristics of the analysis 
filter, it is observed that the proposed method is well suited for image decimation and 
interpolation. Figure 8 depicts the fact that the present technique may be useful for image 
zooming applications. Experimental results produced on image data compression (Table 5) 
reveal the suitability of the proposed scheme. The future extension of the work include the 
construction of wavelet bases [21-22] using proposed central basis functions and their higher 
dimensional applications. Finally, we conclude that there is enough scope for extensions and 
higher dimensional applications of the proposed method. 
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