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Abstract 
Probabilistic latent semantic analysis (pLSA) has been widely used by researchers for 

human action recognition from video sequences. However, one of the major disadvantages of 
pLSA and its other extensions is that category labels of training samples are not fully used in 
model learning procedure for classification task. In this paper, a supervised pLSA (spLSA) 
model is proposed for overcoming this drawback. By adding an observable category variable 
to generative process of classic pLSA, spLSA is endowed with more discriminative power. 
Thus, this model provides a unified framework for semantic analysis and object classification, 
where the topics formulation is guided by spLSA towards more discriminative and the 
mapping between the topics and the action categories are described in a fully probabilistic 
manner. Experimental results show that spLSA substantially outperforms pLSA and achieves 
comparable or better performances than latent dirichlet allocation based supervised models 
and other state-of-the-art methods. 
 

Keywords: human action recognition; supervised pLSA; probabilistic graphical models; 
generative models 
 
1. Introduction 

Human action recognition from video sequences is an active research topic in computer 
vision community [1]. Generative models [2-5], which express the complex relationships 
between observed and target variables, become popular for action recognition. Among them, 
those modelling temporal patterns of actions, such as HMM [2], suffer from very complex 
modeling due to large intra-class variations of human actions. However, Probabilistic Latent 
Semantic Analysis (pLSA) [4], which was originally developed for topics discovery in a text 
corpus, has shown promising results in terms of accuracy, robustness and simplicity. In this 
paper, we propose a novel pLSA based model for human action recognition. 

For action representation, pLSA adopts bag-of-words (BoW) paradigm which consists of 
feature extraction and dictionary construction. In the published literature, the work done to 
feature extraction of human body falls into two categories: holistic representation [6, 7] and 
local representation [8-12]. The former encodes the human body as a whole and the latter 
regards it as a set of 2D patches or 3D blocks. One key advantage of the local representation 
against the holistic representation is that it can preserve most of the information for action 
recognition while accurate localization, background subtraction and tracking are not required. 
In this paper, we apply local representation methods as action descriptors. 

As the most successful BoW based generative and topic models, both pLSA and LDA 
(Latent Dirichlet Allocation) have been deeply studied for classification task. Sivic et al., [13] 
applied this model to discover the categories and the locations of objects in a set of unlabelled 
images. Fergus et al., [14] extended pLSA to include spatial information in a translation and 
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scale invariant manner, and utilized this modified pLSA model to learn an object category 
just from its name. Niebles et al., [15] applied pLSA and LDA to learn the probability 
distributions of the spatial-temporal words and the intermediate topics corresponding to 
human action categories. Wong [16] incorporated implicit shape model (ISM) into pLSA for 
3D video analysis and action recognition. Zhang and Gong [17] proposed structural pLSA to 
model explicitly dynamic adjacent dependencies between words by introducing new latent 
variables. Wang and Mori [18] trained a LDA based model in a “semi-supervised” way for 
human action recognition from video sequences, where the latent topics in their models 
directly corresponded to class labels and some of the latent variables became observed. In the 
multi-class sLDA of Wang et al., [19], the class labels were treated as global descriptors of 
the images and an approximate inference and estimation algorithm based on variational 
methods were derived. Zhu et al., [20] applied max-margin learning method instead of 
maximizing the likelihood of data to train supervised LDA for prediction task. Krithara et al., 
[21] extended pLSA to semi-supervised framework and presented two semi-supervised 
variants of the pLSA respectively with fake labels and a mislabeling error model. Recently, in 
the work by Wang et al., [22], according to whether the word-aspect probability is directly 
used as the pLSA model parameter for classification, two supervised pLSA algorithms were 
proposed, where the latent aspects for training become observable variables and the initial 
values of the word-aspect probabilities are no longer randomly assigned. However, we find 
that the above modified pLSA models suffer from a limitation of being unable to discover 
enough semantic and discriminative information for action recognition. For example, [21] 
manually fixed the probability of category-topic as 1 or 0 according to whether the topic 
component belongs to a certain category and [22] specified the number of topics as the 
number of action classes and took the topic variables as observed ones.  

To eliminate the limitation, we propose a supervised pLSA (spLSA) for action recognition 
in this paper. Specifically, we modify the pLSA in a supervised manner by adding an 
observable variable, which takes on values from the set of ground truth category labels, to 
generative process of classic pLSA. Moreover, since pLSA performs similarly to LDA in 
practice [13], it is interesting to compare the performance between supervised pLSA with 
supervised LDA. We assume that there is a probabilistic mapping between the original latent 
topics and the action categories. By learning these category-topic probabilities, spLSA is 
endowed with more discriminative power and provides a unified framework for semantic 
analysis and object classification, which results in more accurate recognition than pLSA. 

The rest of the paper is organized as follows. Section 2 discusses our supervised pLSA 
model. The model fitting and classification methods of spLSA are proposed in Section 3. 
Section 4 presents our experimental results on KTH dataset, Weizmann dataset and HMDB51 
dataset, and also compares our performance with other methods. Finally we conclude the 
paper and discuss the future work in Section 5. 
 
2. Supervised pLSA 
 
2.1. Classic pLSA 

As the first widely used aspect model, pLSA takes the generative process for 
cooccurrences of words and documents as a probabilistic mixture model, where a latent 
unobserved variable is associated with each observation. We summarize pLSA briefly below 
in the context of video analysis and more details can be found in [4]. Suppose that 

1{ ,..., }Nd d=D is a set of video sequences with words from a dictionary 

1{ ,..., }Mw w=W  , and 1{ ,..., }Kz z=Z  is a set of unobserved topics which is also called 
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latent topics. The joint probability of the cooccurrence of word iw  and video jd  is 

defined by the mixture over latent topics:  

                                                  (1) 

 
where ( )kP z  is the probability of the occurrence of latent topic kz , ( | )j kP w z  is the 

conditional probability of  word jw  given topic kz , and ( | )i kP d z   is the conditional 

probability of  video sequence id  given topic kz . The corresponding probabilistic graphical 
model is shown in Figure 1(a). 

Figure 1. Graphical Models for (a) Classic pLSA and (b) our spLSA. Shaded 
Nodes are observed Variables and Unshaded ones are Unobserved Variables. 

The Plates Stand for Repetitions 

2.2. Supervised pLSA 

Though pLSA has achieved promising results in the application of automatic discovery of 
object categories, it ignores the important category information. To improve the 
discriminative power of pLSA, we add a category variable to its generative process. By 
following the previous definitions of D , W , Z   in Section 2.1, let C  be an action category 
variable that takes on values from the set of classes 1{ ,..., }Lc c=C . Let the category-topic 
distribution ( | )l kP c z  be the conditional probability of  category lc  given topic kz . The 
generative process of our spLSA model for cooccurrences of video sequences, words, and 
categories is described as follows: 

1. Choose a latent topic kz  according to  probability ( )kP z , 
2. Select a video id  according to probability ( | )i kP d z , 
3. Generate a word jw  with probability ( | )j kP w z , 

4. Generate a category lc  with probability ( | )l kP c z . 

Essentially, this generative process implies video sequence id , word jw  and category lc  

are statistically conditional independent given topic kz . So the conditional joint distribution 
( , , | )i j l kP d w c z  can be denoted by ( | ) ( | ) ( | )i k j k l kP d z P w z P c z . As a result, the joint 

probability of word jw , video id , and category lc  can be written as follows: 

( , , ) ( | ) ( | ) ( | ) ( )i j l i k j k l k k
k

P d w c P d z P w z P c z P z= ∑ .                        (2) 

( , ) ( | ) ( | ) ( )i j i k j k k
k

P d w P d z P w z P z= ∑
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Figure 1(b) depicts the probabilistic graphical model of spLSA, where the above 
mentioned conditional independence between variables lead to the removal of lines from node 
d to c and from w to c in original full-linked probabilistic graph. 
 
3. Model Fitting and Classification 
 
3.1. Model Fitting 

For model fitting of spLSA, we need learn the following parameters: 

{ ( ), ( | ), ( | ), ( | ) | {1,..., }, {1,..., },
{1,..., }, {1,..., }}.

k i k j k l kP z P d z P w z P c z k K i N
j M l L

Λ = ∈ ∈

∈ ∈
 

To estimate Λ , we apply maximum likelihood formulation to maximize the following log-
likelihood of the complete data: 

( , , ) log ( , , ),i j l i j l
i j l

L n d w c P d w c= ∑∑∑                                   (3) 

where ( , , )i j ln d w c  denotes the count of word jw  in video id  with category label lc . Due to 

the existing of latent topic kz , there is not a analytical solution. Thus we use EM algorithm 
iteratively for model fitting, which is sketched out in Algorithm 1.  

Given parameters Λ , E-step computes the posterior probability of each latent topic kz  at 
an iteration, by applying Bayes’ formula:   

( | ) ( | ) ( | ) ( )
( | , , ) .

( | ) ( | ) ( | ) ( )
i k j k l k k

k i j l
i k j k l k k

k

P d z P w z P c z P z
P z d w c

P d z P w z P c z P z
=
∑

                (4) 

In the M-step, by using the method of Lagrange multipliers to maximize the expected 
complete data log-likelihood 

( ) ( , , ) ( | , , ) log( ( | ) ( | ) ( | ))c
i j l k i j l i k j k l k

i j l k
E L n d w c P z d w c P d z P w z P c z= ∑∑∑ ∑ ,  (5) 

we can get re-estimation equations:  

( ) ( , , ) ( | , , )k i j l k i j l
i j l

P z n d w c P z d w c∝∑∑∑ ,                                (6) 

( | ) ( , , ) ( | , , )i k i j l k i j l
j l

P d z n d w c P z d w c∝∑∑  ,                               (7) 

( | ) ( , , ) ( | , , )j k i j l k i j l
i l

P w z n d w c P z d w c∝∑∑ ,                               (8) 

( | ) ( , , ) ( | , , )l k i j l k i j l
i j

P c z n d w c P z d w c∝∑∑ .                                 (9) 

The E-step and M-step are repeated until the log-likelihood in Equation (3) converges, 
which is measured by a relative log-likelihood change between two successive EM runs. The 
time complexity of Equation (4, 5, 6, 7, 8, 9) are ( )O K , ( )O KNM , ( )O NM ,  ( )O ML , 

( )O N  and ( )O NM , respectively. So the total time complexity of this algorithm is 
( )O KNM  which is equal to that of pLSA. 
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3.2. Classification 

We cannot directly put a testing video into the above spLSA model due to the absence of 
category label. Alternatively, we adopt the fold-in scheme. Specifically, the testing sequence 

testd  is folded into a classic pLSA model, where the parameters ( )P z  and ( | )P w z  are fixed 
to the values learnt from spLSA. Then ( | )testP z d  can be computed by 

( | ) ( | ) ( )test testP z d P d z P z∝ , where ( | )testP d z  is the output of the classic pLSA. Finally, 

the predictive label c∗  of testd  is indicated as follows: 

( ) arg max ( | ) arg max ( | ) ( | )test l l test l l k k test
k

c d P c d P c z P z d∗ = = ∑ .          (10) 

spLSA inherits the advantage of latent semantic discovery, which is represented by the 
( | )testP z d  distribution, from pLSA, and meanwhile bridges the gap between semantics and 

classification by the category-topic distributions ( | )P c z . Thus, spLSA provides a unified 
framework for semantic analysis and object classification, where the topics formulation is 
guided by spLSA towards more discriminative and the mapping between the topics and the 
action categories are described by the category-topic distributions in a fully probabilistic 
manner. It is worth to be noted that our graphical model in Figure 1(b) is similar to the model 
proposed in [21], but there are fundamental differences between them. In theory, ( | )P c z  are 
regarded as prior probabilities in [21], while they are model parameters in our spLSA. 
Consequently, [21] is time consuming for manual assignment of the values of ( | )P c z , which 
results in an intractable problem when either the number of the latent topics increases or a 
large scale dataset is used. In contrast, these values can be automatically learnt by our spLSA 
in a probabilistic manner, which is more efficient. 
 
4. Experiments and Results 

We tested our model on three public datasets: KTH human motion dataset [23], Weizmann 
human action dataset [24], and HMDB51 dataset [25]. Example frames are shown in Figure 2. 
 
 

Algorithm 1.supervised pLSA 
Input: 
      ( , , )i j ln d w c , where {1,..., }, {1,..., },i N j M∈ ∈  and {1,..., },l L∈  
       The number of topics K  
       The max iteration number t . 
1.Assign the parameters Λ  randomly. 
2.for 1p t= →  
       E-step: For {1,..., }k K∈ , compute posterior probability of kz  by Equation (4). 
       M-step: Re-estimate parameters Λ  by Equations (6,7,8 and 9). 

  If the log-likelihood in Equation (3) converges, break the ‘for’ loop. 
  end for 

Output: The learnt parameters Λ  
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4.1. Datasets 

Figure 2. Example Frames from KTH (Top), Weizmann (center) and 
HMDB51(bottom) 

KTH dataset is performed by 25 subjects. Each subject does six types of actions (walking, 
jogging, running, boxing, hand waving and hand clapping) under four different scenarios: 
outdoors, outdoors with scale variation, outdoors with different clothes and indoors. Now, 
with one missed and one broken removed, there are 598 action video clips available. We 
adopted the original training set and testing set split method, i.e., 9 subjects (2, 3, 5, 6, 7, 8, 9, 
10, and 22) being training set and the rest 16 subjects being testing set.  

Weizmann dataset contains ten types of natural human actions such as ‘run’, ‘walk’, ‘jack’, 
‘jump’, ‘pjump’, ‘side’, ‘wave1’, ‘wave2’, ‘bend’ and ‘skip’. Each action is performed by 
nine different persons. There are 93 video clips available. To increase the amount of samples 
of Weizmann, we flipped all the video sequences along the time axis, thus got a total of 180 
video sequences. Leave-One-Out Cross-Validation (LOOCV) testing paradigm was used and 
average accuracy over all classes was reported.  

To evaluate the scalability of our model, more realistic and challenging dataset, i.e., 
HMDB51, was used to conduct experiments. HMDB51 dataset has been collected from a 
variety of sources ranging from digitized movies to YouTube. There are 51 distinct categories, 
each containing at least 101 clips for a total of 6,766 video clips. It is to-date one of the 
largest and most realistic available dataset. For evaluation purposes, three distinct training and 
testing splits were generated from the database. For each split, 70 clips of each category were 
selected as training set and 30 clips were selected as testing set. Our model was only 
evaluated on stabilized videos of HMDB51 and average accuracy over the three splits was 
reported. 
 
4.2. Experimental Setup 

To verify the robustness of our spLSA on different feature descriptors, we used three 
state-of-the-art spatial-temporal interest points (STIP) detectors and descriptors for the 
three datasets, respectively. Specifically, the code provided by Wang [12] for action 
representation based on dense trajectories and motion boundary histograms (MBH) 
descriptors was used for KTH, the code provided by Dollár [10] for Cuboid detection 
and descriptor was used for Weizmann, and HOG/HOF descriptors [25] provided by the 
dataset were applied for HMDB51. We adopted the BOW scheme to represent the 
action video, where the word numbers were fixed to 4000 and a subset of 100,000 
features sampled from the training videos were clustered by K-means algorithm. As for 
every video clip, once each STIP descriptor is assigned to its nearest word, it is 
straightforward that they are represented as a histogram of these words occurrences.  
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The numbers of latent topics are regarded as model parameters and the optimal ones were 
got by exhaustively searching in a range (Given the category number L , ranging from L  to 
16* L with an increment of L ). To eliminate the influence by initial values of EM, all 
experiments were conducted 5 times and the average accuracies were reported. 
 
4.3. Comparison with other Topic Models 

We compare our spLSA with pLSA+SVM, sLDA1 and MedLDA2 in Table 1 on the three 
datasets. pLSA+SVM uses the topic representation learn by pLSA as the feature vector of 
SVM. For SVM, we used the linear kernel and 5-fold cross validation on training set to select 
the optimal penalty parameter C  from 2{k : k= -1,...,8} . Overall, our spLSA consistently 
outperforms the baseline pLSA by 1.5% to 10.7%. 

Table 1. Recognition Accuracies (%) of our spLSA and other Topic Models 

Method KTH Weizmann HMDB51 

spLSA 95.8 99.3 23.6 

pLSA+SVM 93.9 97.8 12.9 
sLDA 92.1 97.9 18.7 

MedLDA 93.4 98.9 19.7 
 

Figure 3. Confusion Matrix for KTH     Figure 4. Confusion Matrix for Weizmann 

spLSA outperforms pLSA by a small margin on Weizmann dataset, i.e., 1.5%. This is 
because that this dataset is so small and simple that pLSA can distinguish the actions. The 
superiority of spLSA over pLSA is especially large on the realistic and challenging HMDB51, 
where spLSA is 10.7% better than pLSA. This confirms the advantage of capturing both 
semantic and discriminative information when training spLSA model. Though both sLDA 
and MedLDA adopt prior distribution of topics and word-topic, and complex variational 
inference, spLSA performs better than or comparable to these LDA-based supervised models. 
It is similar to the discovery that unsupervised pLSA performs similarly to unsupervised LDA 
in [13]. It is probably because that the prior dirichlet and multinomial distributions of LDA 
based methods fail to model exactly the action variations. 

The confusion matrix for KTH of spLSA is depicted in Figure 3, which shows that the 
biggest classification errors are due to the similarity between ‘jogging’ and ‘running’. Figure 
4 presents the confusion matrix for Weizmann of spLSA, where the only confusion is made 
by the wrong assignment of ‘skip’ to ‘jump’. 
                                                           
1 Available at http://www.cs.cmu.edu/ chongw/slda/ 
2 Available at http://www.ml-thu.net/ jun/medlda.shtml 
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Figure 5. Recognition Accuracies vs. Topic Numbers on KTH 

Figure 5 demonstrates the performance difference of all methods with respect to the 
number of topics on KTH dataset. It is observed that spLSA perform rather stably and 
achieves better accuracies than other topic models over almost all topics numbers except for 
several ones, e.g., 24.  

Table 2. Time Cost (second) of our spLSA and other Topic Models 

method KTH Weizmann HMDB51 

spLSA 9.8 4.5 280.1 

pLSA+SVM 10.4 4.8 290.5 

sLDA 3355.2 262.3 8.46e+4 

MedLDA 760.9 50.5 1.52e+4 

It should be noted that our spLSA is efficient in running time. Table 2 lists the model 
training time cost (Intel CORE i5 Processor, 6G memory, and all methods are implemented in 
C/C++) of our spLSA and other topic models, where topic numbers are fixed to 5 times the 
action category numbers. In this experiment, the penalty parameter C  of MedLDA was set to 
32 for simplicity (the actual time cost may increase when larger C  is used in practice). The 
fewest time cost of spLSA among these topic models means that our model is more suitable 
for real application. Although the computation of ( | )P c z are not required in the model fitting 
of pLSA+SVM, the whole training phrase of baseline pLSA+SVM is more time consuming 
than spLSA due to the cross validation for selecting optimal SVM parameter C . Due to the 
variational inference, the time cost of LDA-based methods are so high (e.g., sLDA costs 
8.46e+4 seconds on HMDB51) that become not very practical in large scale computer vision 
field. 

Table 3. Recognition Accuracies (%) of spLSA and State-of-the-Art Methods 

KTH Weizmann HMDB51 

spLSA 95.8 spLSA 99.3 spLSA 23.6 

Wang et al.[12] 95.0 Wanget al.[22] 100 Kuehne et al.[25] 21.9 

Wong et al.[16] 83.9 Zhang and Gong[17] 93 C2 [25] 23.1 

Niebles et al.[15] 83.3 Niebles et al.[15] 90   
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4.4. Comparison with state-of-the-art Methods 

We further compare the performance of our model with other state-of-the-art methods 
which are topic model based methods or use the identical action descriptor to us. From the 
comparison in Table 3, we can see that spLSA achieves comparable or better recognition 
accuracies. Some of the comparisons are not precise due to the variations in the experimental 
setups. For example, [17] needs human detection processing and [22] requires human tracking 
and detection. However, our method does not need these preprocessing operations, which is 
possibly more practical for real applications.  

On KTH and Weizmann, spLSA outperforms all pLSA based methods, i.e., [15], [16] and 
[17], by a large margin, although [16] and [17] utilize spatial structure information. Because 
of the simplicity of Weizmann, [22] achieve 100% accuracies with the application of 
background segmentation and human tracking and stabilizing. The sPLA yields 99.3% which 
is comparable to them.  

The most impressive comparison is the one on HMDB51 between [25] and our spLSA 
with the identical HOG/HOF feature set but the different classifier, i.e., the powerful SVM for 
[25], where the latter outperforms the former by 1.7%. It shows that the discriminative 
method SVM has not a clear advantage against the spLSA when used on the large scale 
dataset captured from realistic environment. 

Figure 6. Visualization of Representative Model Parameters of spLSA and 
pLSA on HMDB51 (a) ( | )testP z d  of pLSA, (b) ( | )testP z d  of spLSA, (c) ( | )P c z  of 

spLSA 

4.5. Discussion  

Visualizing the representative model parameters learnt by spLSA and pLSA in Figure 6, 
we find that there are three key components that make us to do better than pLSA. First, the 
video specific probability over topics ( | )iP z d  in spLSA (see Figure 6(b)) is more sparse 
than that of pLSA (see Figure 6(a)) by suppressing irrelevant latent topics. The refined sparse 
topics are guided by our spLSA towards more discriminative, resulting in a more valid 
capture of semantic and meaningful information. The second component is that our spLSA is 
flexible and allow the category-topic distributions to be described in a fully probabilistic 
fashion. Therefore, the mapping between topics and categories are ‘soft’, meaning that the 
values vary between 0 and 1. In fact, most of these category-topic probabilities learnt by 
spLSA are zero and a representative non-zero mapping are marked in Figure 6(c). This figure 
indicates that only certain topics, which can be automatically discovered by spLSA, 
contribute to a certain category of action. The last and most important, the many-to-many 
correspondences between topics and categories are the key factors that capture intra-class and 
inter-class variations and effectively bridge the gap between semantics and discrimination. 
For example, the topics contained in different ‘sword’ video sequences may vary according to 
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the changes of illumination, view and appearance, and in contrast, ‘walk’ and ‘run’ may 
consist of the same topic ‘knee lift’, which can be regarded as a minor pattern among actions. 
 
5. Conclusion 

In this work, we have presented a supervised pLSA model. By adding a category variable 
and describing the category-topic distributions in a fully probabilistic fashion, the novel 
spLSA is more discriminative than classic pLSA and its other extensions, and meanwhile still 
keeps the advantage of semantic analysis of pLSA. Although be proposed for human action 
recognition, spLSA can be easily used for other recognition tasks, such as document 
classification, object detection and scene understanding. We have verified the approach on 
three publicly available datasets. The experimental results show that spLSA substantially 
outperforms the baseline pLSA by a large margin and achieves better results than, or 
comparable ones to, several state-of-the-art methods, especially other topic models.  

Our proposed model is still very simple and there are some future work to be done. To 
achieve better results, we will explore the scale-invariant spatial and temporal relationship 
between features under the spLSA framework. It is worth noting that another popular trend is 
combining max-margin learning scheme with topic models. Incorporating max-margin 
learning method into our spLSA would be of value in theory and practice. 
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