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Abstract 
Fetal Electrocardiogram (FECG) can provide important clinical information for the 

assessment of fetal well-being. However, the extraction of FECG from the maternal abdominal 
wall remains an open problem due to various kinds of interferences and noises, where the 
maternal Electrocardiogram (MECG) is the dominant source of interference. In this study, a 
novel FECG extraction framework by combining single-channel singular value decomposition 
(S-SVD) and cyclostationarity-based blind source separation (C-BSS) is proposed. First, the 
MECG signal as the principal quasi periodic component is extracted with S-SVD algorithm from 
a single channel recording. Then, the FECG signal is preliminarily acquired by subtracting the 
MECG from the corresponding abdominal MECG (AMECG) recording. Finally, the FECG is 
further extracted by C-BSS, where a new cost function is constructed with high order cumulant 
and second order cyclic frequency. Results show the proposed method improves the accuracy of 
extracted FECG in comparison with the traditional BSS algorithm like independent component 
analysis (ICA). 
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1. Introduction 

Fetal electrocardiogram (FECG) provides significant clinical information about the healthy 
condition of the fetus, and it is going to be an important tool in modern fetal monitoring system. 
However, due to the overlap in time domain and frequency domain of the maternal 
electrocardiogram (MECG) and FECG, relatively low signal-to-noise ratio (SNR) of the FECG 
compared to the MECG [1], extraction of FECG from abdominal composite MECG (AMECG) 
is difficult and has been a classical problem in biomedical signal processing for more than fifty 
years [2]. In previous researches, varied methods ranging from subspace decomposition to signal 
modeling were proposed. In terms of subspace decomposition method, [3] decomposes the 
composite MECG into appropriate orthogonal subspaces and different subspace correspond to 
different signal source; [4] decomposes the AMECG into wavelet domain thus FECG can be 
extracted. [5] considers the non-gaussian of the signal and separates the MECG and FECG 
through spatial filter. Though these methods are simple and easy to carry out, they have a 
common limitation that they will fail in some special source separation, for they are numerous 
analysis approaches, it means they do the separation blindly without any priori information used; 
In terms of modeling method, the key idea is to model the MECG in AMECG and remove it to 
reserve the FECG. [6] proposes a 3-D dynamical model for generating synthetic ECG Signals, 
[7] proposes the non-linear Bayes filter framework and suppress the MECG successfully. The 
shortcoming of modeling method is that they may eliminate some FECG while remove the 
MECG, also, they must acquire some priori information about MECG in advance. 

In this study, a novel method specifically customized for FECG extraction is proposed. The 
method is separated into three steps. First step is signal preprocessing, aiming to remove the 
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baseline wander (BW), power line inference (PLI), and some other high frequency (HF) noise. 
Second step is a single-channel method, using single-channel singular value decomposition (S-
SVD) to eliminate most of the MECG signal and raise the SNR of FECG signal. Third step is a 
multi-channel method, using the BSS method and priori information of FECG’s cyclostationary 
property, a cost function constructed by fourth-order cumulant and second-order cyclic 
frequencies is applied to extract FECG, where the cyclic frequencies are estimated after second 
step. At last, to get clear FECG signal, we may choose the S-SVD to reprocess the extracted 
FECG. 

The rest of the paper is organized as follows. In Section 2, the theory of SVD and 
cyclostationary stochastic process are reviewed, then the proposed FECG extraction method is 
presented in Section 3 and Section 4 presents the performance of the proposed method in 
comparison with kurtosis-based fast independent component analysis (ICA), Finally, a 
conclusion on this method is given in Section 5. 
 
2. Theoretical Background 
 
2.1. Theory of SVD 

For m n×  matrix A , problem of SVD is finding the matrices , ,U VΛ , it can be shown as : 

                        
T

m n m m m n n nA U V× × × ×= Λ                                         (1) 

Where ,U V  are unitary matrices, m mU R ×∈  is the left singular matrix of A  and n nV R ×∈  is 
the right singular matrix of A , they form a basis for the column-space and the row-space of A , 
respectively. 1 k[ { ,..., }: 0]diag λ λΛ =  is a diagonal matrix and its diagonal values 1 k,...,λ λ  are 
singular values of A , singular values are generally arranged 1 2 k...λ λ λ≥ ≥ ≥  and k  is the 

minimum in set { , }m n . If 2 2
1 2/  >> 1λ λ , principal  component of the signal will be concentrated 

in subspace 1 1 1
TU Vλ ,where 1 1,U V  is the first singular vector of ,U V  , respectively. And the 

concept of extract principal component plays an important role in present work. 
 
2.2. Theory of Cyclostationarity 

Considering (n)x  is a non-stationary stochastic process, if its one-order and second-order 
statistical characteristics varied periodically with time, ( )x n  is called cyclostationary process or 
periodically correlated process [8]. For ( )x n , time-varied autocorrelation function 
denotes ( )xxR n , assuming period of ( )xxR n isT , time delay is m  , it can be expressed as: 

                 2

( + / 2, / 2) ( + / 2 , / 2 )

( )
xx xx

j n
xx

R n m n m R n m T n m T
R eα πα

α

τ

− = + − +

=∑                        (2) 

Where α is cyclic frequency corresponding to ( )x n , =n / ,T n Zα ∈  is n times of 
fundamental frequency 1/ T . ( )xxR mα  is Fourier coefficient of time-varied autocorrelation 
function ( )xxR n , or call it cyclic autocorrelation function. It can be expressed as: 

                          21( )= lim ( )
2 1

N
j n

xx xxN n N
R m R n e

N
α πα−

→+∞
=−+ ∑                              (3) 

Cyclostationary process ( )x n with cyclic frequency α has the following properties [9]: 

                        
i j

2*
i( )= x (n)x (n+m)e 0i ij

x x j
n

n
R mα πα− = , if  i j≠                            (4) 
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Where 
n

⋅ is a time average operator and the properties will be used in present work. 
 
3. Methods 
 
3.1. Principles of S-SVD 

For a single-channel discrete signal ( ) { (1), (2),..., ( )}X n x x x n= , where n  is sample number. If 
the signal is periodic or quasi-periodic, assuming the number of period is m and maximal period 
length is L , then resample the length of each quasi-periodic intervals to L and a periodic matrix 
A  for S-SVD can be configured with m  row and each row is a period of the signal ( )X n . A can 

be described as: 

                             

(1) (2) ( )
( 1) ( 2) (2 )

(( 1) 1) ( 1) 2 ( )

x x x L
x L x L x L

A

x m L m L x mL

 
 + + =
 
 − + − + 





   



                           (7) 

Note: in real life environment, a strict periodic signal can hardly be found. So consider the 
case of the signal is quasi-periodic and the first or last period is not complete, the following edge 
processing may be needed. 

1) For a simple method, the characteristic points of each period are detected firstly and 
signal is truncated to abandon the first and last un-complete period, then each complete period is 
resampled to the length of L  and periodic matrix A is configured with each row including a 
complete period of the signal. This method can be simply carried out but will lose the 
information of the first and last period of the original signal. 

2) For an improved method, which processes all the signal periods including the un-
complete ones; using the aforementioned simple method to configure the periodic matrix A , and 
then the first and last un-complete period are resampled in proportion to the nearby complete 
periods. For example, assuming the first un-complete period length is 1L  and its nearby 

complete period length is 2L , so the length of the resampled first un-complete period is 1

2

L
L

L
. 

Then configuring another two periodic matrices fA , lA  with L  points in each row to extract the 
principal component of the preliminary and terminative un-complete periods, respectively. The 
starting point in the first row of fA and lA  is the first sample point and the last sample point of 
the resampled original signal, respectively. The residual points fail to configure a row of fA  

or lA  are abandoned. 
After periodic matrices are configured, SVD is used to extract the principal component in 

each periodic interval of the resampled signal. The most dominant component will be 
concentrated in subspace 1 1 1

TU Vλ , and residual component can be given by ( )1 1 1- TA U Vλ . 

Principal periodic component 'X  can be obtained through numerical operator 1 1 1
T

iU Vλ  and the 

additional information mixed with noise will in ( )'X X− , where 1iU is the thi element of 1U  

and 1λ is the first singular value. Considering synchronization with original signal, 'X should be 
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resampled to the original sample rate before ( )'X X−  and the resampling process should be do 
periodically by periodically. 
 
3.2. Principles of C-BSS 

The problem of BSS has been widely studied for its ability of recovering latent sources solely 
from knowledge of observation signals [10]. The linear mixture model, which describes the 
instantaneous mixing process, will be used in present work can be written as: 

                                    ( ) ( ) ( )X n AS n N n= +                                        (8) 

Where n  is the number of samples, 1 2( ) [ ( ), ( ),..., ( )]T
mX n x n x n x n= is observed signal and 

1 2 '( ) [ ( ), ( ),..., ( )]T
mS n s n s n s n=  is latent sources; ( )N n  is additive noise, statistically 

independent with source signals. 'm mA R ×∈  is a full-rank matrix modeling the transfers from 
sources to sensors, m  and 'm  denote sensor number and source number, respectively. All 
signals here are assumed of finite power and zero-mean. The present purpose is to estimate 
S and A . Under assumption of mutually independent of ( )is n and 'm m≤ , the linear mixture 
model can be solved by high order statistical methods, known as ICA [11].  

In ICA context, estimation of an individual source denotes ( ) ( )Ty n w X n= , where ( )y n  and 
w  is the estimator of ( )s n  and the corresponding un-mixing vector, respectively. The cost 
function can be constructed from kurtosis of ( )y n : 

                               4 2 2( ) ( ) 3( ( ))kurt y E y E y= −                                    (9) 

If the source signals are non-gaussian and independent distributed sequence, un-mixing vector 
w corresponding to the source ( )y n  can be estimated by maximizing the cost function [12]: 

                                         ( )J kurt y=                                                (10) 

But in this paper, the source signal is cyclostationary rather than stationary. Estimating 
( )kurt y  consistently from a finite number of X  is difficult if the cyclic frequencies of the 

second order statistics of the observations are unknown, especially in case of short samples. For 
statistical characteristic of X  is time-variant and time average and cannot replace statistical 

average. Under mild technical assumption, 4( )E y  can be consistently estimated by 4

1

1 i n

i
y

n

=

=
∑ [13], 

but 2( )E y  can’t be consistently estimated without any priori information of the cyclic 
frequencies corresponding to ( )X n .  

Using Parseval identity 2( )E y  can be written as: 

                                  
+

2 2 0 2 2( ( )) =| (0)| +2 | (0) |yy yy
U

E y R Rα

α∈
∑                           (11) 

Where the right side of the equation from 0 (0)yyR is a constant, here 0 (0)yyR  is normalized to 

1, and 
+

22 | (0) |yy
U

Rα

α∈
∑  comes from equation (0) (0)yy yyR Rα α−= , and U +  stands for the positive 

cyclic frequencies. After substitution 2( )E y  of Eq.6 into Eq.8, J  can be written as: 

                                  
+

4 2= ( )-6 | (0) | -3yy
U

J E y Rα

α∈
∑                               (12) 
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In practice, all the cyclic frequencies should be estimated in advance and this is a price to pay 
in present work. 

The overall C-BSS algorithm can be expressed as follows: 

1) Find the cyclic frequencies Uα +∈  of the observed signal. 
2). Repeat, while [1,..., ]k n∈  

3). Calculate the thk  un-mixing vector =[w (1),w (2),...,w (m)]T
k k k kw through maximizing the 

cost function J , where m is row number of ( )kX t  and the thk source signal 
is ( ) ( )T k

k ky t w X t= .  

4). Subtract contribution of the source extracted at the thk , so (k+1) ( )X t  can be expressed as: 
( 1) ( )( ) ( ) ( )k k

k kX t X t w y t+ = − ⋅ . 

5). ( 1)( ( ))kc F x t+←  
6). Until _c th value≤  

In this algorithm, ( )F ⋅ is a function used as the stopping criterion, stopping criterion of 

the thk output can be defined as: 

 

( ) 2
( )

(1) 2

( ( ))
( ( ))=

( ( ))

k
i jk

i j

x t
F x t

x t
∑ ∑
∑ ∑

.                                  (13) 

_th value is predefined as a stopping threshold, and it approximates to zero generally.  
 
4. Application in FECG Extraction 

In noninvasive FECG extraction, the FECG is contained in composite AMECG signal 
recorded from maternal abdominal lead. The signal is a mixture of MECG component, FECG 
component and some common high-amplitude noises that can’t be removed by simple in-band 
filtering, such as baseline wander (BW), muscle artifact (MA), electrode movement (EM) and so 
on. Due to physiological reasons, MECG and FECG components are mutually asynchronous and 
overlapping in both time domain and frequency domain. Satisfactory results cannot be achieved 
by directly using the tradition BSS methods. 

In the following, the proposed method is used for FECG extraction. Algorithm framework is 
presented in Figure1. It consists of a signal preprocessing step that applies a notch filter to 
remove PLI and a low-pass filter to remove the BW. The S-SVD is then applied to eliminate 
most of the MECG signalfor MECG is the largest interference in composite AMECG and its R 
wave can be easily detected. The output of this step is a multichannel signal which is a mixture 
of FECG, little MECG and noise. , FECG is further extracted by C-BSS in the last step which is 
the kernel of this algorithm framework, where a new cost function is constructed with four-order 
cumulant and second-order cyclic frequency. 

Signal 
Preprocessing

Single Channel 
SVD

Single Channel 
SVD

Single Channel 
SVD

..

. '(t)X
Cyclostationarity-

based Source 
Separation

Cost Function

( )y t
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Figure 1. Fetal ECG Extraction Algorithm Framework 
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4.1. The Data 

The latest abdominal and direct fetal electrocardiogram dataset recorded in the Department of 
Obstetrics at the Medical University of Silesia is used for illustration [14]. These recordings are 
obtained from 5 different women in labor, between 38 and 41 weeks of gestation. Each recording 
comprises four differential signals acquired from maternal abdomen leads and the reference 
direct FECG recorded from the fetal head with a sampling rate of 1000Hz. All the records in 
dataset have a low FECG SNR and many existing linear source separation methods, such as 
SVD, ICA can’t extract FECG directly. But on the contrary, it has an advantage of its reference 
direct FECG which can be used as a golden criterion in source separation.  

For this real ECG data, it is impossible to evaluate SNR of the extracted FECG; in order to 
have a quantitative evaluation, similarity of mean FECG heartbeat comes from extracted FECG 
is used. Definition of mean ECG heartbeat is introduced in [15]. 

As an illustration, 10 seconds of data in record 04 is used as test data and it requires additional 
digital filtering for removal of PLI (50Hz) and BW first[14]. In Figure 2 (a), test data is depicted 
and after signal preprocessing, it is depicted in Figure 2 (b), where the first channel is direct 
FECG and the others are AMECG, as we can see in Figure 2 (b) the BW is removed and result 
of PLI cancellation can be seen in its frequency spectrum. 
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Figure 2. (a). Test Data with One Direct FECG and Four AMECG. (b) Test Data 
after Signal Preprocessing 

4.2. MECG Suppression Using S-SVD 

MECG signal has a quasi-periodic structure that is repeated in every cycle of the maternity 
ECG heartbeat and amplitude up to 20 times stronger than the FECG signal [16, 17]. For a 
single-channel AMECG signal, the priori information (MECG’s quasi-periodicity) is used to 
form the periodic matrix with each row is a heartbeat of the MECG, and then the SVD is used to 
extract the principal component of each beat, then matrix reconstruct makes it possible to obtain 
the principal periodic component of the AMECG signal. As an illustration, , most of the MECG 
is extracted with scarcely noise and FECG when using S-SVD to process each abdominal 
channel of test data. Extracted MECG are depicted in Figure 3 (a), and then eliminating the 
MECG, the noisy FECG are depicted in Figure 3 (b), in red dash line markers, we can see a few 
MECG are remained. As most of the MECG is suppressed, R wave of FECG can be seen, but 
due to R wave of MECG and impulse noise, detection of R wave of FECG cannot be realized 
easily. 
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Figure 3. (a) Extracted MECG from Test Data Using S-SVD. (b) Remained Noisy 
(include FECG, MECG and noise) FECG from Test Data after S-SVD 
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4.3. FECG Extraction 

ECG signals originating from the hearts of the mother and the fetus are independent of each 
other [18] and FECG is a cyclostationary signal in statistical domain and cyclic frequencies often 
appear as high peaks in its power spectral density (PSD) [19]. So the proposed method can be 
used to extract FECG from noisy FECG, and then kurtosis-based ICA is used as the benchmark 
method. Compared with periodicity estimation in time domain, estimation of cyclic frequency 
can be in low SNR case and different cyclic frequency corresponds to different cyclostationary 
signal while impulse noise doesn’t have cyclic frequency. Figure 4 depicts a zoom on part of 
PSD of the noisy FECG, red markers correspond to the part of the cyclic frequencies of FECG 
(FCY), and here cyclic frequencies are normalized to set [ , ]1 / 2 1 / 2U −∈ . It can be seen that the 
spectrum is discrete, so the statistical characteristic of FECG is quasi-periodic, and it also means 
FECG is a cyclostationary signal.  
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Figure 4. PSD of Noisy FECG from Record 04, Normalized Cyclic Frequencies are 

[0.0021,0.0042,0.0062,0.0084,0.0105,0.0126,0.0146,0.0167,0.0188,0.0209,0.0231] 

Then combining the estimated cyclic frequencies, FECG is extracted by C-BSS. Figure 5 (a.1-
a.3) shows the direct FECG of test data, results of extraction using C-BSS and kurtosis-based 
ICA, respectively. Figure 5 (b) shows a zoom on part of Figure 5 (a.1-a.3). In Figure 5 (b), we 
can see that the extracted FECG is clear. 
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Figure 5. (a.1-a.3) Reference Directs FECG of Test Data, Result of Extraction 

using C-BSS and Kurtosis-based ICA. (b) A Zoom on Part of (a.1-a.3) 

Numerical results on the performance of the proposed method are carried out under different 
length of test data. Using the aforementioned quantitative evaluation method, mean FECG 
heartbeat comes from direct FECG (D-FECG), FECG extracted by C-BSS (C-FECG) and 
kurtosis-based ICA (I-FECG) are depicted in Figure 6, time above the pictures are the length of 
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test data. Similarities of mean FECG heartbeat between D-FECG and C-FECG and similarities 
of mean FECG heartbeat between D-FECG and I-FECG are presented in Table 1. Results show 
that the proposed method improves the accuracy of the extracted FECG in short data cases in 
comparison with ICA and the two methods tend to perform similarly as the length of test data 
increases. 
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Figure 6. Mean FECG Heartbeat of D-FECG, C-FECG, and I-FECG. Time above the 

Pictures are the Length of Test Data 

Table 1. Similarities of Mean FECG Heartbeat between D-FECG and C-FECG. Vs. 
Similarities of Mean FECG Heartbeat between D-FECG and I-FECG 

Time(s) C-BSS kurtosis-based ICA 
2 84.85% 84.56% 
3 85.11% 84.86% 
4 85.95% 84.92% 
5 88.33% 87.56% 
6 88.98% 88.79% 
7 89.18% 89.11% 
8 90.34% 90.38% 
9 89.21% 88.76% 
10 87.91% 88.09% 

5. Conclusion 
In this paper, a new FECG extraction framework is proposed. The method is based on S-SVD 

and C-BSS. It has been discussed that the S-SVD method can suppress most of the MECG, so 
cyclic frequency of FECG in noisy scenario can be estimated accurately, which is a priori 
information can be used in C-BSS to extract FECG. Results have shown that the proposed FECG 
extraction method improves the accuracy of the extracted FECG in short data cases in 
comparison with traditional BSS method. 

In future works, the idea of using cyclostationary property to extract FECG can be studied in 
high order cyclic frequency and semi-blind extraction of interest signal.  
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