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Abstract

Sampling rate conversion is, in general, implemented using time domain based poly-phase
filter structures. The other way of implementing multi-rate signal processing is frequency
domain based approach, which has the advantage of computational savings. This paper
clearly explains how to apply frequency domain processing techniques for sampling rate
conversion. The proposed approach is applied to both power of 2 and non-power of 2
sampling rate conversion factors. The properties of FFT are utilized analytically to solve the
implementation problems such as non-power of 2 sampling rate factors. The theoretical
computational complexity of the proposed approach is provided. The simulation results of
proposed approach are compared with the quality of time domain approach and the
comparison shows that differences are insignificant.

Keywords: Complex FFT, Computational complexity, Decimation, Interpolation, Sampling
Rate Conversion, Overlap save method

1. Introduction

In many practical applications of signal processing, it is desired to convert the sampling
frequency of signals due to the variation in operating bandwidth of various systems. The
conversion could be either increase or decrease in sampling frequency depending on the
system requirement. Sampling rate conversion (SRC) can be achieved in two ways. The
signal could be converted to analog signal at input sampling frequency and resampled using
analog to digital conversion at the desired sampling rate. This method has some disadvantages
in terms of quantization error and signal distortion that occur during analog to digital
conversion and vice versa. The other way of achieving sampling rate conversion is using
digital domain [1-3].

In synchronous SRC, there exists an integer relationship between input and output clock
rates, whereas in asynchronous SRC, it is the fractional relationship. In decimation, the input
signal is filtered at the desired sampling rate before applying decimation factor to avoid
aliasing effects. In case of interpolation, zeros are inserted between two successive samples of
input signal and then filtered to avoid the image noise. The number of zeros to be inserted
depends on the interpolation factor. Typically this value will be interpolation factor minus
one. [1-3].

For efficient implementation of sampling rate conversion, one usually prefers time
domain based poly-phase filtering structures where the redundant MAC (Multiply and
ACcumulate) operations are eliminated. In decimation process, only the selected
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samples based on decimation factor will be transmitted and hence filtering is required
for the selected samples. In case of interpolation, the MAC operation result becomes
vanish for the inserted zeros. In both methods, the time delay line filter (history buffer)
is updated with appropriate contents of the input signal without losing any samples [1-
3].

In [4], Ricky Lyons explained about the optimization procedure using the symmetric
nature of filter coefficients. Because of symmetry, the memory to store filter
coefficients becomes half. The contents of delay line filter are read from start and end
simultaneously and added. The sum is multiplied with appropriate filter coefficient.
With this, the number of multiplications could be reduced by half but requires more
instructions to access the delay buffer contents.

The techniques explained by Candan [7], V. Valimaki [8], J. Vesma and T. Saramaki
[9] are suitable for time domain based fractional delay interpolation and these are meant
for asynchronous SRC.

In this paper, the frequency domain mathematical background is analyzed for
synchronous SRC cases and implementation in frequency domain is explained for
decimation, interpolation. For implementing these methods, overlap save method was
used. A MATLAB simulator code is developed based on the proposed approach and
simulation results are provided in Appendix. For the convenient of explanation, the
figures in reference [1] are reused in this paper.

This paper is organized as follows. Sections 2 and 3 explain frequency domain based
implementation for decimation and interpolation respectively. It contains
implementation procedure and theoretical computational complexity details. Section 4
provides MATLAB code details, simulation results. Section 5 explains conclusion and
future updates. MATLAB code is provided in Appendix.

2. Frequency Domain based Decimation

As shown in Figure 1, decimation process contains filtering of input signal x(n) with
impulse response h(n) followed by decimation process [1]. Let v(n), y(n) be the filtered &
decimated outputs and let V(w,), Y(w,) be their continuous frequency domain equivalents
respectively.

Figure 1. Decimation Process
The frequency domain outputs can be expressed as
V(@)= X(o,)H(o,) M
Y(o,)= %TZ;V (%j (2)

where wy and wy are the continuous frequency variables of x(n) and y(n) respectively[1].
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The above equation could be understood in better way by expanding equation (2) for D = 2
and D = 3, for example.

When D = 2,

O OR)

Similarly, when D = 3,

o))

In equations (3) and (4), the first term in brackets i.e., V(w/2) or V(w,/3) is
downsampled component of the filtered signal and the remaining terms are aliased
components. The frequency domain equivalent of decimated output, is, thus, equal to
the sum of the downsampled and the aliased components, divided by the decimation
factor.

The variation of continuous frequency variable w, from 0 to 27 is equivalent to the
variation from 0 to N—1 in discrete domain. When w, is varying from 0 to 2m, the
decimated frequency variable o, varies from 0 to 2z/D. In other words, discrete
equivalent of o, varies from 0 to N/D—I. It can be expressed, mathematically in
discrete domain, as

V(k)=X(k)H(k), k=01..N-1 (5)
1 Ni
Y(k)=BiZ_O:V(k +Ej’ k=012..,N[ -1 (6)

As the length of discrete decimated frequency variable, k, is N/D, it is sufficient to apply
FFT size of N/D while evaluating the IFFT of decimated frequency output.

2.1. Frequency Domain based Implementation of Decimation

The implementation procedure is explained in Figure 2 for decimation factor of 2.
Usually in time —domain, the input buffer length is chosen based on the length of filter
coefficients and the output frame length. The necessary condition is that input frame
length must be equal to decimation factor multiplied by output frame length. For
example, if output frame length is 64 and decimation factor is 2, input frame length is
128. In case of overlap save method, the input FFT length is selected as N = L+M-1
where L is processing frame size and M is the filter length. For this case, input buffer
length becomes N = 128 + 128 -1 = 256 (as N must be a power of 2 due to FFT usage)
with the assumption that filter length is 128.

Initially, all input and output buffer contents are zeros. Framel (128 samples) will be
filled in input buffer. The FFT will be calculated for 256 length input buffer. Also FFT
coefficients will be calculated with the same length of 256 at one-time and used for
each frame. The two complex FFTs are multiplied. Now the first half of the resultant
buffer contains the downsampled frequency contents and the 2" half contains the
aliased downsampled frequency contents. These two buffers are added (as per equation
(6))and IFFT will be applied to the complex frequency sum. The IFFT length becomes
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(1/D) times input FFT length due to addition of downsampled and aliased contents. The
scaling factor 1/D (from equation (6)) should be applied to IFFT output. From the
resultant IFFT output, only L/D (L is the input time domain length) samples are
transmitted as final decimation output.

When 2™ frame arrives, it will be filled in 2™ half of the input buffer without disturbing the
1% frame. Similarly, 3" frame will be filled in 1% half of the buffer with 2™ frame retained as
it is. After frequency domain process, the decimated buffer (L/D samples) depends on which
portion of input buffer was filled for processing.

The above procedure is common for any decimation factor. But in general, the frame
lengths could be selected as power of 2 due to the usage of FFT. If decimation factor is
not a power of 2, this could cause in making FFT length as power of 2. For example, if
decimation factor is 3 and output FFT buffer length is 128, input buffer FFT length
becomes 384, which is not a power of 2. This causes issue while calculating input
buffer FFT. In Appendix-A, a method was given how to find out FFT for non-power of
2 lengths.

Downsampled component Segment the multiplier output

of input signal into decimation number of
To be
parts and sum all the parts transmitted
index by index
Framel
FE FFT Buffer FET Complex FET
obtained . _ Frequency Downsampled Aliased IFFT
from X co;:;;?m - Multiplier Component Component Output

FRAME1 Output

Zeros
To be

discarded
Aliased component @

of input signal

Frame3
Framel
Frequency % To be Frequency % To be

Domain IFFT discarded Domain IFFT transmitted
Decimation Output Decimation Output To be
Process Process discarded

To be
transmitted Frame2

©

Figure 2. Frequency Domain Implementation of Decimation. The Decimation
Factor here is D=2. For other Decimation Factors, the Buffer Sizes will Vary
Accordingly

Frame2

2.2. Computational Complexity of Frequency Domain based Decimation

Table 1. Theoretical Computational Complexity of Decimation using Overlap
Save Method. Here O(N) = Nlog,N

To Complex Complex Additions Remarks

Calculate | Multiplications

X(K) 0.5 O(N) O(N) Complexity for calculating X (k) for
each frame using FFT of length N.

V(K) N - Complex Frequency Multiplication
using equation (10)

Y (K) - N(D-1)/D Complex frequency addition of

downsampled  component and
aliasing components

y(n) 0.5 O(N/D) O(N/D) IFFT calculation of Y(k) . Here
IFFT length is N/D.

Total N+0.5[O(N)+O(N | N(D-1)/D + O(N) +
/D)] O(N/D)
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The computational complexity details described in above table are valid if decimation
factor is a power of 2. For non-power of 2 decimation factors, computational complexity is
increased and is described in Appendix A.

3. Frequency Domain based Interpolation

As depicted in Figure 3, interpolation process contains insertion of (I -1) zeros between
successive samples of input signal and filtering with impulse response h(n) for an
interpolation factor of I [1].

x(n) v(n)
T | LPF, h(n) y V()

Figure 3. Interpolation Process

For signal notation of Figure 3, one could easily show that
Vie,)=X(lo,) (7
Y (a)y ) =V (a)y )H (wy ) )

where o, and wy are the continuous frequency variables of x(n) and y(n) respectively[1]. The
relation w,- w,/1 holds good.

If the frequency variable w, varies from 0 to 2z/1, then w, varies from 0 to 2z. The
spectrum V(wy) contains (I —1) images of spectrum X(wy) along with actual spectrum of x(n).
If X(k), k = 0to N/I —1 is the discrete input spectrum, discrete equivalent of V(wy) is obtained
by copying X(k) in | times. In general, this can be expressed as

V(k+iTN)= X (k) (©)
where k=0,1,.N/l -1andi =0, 1, 2,...1-1. For | = 4, this could become

V (k)= X (k) (10)
Vv k+%j=x(k) 12)
Vv k+%j=x(k) 12)
Vv k+BTNj:X(k) (13)

where k = 0,1,..N/4 -1. The discrete equivalent of filtered output spectrum is simply obtained
by multiplying this spectrum with that of H(wy).

Y(k)=V(k)H (k) (14)
where k =0to N —1. The FFT size should be N while evaluating filtered output using IFFT.
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3.1. Frequency Domain Implementation of Interpolation

Figure 4 provides the details of frequency domain implementation for interpolation. The
selection of input and output buffer lengths is quite opposite from decimation process. Here
the output buffer length is interpolation factor times the input buffer length. For interpolation
factor of 2, input FFT length becomes 128 if output FFT length is 256. The corresponding
input and output time domain lengths are 64 and 128 respectively.

Initially 1/0 buffers contain zeros. Input Frame 1 (64 samples) will be filled in 1
half of input FFT buffer and FFT is calculated. The FFT contents are copied into
separate buffer | times (as per equation (12)). The one-time coefficients FFT is
calculated with size equal to output FFT length. The FFT buffer contents after forming |
images is multiplied with those of coefficients FFT contents. To the resultant FFT
multiplied output, IIFT is applied to get the interpolated time domain output. The 1°
128 samples are transmitted as output frame.

As described in decimation process, the interpolation factors are also non-power of 2.
Appendix- A could be referred for such FFT calculations.

Form the image with

input FFT
Framel ol Buffer EET of To be
FFT | Obtained f transmitted
.y from input Complex
Zeros FRAMEL FFT Frequency IFFT IFFT
Coefficient  —» Multiplier —>  output
Image of Buffer Output Tobe
Input FET discarded
To be To be
Eramel Frequency discarded Frame3 Flr:t)equency transmitted
Domain IFFT _ omain [ IFFT
| Decimation | —® = Output To be Decimation Output To be
Frame2 Process transmitted | FTame2 Process discarded

©)

Figure 4. Frequency Domain Implementation of Interpolation. The interpolation
factor here is I=2. For other Interpolation Factors, the Buffer Sizes will Vary
Accordingly

3.2. Computational Complexity of Frequency Domain based Interpolation

Table 1. Theoretical Computational Complexity of Interpolation using Overlap Save
Method. Here O(N) = Nlog,N

To Calculate Complex Multiplications Complex Additions | Remarks

X(k) 0.5 O(N/1) O(N/) Complexity for FFT

calculation of length
N/I
Y(k) N - Complex frequency
multiplication
y(n) 0.5 O(N) O(N) IFFT calculation of
length N.
Total N+ 0.5[ O(N) + O(N/) ] O(N)+O(N/I)
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The computational complexity details described in above table are valid if interpolation
factor is a power of 2. If decimation factor is not a power of 2, there will be additional
complexity to be considered and is described in Appendix A.

4. Simulation Results and Discussion

The proposed methods of decimation and interpolation were simulated on MATLAB [11]
platform. The simulator code is capable of performing decimation and interpolation for any
sampling rate factor. The input signal provided to the simulator code is 44.1kHz, 0dB, 24-bit
stereo signal. This signal basically contains sine tones. The complex input is formed with two
channels. The outputs of frequency domain and time domain processing are compared for
various sampling rate factors. Fig. 6 shows spectrum comparison. The deviation of SNR and
THD+N between input and the two outputs are clearly negligible.

Since precision in MATLAB is of double datatype, the same precision may not possible in
fixed point DSP processors as bit width (typically 16) of these processors is less. To obtain
high SNR and low THD+N value, it is recommended to use floating point 32-bit processors
(such as SHARC 21xxx processors) for real-time implementation of these techniques.

4.1. Application to Fractional Rate Conversion

In fractional rate conversion, input and output sampling frequencies are related with
arbitrary ratio. In this process, interpolation is performed first and then decimation. This is
because spectral contents of input signal will be lost if decimation is performed first. Also the
cutoff frequency of the filter in this method is minimum of that is needed for decimation and
interpolation [1-3].

The proposed frequency domain decimation and interpolation can be directly applied to
fractional rate conversion if decimation and interpolation factors are less than 5 roughly. The
procedure described in Sections 2 and 3 is combined to implement fractional rate conversion.
If these values are more than 5, the memory required to store FFT buffers is large. For such
conversions, it is better to proceed with the existed time domain techniques based on band-
limited interpolation proposed by Gosset and Smith [5]. Apart from this, Lagrange
interpolation and Farrow fractional delay structures are well suited for optimized
computational complexity [6-9].

4.2. Limitations

The proposed methods have some limitations. If sampling factor becomes more,
either input or output FFT length becomes large, where DSP needs more memory to
store the related buffers to calculate FFT. If DSP internal memory is not sufficient to
store these buffers, memory management could be done with external memory storage
and DMA operations.

5. Conclusion

In this paper, frequency domain based decimation and interpolation techniques are
simulated on MATLAB platform. The quality of the outputs is compared against that of time
domain outputs. The SNR and THD+N deviations are negligible. The theoretical
computations are provided. These techniques could be optimized and could be applied to
asynchronous band-limited interpolation techniques. This work could be taken as future
update.
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Appendix - A. Frequency Domain Process for Non-power of 2 Sampling Rate Factors

When applying FFT, the buffer length should be a power of 2, in general, as FFT needs
this requirement. Usually input FFT length is chosen as sampling rate factor times the output
buffer FFT length. If this factor is not a power of 2, input FFT size obviously is not a power
of 2. This issue could be solved with the following approach. The necessary condition for this
is that FFT size must be an integer multiple of power of 2, even though it is not an exact
power of 2. Here sampling factor is considered as 3 to explain this technique.

Let x(n) and X(k) are Fourier Transform pair of length N, which is not a power of 2. X(k)
can be expressed as

X (k)= x(n) ", WN—exp( ‘2”j &  k=0L.N-1
:x(O)+x( WV + XMt x(N -
~[x0)+ xtay 2+ L X o xtamy s J [x@m e
[ X)W, | W X X, | W [ X2 X -]
Xo(k)+ W, X, (k) -+ Wy X, (k)

The FFT Size of Xo(k), X1(K), X5(K) is N/3 — 1. The periodic property of FFT is utilized to
derive the values from k = N/3 to N-1.

E k+/ N 2(k+l\y)
x(k+3j ( j AW x(msj (k+3j
= X, (k)W 53 X, ()W 2 X, (k)
X(k +ﬂ) = Xo(k +mj+ ﬁz% Xl(k +Ej +\W i‘(kﬁ%) Xz(k +ﬂj
3 3 3 3
= Xo ()W 2 X, ()W 22 X, ()

For example, FFT for length, N = 6 is obtained as follows. Since N = 2*3, as per the above
procedure Xy(K), X1(K), X,(K) are calculated with k=0,1,2,3.

The time domain sequences are

%)= x@)l  xM)=Ko)x@)]  x0)=[x2)xE)

The FFT of x(n) is obtained from Xy(k), X1(k), Xx(K) as follows.
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The same technique is applicable for IFFT calculation also except the —ve sign in twiddle

factor.

By comparing this with normal FFT/IFFT calculation, the additional complexity is due to

twiddle factor multiplication and addition of resultant complex values

due to complex

multiplication. For a sampling rate factor of R, this additional complexity contains N(R-1)

complex additions and N(R-1) complex additions.

Appendix - B. MATLAB Simulation Code

AR e e e e e e e T

% Sampleing Rate conversion- Main function
3 1. Downsampling
3 2. Upsampling

%
R e e e e e e e e e e e e e ]
clear all:

[InStream,S5RC.InputFs, SRC.Nbits] =wavread('Tones 2pl 0dE 44.1kF=s 24b.wav'):

disp('1l.
disp('2. Up

SRC.Method = input ('Enter SRC Method'):

if SRC.Method == eSRCMethod.Downsampling
SRC.DecFactor = input{'Enter Decimation Factor'):;

SRC.IntrpFactor
SRC.Time.CutBufl
SRC.Time.InBufL
SRC.Freq.QutFFT_L H
SRC.Freq.InFFT_L = S5RC.Freq.0utFFT_L#5RC.DecFactor;
SRC.Freq.CoeffFFT_L = SRC.Freq.InFFT L:

%

% Required input frame size
% Output FFT length
=
%
%

SRC.Time.CutBufL*5RC.DecFactor;

Required inmput FFT length

Set coefficients FFT length
to input FFI length

SRC.Coeffs = DeriveSRCCoeffs (SRC.DecFactor); % Designing of SRC Coeffs for
% decimation factor

SRC.Freq.Coeffs = fft (5RC.Coeffs",SRC.Freq.CoeffFFT_L); % Caclulate FFT of coeffic

% Downsampling calling function

CutStream = Downsampling(InStream,...
SRC.Time.InBufL,...
SRC.Time.CutBufl,...
SRC.Freq.InFFT_L,...
SRC.Freq.OutFFT L, ...
SRC.DecFactor, ...
SRC.Freq.Coeffs) ;

SRC.OutputFs = 5RC.InputFs/5RC.DecFactor:

wavwrite( OutStream,SRC.CutputFs,SRC.Nbits,'Decimated output.wav');

Cutput frame size is fixed @

64

equal

given

ients
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24

el=seif

SRC.

SRC

SRC.
SRC.

SRC

SRC.

SRC

SRC.

SRC.

SRC.Method = eSRCMethod.Upsampling
DecFactor = 1:
.IntrpFactor = input{'Enter Interpolation Factor'};
Time . InBufl '
Time.CutBufl = BSRC.Time.InBufL*5RC.IntrpFactor; %
.Freq.InFFT_L = 123; %
Freq.OutFFT_L = B5RC.Freq.InFFT_L*5RC.IntrpFactor;$
.Freq.CoeffFFT L = S5RC.Freq.OutFFI_L; %
3
Coeffs = DeriveSRCCoeffs (SRC.IntrpFactor):
'

CutStream = Upsampling{InStream, .

SRC.Time.InBufL,...
SRC.Time.CutBufL,...
SRC.Freq.InFFT L,...
SRC.Freq.CutFFT_L,...
SREC.IntrpFactor,...
SRC.Freq.Coeffs) ;

Input frame length is fixed B &4
Required output frame length
Input FFT length

Cutput FFT length

Set coefficients FFT length egual
to output FFT length

% Designing of S5RC Coeffs for given

interpolation factor

Freq.Coeffs = fft(SRC.Coeffs',SRC.Freq.CoeffFFT_L); % Caclulate FFT of coefficients

SRC.CutputFs = SRC.InputFs*5RC.IntrpFactor;
wavwrite( OutStream,SRC.COutputFs,SRC.Nbits,' 'Interpolator Output.wav');
end
=
x= Filter Fregquency Response and filter coefficinets generation
%

R LRI LA TR LA LRI E AT TR LT LRI L LRI LR LTI LI TR LR

function Coeffs = DeriveSRCCoeffs (SamplingFactor)

Filter Length = 127; =

InFs

Coefficients Length

max_FregContent = InFs/Z/SamplingFactor:

dl = fdesign.lowpass('lN,Fc,ip, R=st' Filter Length,max FregContent,0.001,120,InFs):
Hdl = design({dl,'equiripple');

Coeffs

= Hdl.Numerator;

LR TR T LA R T T T LT T LR R T T L L LA LR E LT LTI LTS T LI LIL LR

Fre

quency Domain based Downsampling Process

o oE A o o o e o

function Out =

% Deter
if rem(
Tot
else
Tot
end

Input {1

Applicable for any decimation factor
Time domain filter coefficients length is 128

Two channels of input signal are processed directly by forming

complex signal with two channels. After downsampling, Ttwo

channels

are separated with real and imaginary outputs of downsampling.

Downsampling (Input,...
InFrml, ...
CutFrmL, ...
InFET L,...
CutFFT_L,...
DecFactor,...
Freq Coeffs)

mine the total number of frames in input stream
length(Input) , InFrmL) ~= C
alFrames = ceil (length{Input)/InFrml) ;

alFrames = length(Input)/InFrmL;

ength {Input) :TotalFrames*InFrmL,:) = 0;
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fForm complex input with stereo channels of input
Inztream = Input(:,.)+ j *Input(:,2):
InputBuf = zeros (InFFT_L,1):
FFT_Buf = zeros(InFFT_L,1); % FFI process buffer
InWrPtr = 1:% used to copy input frames into process buffer
CutRdPtr = 1; % used to copy output frames into transmit buffer
Output = [1:
for i = 1:TotalFrames
% Copy current input frame to be processed
InputBuf (InWrPtr: InWrPtr+InFrml-1,1) = Instream((i-1)*InFrmL + 1 : i*InFrml) ;
% Update the input write pointer by frame length
InWrPtr = InWrPtr + InFrmL;
if(InWrPtr >= length(FFT_Buf))
InWrPtr = 1;
end
% Check decimation factor is power of 2 or not
if dspCheckPow2 (DecFactor) = 1
FFT_Buf = f£ft(InputBuf,InFFT_L);
FFT_Buf = FFT_Buf.*Freq Coeffs;
else
%Calculation of =mall FFTs
InFFTSize = 1engthtFET_Buf}fDecFactoI:
for m=_:DecFactor
amallFFT(1:InFFTSize, m)=E£ft (InputBuf (m:DecFactor:length(FFT_Buf)),InFFISize);
end
FFT_Buf(l:length(FFT_Buf),l) = 0;
$Calculation of large FFTs using small FFTs
for n = l:DecFactor
for m = l:DecFactor
tw = exp(-j*2%pi*[(n-1)*InFFISize:n*¥InFFTSize-1]"'*(m-1)/length(FFT_Buf));
FFT_Buf((n-1)*InFFT5ize+  :n¥InFFTSize,1)=FFT_Buf((n-1)*InFFTSize+l :n*InFFISize, ) +tw.¥3mallFFT(:,m)
end
clear tw;
end
FFT_Buf(:,1) = FFT_Buf(:, }.*Freg_Coeffs;
end
SRC_QutBuf = zeros(l,QutFFI_L);
3 hdd downsampled content and aliased contents
for k = l:DecFactor
alias FFTBuf(l:QutFFT L} = FFT Buf((k-1)*QutFFT L+1:k*QutFFT L,1);
SRC_OutBuf = SRC_OQutBuf + alias FFTBuf;
end
% Apply IFFT to the sum and scale with decimation factor.
SRC_CutBuf = (1/DecFactor)*iffc(SRC_OutBuf,QutFFI_L):
% Transmit the OutFrml samples
Output = [Output,3RC_OutBuf (CutRdPtr:OutRdPtr+0utFrml-1)];
CutRdPtr = QutRdPtr + OQutFrmL:
if (OutRdPtr >= length(SRC OutBuf))
CutRdPtr = 1;
end
end
Qut(:,l) = real(Cutput):
Qut(:,2) = imag(Cutput)
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% Frequency Domain based Downsampling Process
=
% 1. Applicable for any decimation factor
% 2. Time domain filter coefficients length is 128
% 3. Two channels of input signal are processed directly by forming
% complex signal with two channels. After downsampling, two channels
% are separated with real and imaginary outputs of downsampling.
R R R R R R R R R R L I L R L R R R R R R R R R R R R R R AR AR LR E LI LIEIEIEIEEIRERY
function Cut = Up=zampling (Input, ...

InFrml, ...

CutFrmL, ...

InFFT_L,...

CutFFT_L,...

IntrpFactor, ...

FFT_Coeffs)

if rem(length (Input) ,InFrmL) ~= C

TotalFrms = ceil (length({Input) /InFrml) ;
else

TotalFrms = length{Input)/InFrml;
end

Input (length (Input) :TotalFrms*InFrml,:) = O;
iForm complex input signal

Instream = Imput(:,1)+ j *Input{:,2):
Input = zeros (1, InFFT_L);

WrPtr = 1:

FFT ProcBuf = zeros (InFFT L,1)

Our.R_dPr.r =1 -

oucput = [1:

for 1 = l:TotalFrms

% Copy current input frame to be processed
Input (WrPtr:WrPtr+InFrmL-1) = Instream((i-1)*InFrmL + 1 : i*InFrmL):

WrPtr = WrPcr + InFrmLl:

if (WrPtr >= length(FFT_ProcBuf))
WrPtr = 1:
end
% FFT calculation for input buffer
ProcBuf (1:InFFT_L,1) = £ft(Input,InFFT_L):

% Tmages FFT copying
for 1 IntrpFactor
ProcBuf ( (1-1) *InFFT_L+1:1%InFFT_L,1) = ProcBuf(l:InFFT_L,1):

end
$Frequency Multiplication
ProcBuf = ProcBuf.*FFT Coeffs:

if dspCheckPow2 (IntrpFactor) — 1
largeFFT_Buf = IntrpFactor*ifft(ProcBuf,OutFFT_L);
else

InFFISize = length(ProcBuf) /IncrpFactor;

for m=1:IntrpFactor

smallFFT { : TnFFTSize,m)—ifft (ProcBuf (m: IntrpFactar:length (ProcBuf)) , InFFT5ize) ;
end
largeFFT_Buf (1:length(ProcBuf),l) = O;

for n = l:IntrpFactor
for m = l:IntrpFactor
tw = exp(J*2*pi*[(n—")*InFFTSize:n*InFFTSize—1]"*(m—)/length(largeFFT_Buf)) ;
freq_index = (n-1)*InFFISize+l:in*InFFISize;

largeFFI_Buf(freq index,l)=largeFFI_Buf(freq index,l)+tw.*smallFFI(: ,m);
end
clear tw’
end
end
$Transmit IFFT output
Cutput = [Cutput:;largeFFI_Buf (CutRdPtr:CutRdPtr+OutFrmlL-1)]

OutRAPtr = OutRdPrxr + OutFrmL;

if OutRdPtr >»>= length(largeFFT_Buf)
OutRdPtr = 7;

end

= real (Cutput) ;
= imag (Cutput) ;
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