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Abstract 
Sampling rate conversion is, in general, implemented using time domain based poly-phase 

filter structures. The other way of implementing multi-rate signal processing is frequency 
domain based approach, which has the advantage of computational savings. This paper 
clearly explains how to apply frequency domain processing techniques for sampling rate 
conversion. The proposed approach is applied to both power of 2 and non-power of 2 
sampling rate conversion factors. The properties of FFT are utilized analytically to solve the 
implementation problems such as non-power of 2 sampling rate factors. The theoretical 
computational complexity of the proposed approach is provided. The simulation results of 
proposed approach are compared with the quality of time domain approach and the 
comparison shows that differences are insignificant. 
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1. Introduction 

In many practical applications of signal processing, it is desired to convert the sampling 
frequency of signals due to the variation in operating bandwidth of various systems. The 
conversion could be either increase or decrease in sampling frequency depending on the 
system requirement. Sampling rate conversion (SRC) can be achieved in two ways. The 
signal could be converted to analog signal at input sampling frequency and resampled using 
analog to digital conversion at the desired sampling rate. This method has some disadvantages 
in terms of quantization error and signal distortion that occur during analog to digital 
conversion and vice versa. The other way of achieving sampling rate conversion is using 
digital domain [1-3].  

In synchronous SRC, there exists an integer relationship between input and output clock 
rates, whereas in asynchronous SRC, it is the fractional relationship. In decimation, the input 
signal is filtered at the desired sampling rate before applying decimation factor to avoid 
aliasing effects. In case of interpolation, zeros are inserted between two successive samples of 
input signal and then filtered to avoid the image noise. The number of zeros to be inserted 
depends on the interpolation factor. Typically this value will be interpolation factor minus 
one. [1-3].  

For efficient implementation of sampling rate conversion, one usually prefers time 
domain based poly-phase filtering structures where the redundant MAC (Multiply and 
ACcumulate) operations are eliminated. In decimation process, only the selected 
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samples based on decimation factor will be transmitted and hence filtering is required 
for the selected samples. In case of interpolation, the MAC operation result becomes 
vanish for the inserted zeros. In both methods, the time delay line filter (history buffer) 
is updated with appropriate contents of the input signal without losing any samples [1-
3].  

In [4], Ricky Lyons explained about the optimization procedure using the symmetric 
nature of filter coefficients. Because of symmetry, the memory to store filter 
coefficients becomes half. The contents of delay line filter are read from start and end 
simultaneously and added. The sum is multiplied with appropriate filter coefficient. 
With this, the number of multiplications could be reduced by half but requires more 
instructions to access the delay buffer contents. 

The techniques explained by Candan [7], V. Valimaki [8], J. Vesma and T. Saramaki 
[9] are suitable for time domain based fractional delay interpolation and these are meant 
for asynchronous SRC. 

In this paper, the frequency domain mathematical background is analyzed for 
synchronous SRC cases and implementation in frequency domain is explained for 
decimation, interpolation. For implementing these methods, overlap save method was 
used. A MATLAB simulator code is developed based on the proposed approach and 
simulation results are provided in Appendix. For the convenient of explanation, the 
figures in reference [1] are reused in this paper. 

This paper is organized as follows. Sections 2 and 3 explain frequency domain based 
implementation for decimation and interpolation respectively. It contains 
implementation procedure and theoretical computational complexity details. Section 4 
provides MATLAB code details, simulation results. Section 5 explains conclusion and 
future updates. MATLAB code is provided in Appendix. 
 
2. Frequency Domain based Decimation 

As shown in Figure 1, decimation process contains filtering of input signal x(n) with 
impulse response h(n) followed by decimation process [1]. Let v(n), y(n) be the filtered & 
decimated outputs and let V(ωx), Y(ωy) be their continuous frequency domain equivalents 
respectively. 
 

LPF, h(n) D
x(n) v(n)

y(n)

 
Figure 1. Decimation Process 

The frequency domain outputs can be expressed as 
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where ωx and ωy are the continuous frequency variables of x(n) and y(n) respectively[1].  
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The above equation could be understood in better way by expanding equation (2) for D = 2 
and D = 3, for example. 
 

When D = 2, 
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Similarly, when D = 3, 
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In equations (3) and (4), the first term in brackets i.e., V(ωx/2) or V(ωx/3) is 
downsampled component of the filtered signal and the remaining terms are aliased 
components. The frequency domain equivalent of decimated output, is, thus, equal to 
the sum of the downsampled and the aliased components, divided by the decimation 
factor. 

The variation of continuous frequency variable ωx from 0 to 2π is equivalent to the 
variation from 0 to N−1 in discrete domain. When ωx is varying from 0 to 2π, the 
decimated frequency variable ωy varies from 0 to 2π/D. In other words, discrete 
equivalent of ωy varies from 0 to N/D−1. It can be expressed, mathematically in 
discrete domain, as 
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As the length of discrete decimated frequency variable, k, is N/D, it is sufficient to apply 
FFT size of N/D while evaluating the IFFT of decimated frequency output.  
 
2.1. Frequency Domain based Implementation of Decimation 

The implementation procedure is explained in Figure 2 for decimation factor of 2. 
Usually in time –domain, the input buffer length is chosen based on the length of filter 
coefficients and the output frame length. The necessary condition is that input frame 
length must be equal to decimation factor multiplied by output frame length. For 
example, if output frame length is 64 and decimation factor is 2, input frame length is 
128. In case of overlap save method, the input FFT length is selected as N = L+M-1 
where L is processing frame size and M is the filter length. For this case, input buffer 
length becomes N = 128 + 128 -1 = 256 (as N must be a power of 2 due to FFT usage) 
with the assumption that filter length is 128. 

Initially, all input and output buffer contents are zeros. Frame1 (128 samples) will be 
filled in input buffer. The FFT will be calculated for 256 length input buffer. Also FFT 
coefficients will be calculated with the same length of 256 at one-time and used for 
each frame. The two complex FFTs are multiplied. Now the first half of the resultant 
buffer contains the downsampled frequency contents and the 2nd half contains the 
aliased downsampled frequency contents. These two buffers are added (as per equation 
(6))and IFFT will be applied to the complex frequency sum. The IFFT length becomes 
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(1/D) times input FFT length due to addition of downsampled and aliased contents. The 
scaling factor 1/D (from equation (6)) should be applied to IFFT output. From the 
resultant IFFT output, only L/D (L is the input time domain length) samples are 
transmitted as final decimation output. 

When 2nd frame arrives, it will be filled in 2nd half of the input buffer without disturbing the 
1st frame. Similarly, 3rd frame will be filled in 1st half of the buffer with 2nd frame retained as 
it is. After frequency domain process, the decimated buffer (L/D samples) depends on which 
portion of input buffer was filled for processing.  

The above procedure is common for any decimation factor. But in general, the frame 
lengths could be selected as power of 2 due to the usage of FFT. If decimation factor is 
not a power of 2, this could cause in making FFT length as power of 2. For example, if 
decimation factor is 3 and output FFT buffer length is 128, input buffer FFT length 
becomes 384, which is not a power of 2. This causes issue while calculating input 
buffer FFT. In Appendix-A, a method was given how to find out FFT for non-power of 
2 lengths.  

 
 
 
 
 
 
 
 
 
 
 

Figure 2. Frequency Domain Implementation of Decimation. The Decimation 
Factor here is D=2. For other Decimation Factors, the Buffer Sizes will Vary 

Accordingly 
2.2. Computational Complexity of Frequency Domain based Decimation 

Table 1. Theoretical Computational Complexity of Decimation using Overlap 
Save Method. Here O(N) = Nlog2N 

To 
Calculate 

Complex 
Multiplications 

Complex Additions Remarks 

X(k) 0.5 O(N) O(N) Complexity for calculating X(k) for 
each frame using FFT of length N. 

V(k) N - Complex Frequency Multiplication 
using equation (10) 

Y(k) - N(D-1)/D Complex frequency addition of 
downsampled component and 
aliasing components 

y(n) 0.5 O(N/D) O(N/D) IFFT calculation of Y(k) . Here 
IFFT length is N/D. 

Total N+0.5[O(N)+O(N
/D)] 

N(D-1)/D + O(N) + 
O(N/D) 
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The computational complexity details described in above table are valid if decimation 
factor is a power of 2. For non-power of 2 decimation factors, computational complexity is 
increased and is described in Appendix A. 
 
3. Frequency Domain based Interpolation 

As depicted in Figure 3, interpolation process contains insertion of (I -1) zeros between 
successive samples of input signal and filtering with impulse response h(n) for an 
interpolation factor of I [1]. 

I
x(n) v(n)

y(n)LPF, h(n)

 
Figure 3. Interpolation Process  

For signal notation of Figure 3, one could easily show that  
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where ωx and ωy are the continuous frequency variables of x(n) and y(n) respectively[1]. The 
relation ωy= ωx/I holds good. 

If the frequency variable ωx varies from 0 to 2π/I, then ωy varies from 0 to 2π. The 
spectrum V(ωy) contains (I −1) images of spectrum X(ωx) along with actual spectrum of x(n). 
If X(k), k = 0 to N/I −1 is the discrete input spectrum, discrete equivalent of V(ωy) is obtained 
by copying X(k) in I times. In general, this can be expressed as 
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where k = 0,1,..N/4 -1. The discrete equivalent of filtered output spectrum is simply obtained 
by multiplying this spectrum with that of H(ωy). 

( ) ( ) ( ) )14(kHkVkY =   

where k = 0 to N −1. The FFT size should be N while evaluating filtered output using IFFT. 
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3.1. Frequency Domain Implementation of Interpolation 

Figure 4 provides the details of frequency domain implementation for interpolation. The 
selection of input and output buffer lengths is quite opposite from decimation process. Here 
the output buffer length is interpolation factor times the input buffer length. For interpolation 
factor of 2, input FFT length becomes 128 if output FFT length is 256. The corresponding 
input and output time domain lengths are 64 and 128 respectively.  

Initially I/O buffers contain zeros. Input Frame 1 (64 samples) will be filled in 1st 
half of input FFT buffer and FFT is calculated. The FFT contents are copied into 
separate buffer I times (as per equation (12)). The one-time coefficients FFT is 
calculated with size equal to output FFT length. The FFT buffer contents after forming I 
images is multiplied with those of coefficients FFT contents. To the resultant FFT 
multiplied output, IIFT is applied to get the interpolated time domain output. The 1st 
128 samples are transmitted as output frame. 

As described in decimation process, the interpolation factors are also non-power of 2. 
Appendix- A could be referred for such FFT calculations. 
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Figure 4. Frequency Domain Implementation of Interpolation. The interpolation 

factor here is I=2. For other Interpolation Factors, the Buffer Sizes will Vary 
Accordingly 

3.2. Computational Complexity of Frequency Domain based Interpolation 

Table 1. Theoretical Computational Complexity of Interpolation using Overlap Save 
Method. Here O(N) = Nlog2N 

To Calculate Complex Multiplications Complex Additions Remarks 
X(k) 0.5 O(N/I) O(N/I) Complexity for FFT 

calculation of length 
N/I 

Y(k) N - Complex frequency 
multiplication 

y(n) 0.5 O(N) O(N) IFFT calculation of 
length N. 

Total N + 0.5 [ O(N) + O(N/I) ] O(N)+O(N/I)  
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The computational complexity details described in above table are valid if interpolation 
factor is a power of 2. If decimation factor is not a power of 2, there will be additional 
complexity to be considered and is described in Appendix A. 
 
4. Simulation Results and Discussion 

The proposed methods of decimation and interpolation were simulated on MATLAB [11] 
platform. The simulator code is capable of performing decimation and interpolation for any 
sampling rate factor. The input signal provided to the simulator code is 44.1kHz, 0dB, 24-bit 
stereo signal. This signal basically contains sine tones. The complex input is formed with two 
channels. The outputs of frequency domain and time domain processing are compared for 
various sampling rate factors. Fig. 6 shows spectrum comparison. The deviation of SNR and 
THD+N between input and the two outputs are clearly negligible. 

Since precision in MATLAB is of double datatype, the same precision may not possible in 
fixed point DSP processors as bit width (typically 16) of these processors is less. To obtain 
high SNR and low THD+N value, it is recommended to use floating point 32-bit processors 
(such as SHARC 21xxx processors) for real-time implementation of these techniques. 
 
4.1. Application to Fractional Rate Conversion 

In fractional rate conversion, input and output sampling frequencies are related with 
arbitrary ratio. In this process, interpolation is performed first and then decimation. This is 
because spectral contents of input signal will be lost if decimation is performed first. Also the 
cutoff frequency of the filter in this method is minimum of that is needed for decimation and 
interpolation [1-3]. 

The proposed frequency domain decimation and interpolation can be directly applied to 
fractional rate conversion if decimation and interpolation factors are less than 5 roughly. The 
procedure described in Sections 2 and 3 is combined to implement fractional rate conversion. 
If these values are more than 5, the memory required to store FFT buffers is large. For such 
conversions, it is better to proceed with the existed time domain techniques based on band-
limited interpolation proposed by Gosset and Smith [5]. Apart from this, Lagrange 
interpolation and Farrow fractional delay structures are well suited for optimized 
computational complexity [6-9].  
 
4.2. Limitations 

The proposed methods have some limitations. If sampling factor becomes more, 
either input or output FFT length becomes large, where DSP needs more memory to 
store the related buffers to calculate FFT. If DSP internal memory is not sufficient to 
store these buffers, memory management could be done with external memory storage 
and DMA operations. 
 
5. Conclusion 

In this paper, frequency domain based decimation and interpolation techniques are 
simulated on MATLAB platform. The quality of the outputs is compared against that of time 
domain outputs. The SNR and THD+N deviations are negligible. The theoretical 
computations are provided. These techniques could be optimized and could be applied to 
asynchronous band-limited interpolation techniques. This work could be taken as future 
update.  
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Figure 5. Input Test Signal – 44.1kHz, 2channel, 0dB, 24 Bit 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 6. Time Domain (left plot) vs Frequency Domain (right plot) 
Downsampling comparison for D = 2 
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Figure 7. Time Domain (left plot) vs Frequency Domain (right plot) 
Downsampling Comparison for D = 3 

 

 

 

 

 

 

 

 

 

Figure 8. Time Domain (left plot) vs Frequency Domain (right plot) Upsampling 
Comparison for I = 2 

Figure 9. Time Domain (left plot) vs Frequency Domain (right plot) Upsampling 
Comparison for I = 3 
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Appendix - A. Frequency Domain Process for Non-power of 2 Sampling Rate Factors 

When applying FFT, the buffer length should be a power of 2, in general, as FFT needs 
this requirement. Usually input FFT length is chosen as sampling rate factor times the output 
buffer FFT length. If this factor is not a power of 2, input FFT size obviously is not a power 
of 2. This issue could be solved with the following approach. The necessary condition for this 
is that FFT size must be an integer multiple of power of 2, even though it is not an exact 
power of 2. Here sampling factor is considered as 3 to explain this technique.  

Let x(n) and X(k) are Fourier Transform pair of length N, which is not a power of 2. X(k) 
can be expressed as  
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The FFT Size of X0(k), X1(k), X2(k) is N/3 – 1. The periodic property of FFT is utilized to 

derive the values from k = N/3 to N-1. 
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For example, FFT for length, N = 6 is obtained as follows. Since N = 2*3, as per the above 
procedure X0(k), X1(k), X2(k) are calculated with k=0,1,2,3.  

 
The time domain sequences are  

 ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]5,24,1,3,0 210 xxnxxxnxxxnx ===  

The FFT of x(n) is obtained from X0(k), X1(k), X2(k) as follows. 
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The same technique is applicable for IFFT calculation also except the –ve sign in twiddle 
factor.  

By comparing this with normal FFT/IFFT calculation, the additional complexity is due to 
twiddle factor multiplication and addition of resultant complex values due to complex 
multiplication. For a sampling rate factor of R, this additional complexity contains N(R-1) 
complex additions and N(R-1) complex additions. 
 
Appendix - B. MATLAB Simulation Code 
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