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Abstract 
In practice, Financial Time Series have serious volatility cluster, that is large volatility 

tend to be concentrated in a certain period of time, and small volatility tend to be 
concentrated in another period of time. While GARCH models can well describe the dynamic 
changes of the volatility of financial time series, and capture the cluster and 
heteroscedasticity phenomena. At the beginning of this paper, the definitions and basic 
theories of GARCH(1,1) models are discussed. Secondly, show the heavy tail behavior of 
GARCH(1,1) process with α -stable residuals { }t t Zε ∈ , (0, 2]α ∈  and  { }t t Zε ∈  errors. In fact, 
both these processes have heavy-tailed properties, but generally the tail of GARCH(1,1) 
process is heavier than the tail of { }t t Zε ∈  errors. And then the modification of maximum 
likelihood function has been constructed as the theoretical basis of this study, make use of 
Holder inequality and Jensen's inequality to estimate parameters of GARCH(1,1) model with 
residuals having regularly varying distributions with index 0α > . Finally, the consistency 
and asymptotic normality of the estimates constructed are further proved. 
 

Keywords: GARCH process; errors; regularly varying distribution; stable distribution; 
heavy-tailed distribution; parameter estimation 
 
1. Introduction 

In the analysis of financial data, the best-known and most often used processes are 
Autoregressive Conditionally Heteroskedastic (ARCH) and its extensions generalizations – 
Generalized Autoregressive Conditionally Heteroskedastic (GARCH) processes, see F. Engle 
[1], T. Bollerslev [2]. 

It is known that, provided the errors distribution has finite fourth moment, quasi-
maximum likelihood estimators for ARCH/GARCH processes are asymptotically 
normally distributed with the standard rate n . When the errors have heavy tail 
probability, parameters estimation of GARCH process has investigated by T. Mikosch 
and D. Straumann in [3]. They showed the consistency and asymptotic distribution of 
quasimaximum likelihood estimation. In paper [4], we consider a modification of 
quasi–maximum likelihood estimator for GARCH (1,1) process with the errors, whose 
squares have regularly varying tail with index , 0.α α >  We showed that, this estimator 
is unbiased and asymptotically normal with standard convergence rate of 1/2n  regardless 
of whether the errors are heavy–tailed. In the case of GARCH(1,1) process, this 
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estimator is applied for a larger class of GARCH (1,1) processes with heavy–tailed 
errors than P. Hall and Q. Yao in [5] and D. Straumann in [6]. 

This paper introduces the basic definitions and related theories of GARCH(1,1) 
models as theoretical basis for this study; Secondly, show the heavy tail behavior of 
GARCH(1,1) process with α -stable residuals { } ,t t Zε ∈  (0,2]α ∈  and  { }t t Zε ∈  errors. And 
then the modification of maximum likelihood function has been constructed, in order to 
assess with the index for α  > 0 change regularly distributed disturbance GARCH (1,1) 
model parameters, and finally prove that the structure further assess the credibility and 
asymptotically normal distribution. 
 
2. GARCH (1,1) Models 

Let’s consider GARCH (1,1) model of the following type 

,t t ty σ ε=  ,t Z∈                                                        (1) 

where 
2 2 2

0 0 0 1 0 1(1 ) ,t t tyσ ω β α β σ− −= − + +                                       (2) 

0 0,ω >  0 0,α >  00 1,β≤ <                                            (3) 

{ }tε  are independent identically distributed regularly varying random variables with index 
0.α >  

Let 0 0 0 0( , , )θ ω α β=  be unknown parameters of the model, the parametric space 

1 2 1 2 1 2
2
0{ ( , , ) : 0 , 0 ,0 1, ln( ) 0},Eθ ω α β ω ω ω α α α β β β β αεΘ = = < ≤ ≤ < ≤ ≤ < ≤ ≤ < + <     

0θ  be internal point of space Θ , then the parametric model under review can be expressed as 
( ) ,t t ty σ θ ε=  ,t Z∈  moreover following the performance of  

2 2
1

0
( ) , .k

t t k
k

y t Zσ θ ω α β
∞

− −
=

= + ∈∑                                     (4) 

3. The Nature of Heavy Tails 
Both stable distributions and GARCH(1,1) process have heavy-tailed properties, We will 

introduce below: 
 
3.1. The Nature of Heavy Tails of Stable Distributions 

Let us consider independent, identically distributed α - stable random variables { } ,t t Zε ∈  
(0,2],α ∈  having characteristic function: 

1
(u) | | ( , , ), ,i u u i t u u Rα α α

ε µ σ σ ω α βΨ = − + ∈  

where  [ 1,1], 0, ,Rβ σ µ∈ − > ∈  

1| | ( / 2), 1,
( , , )

2 ln | | / , 1.
u tg

u
u

α β απ α
ω α β

β π α

− ≠
= 

− =
 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 6, No. 4, August, 2013 

 

 

235 

Then let us denote 1 ~ ( , , ).Sαε σ β µ  
In the paper [7], we know, that if  

1 ~ ( , , ),Sαε σ β µ 0 2,α< ≤  
then 

1

1 1| | , 1,
2 (2 )cos( / 2)( ) ~

1 2| | , 1
2

x
P x

x

α α

α α

β ασ α
α παε

β σ α
π

− − ≠ Γ −< 
− =

         when x →−∞      (5) 

and 

1

1 1 , 1,
2 (2 )cos( / 2)( ) ~

1 2 , 1
2

x
P x

x

α α

α α

β ασ α
α παε

β σ α
π

−

−

+ − ≠ Γ −> 
+ =

          when x →+∞     (6) 

where ( ) ~ ( )f x g x with x →∞  means, that  

x
lim[ ( ) / ( )] .f x g x const
→∞

=  

In this case, it is said that α -stable distributions have heavy-tailed properties with α  
index, and α  index is referred to as the heavy tail index (Please see [8, 9]). 
 
3.2. The Nature of Heavy Tails of GARCH(1,1) Process 

Let us consider a stationary process (1), ~ (1,0,0),t Sαε  (0,2]α ∈ . In paper [10] it has 
been proven, that if formula: 

/2
1 1, ,kEA k R= ∈                                                          (7) 

has only one positive root 0 ,k k=  then the process (1) is a regularly varying process with 
index 0k  (Please see [11]), i.e. there exists a positive constant 0 ,C  such that: 

0
0( ) ~ kP x C xσ −>     when x →∞                                  (8) 

and 
0

0(| | ) ~ | | ( )kP y x E P xε σ> >  when ,x →∞                      (9) 

Let us prove, that in case α -stable residuals, (0,2],α ∈  GARCH(1,1) process is a 
regularly varying process. 

Theorem GARCH(1,1) process defined by relation (1), is a regularly varying process with 
a certain index 0k , on condition that { }t t Zε ∈  α - stable random variables, (0,2]α ∈ . 

Proof. Indeed, if the  { }t t Zε ∈  residuals are α -stable random variables, then 
2

0 0 1{ }t t t ZA β α ε − ∈= +  – regularly varying random variables with index / 2 1.α ≤  Therefore, 
there always exists constant 0 0,h >  such that 1

hEA < ∞  for all 0h h<  and 0
1 .hEA = ∞  On the 

other hand, out of  1(ln ) 0E A <  condition, it follows, that 1 1.EA <  Using the continuity of 
/2

1( ) kf k EA=  function, we conclude, that formula  
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/2
1 1, ,kEA k R= ∈  

always has only one positive root 0.k k=  Therefore, on condition, that { }t t Zε ∈  residuals – α - 
stable random variables, relations (8) and (9) are satisfied, i.e., { }t t Zy ∈  is a regularly varying 
process with index 0k . 

Comment In case, when { }t t Zε ∈ errors have standard normal distribution ( 2α = ) and 

0 0 1α β+ =  (IGARCH(1,1) process), formula (7) has only one root 2,k =  i.e., IGARCH (1,1) 
process is a regularly varying process with  index 2: 

2
0( ) ~ ,P x C xσ −>   

2
0(| | ) ~P y x C x−>  

when .x →∞  
Thus, IGARCH (1,1) process with  { }t t Zε ∈ residuals, having standard normal distribution, 

has heavy-tailed properties with index 2.k =  
Out of the conclusion, that { }t t Zε ∈  – α -stable random variables, we obtain that 

2
0 0 1{ }t t t ZA β α ε − ∈= +  are regularly varying random variables with index / 2,α  therefore, 

( )k
tE A < ∞  if and only if / 2.k α<  Thus, formula (7) has only one root 0 .k k α= <  Or if 

stated differently, the tail of GARCH(1,1) process is heavier than the tail of  { }t t Zε ∈ errors. 
Thus, an extreme behavior of GARCH (1,1) process is conditional on an extreme behavior of 
the errors. (see Figure 1 and Figure 2). 

However, the heavy tail behavior of GARCH (1,1) process is less different from the heavy 
tail behavior of errors, when heavy tail index converges to 2, especially, in case of 
IGARCH(1,1) process. Indeed, /2 2 /2

1 0 0 0( ) ( ) 1k kf k EA E β α ε= = + =  is a continuous convex 
function, therefore, when 2α → ,  the root of formula (7) converges to the root of  

2 /2
0 0( ) 1kE β α ξ+ =  formula, where ~ (0,1).Nξ  In case of IGARCH (1,1) process with 

residuals, having standard normal distribution, 2 /2
0 0( ) 1kE β α ξ+ =  has only one root 2 i.e., 

IGARCH (1,1) process index 0k  converges to 2 and coincides with heavy tail index of { }t t Zε ∈  
residuals when  2.α →  Thus, an extreme behavior of GARCH (1,1) process is similar to an 
extreme behavior of { }t t Zε ∈  residuals when 2.α → (see Figure 3 and Figure 4). 

Figure 1. 700 Realizations of 
{ }t t Zε ∈ Residual Process with 1,5α =  

and GARCH(1,1) Process with 
0 0 00, 2, 0, 2, 0, 4ω α β= = =  Parameters 

Figure 2. 700 Realizations of { }t t Zε ∈  
Residual Process with 1,5α =  and 

IGARCH(1,1) Process with 
0 0 00, 2, 0,6, 0, 4ω α β= = =  Parameters
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Figure 3. 700 Realizations of { }t t Zε ∈         Figure 4. 700 Realizations of { }t t Zε ∈  
Residual Process with 1,95α = and           Residual Process with 1,95α =  and 

GARCH(1,1) Process with                 IGARCH(1,1) Process with 
0 0 00, 2, 0, 2, 0, 4ω α β= = =  Parameters          0 0 00, 2, 0,6, 0, 4ω α β= = =  Parameters 

4. The Proof of Parameters Estimation Theory 

Lemma 1. Whenever 1,i n= , we will have the following inequality 
2

2
0 02

1

(1 ).
i

t
t j

jt i

σ
β α ε

σ −
=−

≤ + +∏                                                      (10) 

Proof. We will obtain the proof using mathematical induction method. For 1,i =  using (2), 
(3) we will obtain the following 

2 2 2
0 0 0 1 0 1

2 2
1 1

(1 )t t t

t t

yσ ω β α β σ
σ σ

− −

− −

− + +
= =  

 20 0
0 1 02

1

(1 )
t

t

ω β
α ε β

σ −
−

−
= + + ≤  

 2
0 0 11 .tβ α ε −≤ + +                                                                  (11) 

Let’s assume that lemma is correct where 1,i n= −  then 
2 1

2
0 02

11

(1 ).
n

t
t j

jt n

σ
β α ε

σ

−

−
=− +

≤ + +∏                                                      (12) 

Let’s prove that lemma is correct for i n= . Using (2), (3) we will obtain the following 
2 2 2

1
2 2 2

1

t t t n

t n t n t n

σ σ σ
σ σ σ

− +

− − + −

= × =  

          
2 2 2

0 0 0 0
2 2

1

(1 )t t n t n

t n t n

yσ ω β α β σ
σ σ

− −

− + −

− + +
= × =  

2 2 2
20 0

0 02 2 2 2
1

(1 )t t n t n
t n

t n t n t n t n

σ ω β σ σ
α ε β

σ σ σ σ
− −

−
− + − − −

 −
= × + + = 

 
 

                                                    
2

20 0
0 02 2

1

(1 )t
t n

t n t n

σ ω β
α ε β

σ σ −
− + −

 −
= × + + ≤ 
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2
2

0 02
1

(1 ).t
t n

t n

σ
β α ε

σ −
− +

≤ × + +  

From (12) we will obtain 
2

2
0 02

1

(1 ).
n

t
t j

jt n

σ
β α ε

σ −
=−

≤ + +∏  

The lemma is proved. 

Lemma 2. Whenever any natural number 0M > , we will have inequality 
2

2
112 2

00 01

( ) .
(1 )

M
kt

t kM
kt t jj

σ θ α β ε
σ β α ε

− −+
=−=

≥
+ +

∑
∏

 

Proof. It follows from (4) that 
2 2 2

2
2 2

1 1
0 0

( )
t t t

M
k kt

t k t k
k k

y y

σ σ σ
σ θ ω α β α β

∞

− − − −
= =

= ≤
+ ∑ ∑

,                                       (13) 

whenever any natural number 0.M >  
Using lemma 1 and (13) we will obtain the following 

2
2 21

20 1
12 2 2

0

( )

M
k

t k M
kt k t k

t k
kt t t

yα β
σ θ σ

α β ε
σ σ σ

− −
= − −

− −
=

≥ = ≥
∑

∑  

        

2
1 1

20
0 0

1

2
11 2

00 01

1

(1 )

.
(1 )

M
k

t k k
k

t j
j

M
k

t kM
kt jj

α β ε
β α ε

α β ε
β α ε

− − +
=

−
=

− −+
=−=

≥ ≥
+ +

≥
+ +

∑
∏

∑
∏

 

Lemma is proved. 

Theorem 1.  Whenever ,λ  0 ,λ α< <  we will have 
2

2sup .
( )
t

t

E
λ

θ

σ
σ θ∈Θ

 
< ∞ 

 
                                                      (14) 

Proof. Using Holder inequality and lemma 2, whenever ',p  ' ,pλ α< <  we will have 

2 1
2

0 02 2
1 10

1 1sup (1 )
( )

M
t

t j M k
jt t kk

E E

λλλ

λ
θ

σ
β α ε

σ θ α β ε

+

−
∈Θ = − −=

       ≤ + + ≤            
∏

∑
 

/ ' ( ' )/ '' '/ ( ' )1
2 2

0 0 1
01

1 (1 ) .

p p pp p pM M
k

t j t k
kj

E E

λ λλ λ

λ β α ε β ε
α

−− −+

− − −
==

         ≤ + + ×     
        
∑∏              (15) 
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From the independence of random variables { },tε  whenever any natural number 0M > , 
we will obtain 

/ '' / '
1 1

2 2 '
0 0 0 0

1 1

(1 ) (1 ) .

pp p
M M

p
t j t j

j j

E E

λ λ

β α ε β α ε
+ +

− −
= =

     + + = + + < ∞    
     
∏ ∏                (16) 

Based on the above lemmas since { }tε  constitutes regularly varying random variables with 

index α , 2{ }tε  have regularly varying distribution with index / 2.α  Then 2
10

M k
t kk

β ε − −=∑  
constitutes regularly varying random variable with index / 2.α  From lemma 3.1 [12] we 
have 

'/( ' )
2

1
0

.
p pM

k
t k

k
E

λ λ

β ε
− −

− −
=

 
< ∞ 

 
∑                                                 (17) 

Using (15)-(17) we will obtain (14).  
The theorem is proved. 
Let us consider the modified likelihood function in the following form 

1

1( ) ( ),
n

n t
t

L l
n

θ θ
=

= ∑  

2
2

2

1( ) ln ( ) ,
( )

p

t
t t

t

yl
p

θ σ θ
σ θ

  
 = − +  
   

                                  (18) 

p  – a certain constant, 0 .p α< <  

Theorem 2. Let 0( ) ( ),L Elθ θ=  where 
2

2 0
0 0 2

0

1( ) ln ( ) ,
( )

p
yl

p
θ σ θ

σ θ

  
 = − +  
   

then with any 

,p  0 ,p α< <  we have ( ) .L θ < ∞  

Proof. Let us prove that ( )L θ < ∞  when all .θ ∈Θ  Indeed, we will obtain from theorem 1 
the following 

( )
2 2
0 0

2 2
0 0

2

( ) ( )
,

p
p

p

t
yE E E σ

ε
σ θ σ θ
   

=   
   

< ∞                                   (19) 

where 0,1, 2, ....t =    . 
Therefore, it follows from regularly varying random variables { }tε  and paper [13] that 

there exists constant ,ρ  0,ρ >  such that 
2
0[ ( )] .E ρσ θ < ∞  

It follows from here that using Jensen inequality we will have 
2ln ( ) .tE σ θ < ∞                                                       (20) 

From (19) and (20) we will obtain the required.  
The theorem is proved. 
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Let nθ
∧

 be М estimator of 0θ parameter of (1)-(3) model with likelihood function (18), i.e., 

arg max ( ).n nL
θ

θ θ
∧

∈Θ
=                                                          (21) 

The consistency of nθ
∧

 estimator is proved in the following theorem.  

Theorem 3. Let us assume that, 0 ,p α< <  2
0| | 1,pE ε =  then  

a.s.
0nθ θ

∧

→  with .n →∞  

The theorem is being proved in the same way as in paper [4]. 

Theorem 4. If { }tε  are independent identically distributed regularly varying random 
variables with index 0,α > then for 0 ,p α< <  we will have 

{ } a.s.sup | ( ) ( ) | 0nL L
θ

θ θ
∈Θ

− →  with ,n →∞  

{ } a.s.sup | '( ) '( ) | 0nL L
θ

θ θ
∈Θ

− →  with ,n →∞  

{ } a.s.sup | ''( ) ''( ) | 0nL L
θ

θ θ
∈Θ

− →  with .n →∞  

Proof. We know that process (18) is measurable function of strictly stationary and ergodic 
process { }.tε  That is why { }( )t t Z

l θ
∈

 is also an ergodic process with a finite expectation 

0( ) ( ) ,L Elθ θ= < ∞  .θ ∈Θ  Using ergodic theorem we obtain that for all θ ∈Θ  
a.s.( ) ( )nL Lθ θ→  with .n →∞  

Using theorem 3.5.8 [14] we come to the conclusion that 
,

1sup | ( ) ( ) |
| | t t

u v
t Z

l u l v
u v∈Θ

∈

  
−  

−  
 

is stationary, ergodic process with first-order stopping time. Using the ergodic theorem we 
will obtain 

( )
. .

, ,1

1 1 1sup | ( ) ( ) | sup | ( ) ( ) | 1 .
| | | |

n a s

n n t t
u v u vt

L u L v l u l v O
u v n u v∈Θ ∈Θ=

    
− ≤ − =    − −    

∑  

From this it follows that function{ ( )}nL θ  is uniformly continuous with a probability of 1 
and converge to ( )L θ  with .n →∞  Out of compactness of parametric space Θ  we have that 
{ ( )}nL θ  uniformly converge to ( )L θ  a.s. (almost surely). 

Out of definition ( )nL θ in (18) we have that 

2 2

2 2
1

( ( )) '1'( ) 1 ,
( ) ( )

pn
t t

n
t t t

yL
n

σ θ
θ

σ θ σ θ=

  
 = − 
   

∑                                           (22) 

2 2 2 2 2

2 2 2 2 2
1

( ( ))" ( ( )) ' ( ( )) '1"( ) 1 1 ( 1) .
( ) ( ) ( ) ( ) ( )

p p Tn
t t t t t

n
t t t t t t

y yL p
n

σ θ σ θ σ θ
θ

σ θ σ θ σ θ σ θ σ θ=

             = − − + −      
             

∑  (23) 
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Using lemmas 1, 2, as in case with proving theorem 1 [4], we will obtain that 

( )( )2

2

'
sup

( )
t

t

E

λ

θ

σ θ

σ θ∈Θ

   < ∞ 
  

 and 
( )( )2

2

''
sup

( )
t

t

E

λ

θ

σ θ

σ θ∈Θ

   < ∞ 
  

 when all .θ ∈Θ  

From (22) and (23) we will obtain that ( ){ }sup 'E L
θ

θ
∈Θ

< ∞  and ( ){ }sup ''E L
θ

θ
∈Θ

< ∞  when all 

.θ ∈Θ  Using ergodic theorem we will have that a.s'( ) '( )nL Lθ θ→  and a.s.''( ) ''( )nL Lθ θ→  
when n →∞  for all θ ∈Θ . 

In a similar manner as in case with proving lemma 2 [4], we will obtain that  
a.s.sup | '( ) '( ) | 0nL L

θ
θ θ

∈Θ
− →  and { } a.s.sup | ''( ) ''( ) | 0nL L

θ
θ θ

∈Θ
− →  when .n →∞  

The theorem is proved. 

From (21) we obtain that ( )nL θ  achieves the maximum in point ,nθ
∧

 that is why for n  that 

are large enough nθ
∧

 is the internal point of compact space .Θ  Then there exists 0 ,n N∈  such 

that '( ) 0n nL θ
∧

=  with any 0.n n≥  It follows that  

0 0'( ) '( ) '( ).n n n nL L Lθ θ θ
∧

− = −  

Using mean value theorem we have 

0 0 0( ) "( ) '( ) '( ) '( ),n n n n n nL L L Lθ θ η θ θ θ
∧ ∧

− = − = −                                   (24) 
where  ,η∈Θ  so that  

0| | | |,n nη θ θ θ
∧ ∧

− ≤ −  0 0| | | | .nη θ θ θ
∧

− ≤ −  

Using the same method as with proving theorem 1 and (3), we will obtain 

0|| "( ) ||E l θ < ∞  when all .θ ∈Θ  

From the continuity of the function "(.)nL  and theorem [4], we will obtain 

0"( ) "( ) (1).n nL L oη θ= +                                                        (25) 

I. Berkes and L. Horváth in their work proved that 
2 2
0 0 0 0

2 2
0 0

( ( )) ' ( ( )) '
T

E σ θ σ θ
σ σ

  
  
   

 is a non-

singular matrix. 
We know that 2 2

0 0 0( ) ,σ θ σ=  then under conditions of theorem [4], using (24) and 

independence of random variables tε  and 
2

2 ,
( )
t

t

σ
σ θ

 we will have the following 

( ) ( ) ( ) 2
0 0 0 0'' ' 1 1

p

nL El E pθ θ ε = = − + −  
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2 2
0 0 0 0

2 2
0 0

( ( )) ' ( ( )) ' .
T

E σ θ σ θ
σ σ

  
  
   

 

Using similar method as in case with random process { '( )} ,t t Zl θ ∈  we will obtain that 

0{ "( )}t t Zl θ ∈  is strictly stationary and ergodic process. It follows that 

( )a.s.
0 0"( ) '' ,nL Lθ θ→  when ,n →∞                                           (26) 

Using (22), we will have 

( )
2

2 0
0 2

1

( ( )) '1'( ) 1 | | .
n

p t
n t

t t

L
n

σ θ
θ ε

σ=

= −∑                                         (27) 

From (24)-(27) we will obtain the following 

( )
2

1/2 1/2 2 0
0 2

1

( ( )) '( )( (1)) 1 | | ,
n

p t
n t

t t

n B o n σ θ
θ θ ε

σ

∧
−

=

− + = −∑                    (28) 

Theorem 5. Let’s assume that conditions of theorem from paper [4] are satisfied, then 
for / 4p α<  we will have 

1/2 1 1
0( ) (0, )d

nn N B Bθ θ
∧

− −− → Σ  when ,n →∞                         (29) 

where 
4
0( ( ) 1) ,pE AεΣ = −  

2 2
0 0 0 0

2 2
0 0

( ( )) ' ( ( )) '
T

A E σ θ σ θ
σ σ

  
 =  
   

, 0 0''( ).B El θ=  

Proof. Indeed, when / 4,p α<  in view of the condition of 2| | 1p
tE ε =  and 

independence of random variables tε  and 
2

0
2

( ( )) 't

t

σ θ
σ

 we have 2
0| '( ) | ,tE l θ < ∞  and 

0'( ) 0tEl θ =  when any .t Z∈  It follows from  ( )
2

2 0
0 2

( ( )) ''( ) 1 | |p t
t t

t t Z

l σ θθ ε
σ

∈

 
= − 

 
being 

stationary martingale difference process, that { }0'( )t t Z
l θ

∈
 is ergodic process. If n  is 

large enough, there exists 1( (1))B o −+  which is equal to 1( (1)).B o− +  On the other hand, 

matrix 1 1B B− −Σ is a covariance matrix ( )
2

2 10
2

( ( )) '1 | |p t
t

t

Bσ θ
ε

σ
−−  . It follows from here that, 

using (28) and Cramer-Wold theorem [15] we will obtain (29). 
The theorem is proved. 

 
5. Conclusions 

This paper mainly studies parameters estimation and heavy tail behavior of GARCH (1,1) 
with the errors having regularly varying distribution. Firstly, we introduce the basic 
definitions and related theories of GARCH (1,1) models as theoretical basis for this study. 
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Secondly, show the heavy tail behavior of GARCH(1,1) process with α -stable residuals 
{ } ,t t Zε ∈  (0,2]α ∈  and  { }t t Zε ∈  errors. And then assess with the index for α  > 0 change 
regularly distributed disturbance GARCH (1,1) model parameters and modify maximum 
likelihood function. Finally, prove the credibility and asymptotically normal distribution of 
the estimation with related theories. 

The related research of this paper will help us analyze deeply some practical problems 
shown spike and fat-tailed features in the various fields, and make it easier to realize how to 
correctly describe the degree of heavy-tailed distribution, that is, accurately estimate the tail 
index of heavy-tailed. Meanwhile, this paper presents parameters estimation and heavy tail 
behavior of GARCH (1,1) models to provide a reference basis for the study of many practical 
issues of other financial time series data of the "volatility". For example, GARCH models are 
applied to the futures, foreign exchange, interest rate and other economic and financial fields. 
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