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Abstract 
This study proposes a post-processor to reduce the effect of musical residual noise which is 

annoying to the human ear. Initially, a state-of-the-art speech enhancement algorithm is 
performed as the first stage to reduce background noise for noisy speech. Hence the 
enhanced speech is post-processed by a hybrid-mean filter to reduce the musical effect of 
residual noise. In the case of a vowel-like spectrum, directional-mean filtering is performed 
to slightly reduce the musical effect of residual noise, where the harmonic spectrum can be 
well maintained at an acceptable level. Conversely, block-mean filtering is performed to 
heavily reduce the spectral variation for noise-dominant spectra, enabling musical tones to 
be significantly smoothed. The musical effect of residual noise is therefore reduced. Finally, 
the pre-processed, the directional-mean filtered and the block-mean filtered spectra are fused 
according to speech-presence probability. Experimental results show that the proposed 
hybrid-mean filter can efficiently improve the performance of a speech enhancement system 
by reducing the musical effect of residual noise. 
 

Keywords: speech enhancement, spectral subtraction, musical residual noise, post-
processing, hybrid-mean filter 
 
1. Introduction 

Many speech enhancement algorithms have been proposed to reduce the background noise 
in noisy speech [1-8]. These algorithms attempted to efficiently remove the corruption noise, 
but the musical effect of residual noise is apparent in the enhanced speech. This musical noise 
is perceived as twittering and degrades the perceptual quality massively. If it is too prominent, 
it may be more disturbing than the inference before speech enhancement.  

Recently, many studies attempted to suppress musical residual noise [3, 8-10]. Esch and 
Vary [10] proposed performing smoothing on the weighting gains for speech-pause and low 
SNR conditions, yielding the musical effect of residual noise being reduced. Jo and Yoo [3] 
considered a psycho-acoustically constrained and distortion minimized enhancement 
algorithm. This algorithm minimized speech distortion while the sum of speech distortion and 
residual noise was kept below the masking threshold.  

Based on the above findings, how to efficiently remove the musical effect of residual noise 
is important for speech enhancement. In this paper, we employ a speech enhancement system 
to be the first stage for removing background noise; meanwhile, speech distortion should be 
maintained at a low level. The output signal is further processed by the proposed hybrid-mean 
(HM) filter which is motivated by that the adaptive median filter can efficiently remove 
impulse noise in image denoising [11, 12], yielding the musical effect of residual noise being 
efficiently reduced. An algorithm for estimating speech-presence probability [13] is employed 
and modified to classify the pre-processed spectrum as speech-dominant or noise-dominant. 
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In the case of speech-dominant spectrum, an eight-direction mean filter is performed to 
slightly reduce the musical effect of residual noise; meanwhile, the harmonic spectrum does 
not been seriously destroyed. When the value of speech-presence probability exceeds a high 
threshold, the spectrum is classified as a vowel. This spectrum is kept unchanged to maintain 
speech quality. Conversely, a block-mean filtering is performed to heavily reduce the spectral 
variation for noise-dominant spectra. Musical tones are then significantly smoothed, enabling 
the filtered speech to sound less annoying than the pre-processed speech. Finally, the pre-
processed, the post-processed spectra (obtained either from directional-mean filter or the 
block-mean filter) are fused according to the speech-presence probability. If the value of 
speech-presence probability is high, the weight of pre-processed speech goes high. This 
enables the pre-processed to be preserved, resulting in less speech distortion in the post-
processed speech. Conversely, the weight is high for (block or directional) mean filtered 
spectra, yielding the musical effect of residual noise being efficiently removed. Experimental 
results show that the proposed post processor can improve the performance of a speech 
enhancement system by efficiently removing the musical effect of residual noise, while 
speech distortion is not perceptible by the human ear. Accordingly, the post-processed speech 
sounds more comfortable than that without post-processed. 
 
2. Proposed Speech Enhancement System 

Initially, noisy speech is framed by a Hanning window, and then transformed into the 
frequency domain by fast Fourier transform (FFT). A minimum statistics algorithm [14] 
is employed to estimate the noise magnitude for each subband. Hence, this noise 
estimate is employed to adapt a speech enhancement system, enabling the background 
noise to be efficiently removed. Because the musical effect of residual noise is apparent 
in the pre-processed speech, the hybrid-mean (HM) filter is proposed to remove it. 
Noisy speech is utilized to estimate the pitch period. Hence, the robust harmonic 
spectra are searched for each frame. The number of robust harmonic is employed to 
adapt an algorithm for estimating speech-presence probability which will be applied to 
control the fusion weighting between the pre-processed and (directional or block) mean 
filtered signals. Each spectrum of pre-processed speech is analyzed to classify whether 
it is vowel-like. If the center spectrum of a local window is a vowel, the corresponding 
speech-presence probability would be large. The center spectrum is kept unchanged to 
maintain speech quality. If the value of speech-presence probability is less than a given 
threshold, the center spectrum is classified as vowel-like. A directional mean filter is 
employed to modify the magnitude of the center spectrum, yielding the musical effect 
of residual noise being slightly reduced. Conversely, the center spectrum is classified as 
noise-like when the value of speech-presence probability is equal to zero. A block-mean 
filtering is performed, enabling the center spectrum to be heavily smoothed. The 
musical effect of residual noise is then significantly reduced. Finally, the pre-processed, 
the directional-mean filtered, and the block-mean filtered spectra are fused according to 
the speech-presence probability. In turn, the inverse FFT is performed to achieve post-
processed speech. 
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Figure 1. Block Diagram of Proposed Speech Enhancement System 

2.1. Robust Harmonic Estimation 
A harmonic spectrum distributes in the frequency ranges from 50 to 500 Hz. Low-

pass filtering on noisy speech with cut-off frequency 500 Hz is performed to obtain a 
low-pass signal )(nφ  which can be applied to accurately estimate the pitch period by 
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reducing the inference of high-frequency signals. In turn, we compute the auto-
correlation function of the low-pass filtered signal )(τφR , given as 
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where N denotes frame size. 
In order to improve the accuracy for estimating the pitch period, an average 

magnitude difference function (AMDF)[15] is performed on the low-pass filtered signal 
)(nφ , given as 
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In the position of pitch period, the value of AMDF is small, while the value of )(τφR  
given in (1) is large. The ratio of AMDF and )(τφR  is enlarged, yielding the 
discriminability of pitch position increasing. It is beneficial to improve the accuracy in 
estimating the pitch period. A weighted autocorrelation function (WAC) can be defined 
as [15] 
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where ε  is a very small value to prevent the denominator being zero. 
Harmonic estimation can be performed by the fundamental frequency F0 which can be 

obtained by the pitch period T0 [16], given as  

00 /TNF =  (4) 

In the experiments, we find that the estimated fundamental frequency obtained by (4) 
suffers from underestimate. Thus we attempt to shift the location of fundamental frequency F0  
to that of the spectral peak for each segment. The shifted frequency *

0F  can be expressed as  
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where BiasF0  denotes the offset from the fundamental frequency F0  obtained by (4). It can be 
computed by 
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where il  and el  represent the starting and ending frames of the lth segment. )('0 mF  denotes 
the fundamental frequency with spectral peak.  

Robust harmonic takes place on the multiple of fundamental frequencies, i.e., nF0. 
The number of robust harmonic K can be decided by 
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where kF0  denotes the frequency of kth harmonic. 0Fδ is the frequency threshold of 
adjacent harmonic for deciding robust harmonic. 

In (7), if the frequency offset between two adjacent harmonic varies largely, the 
harmonic structure may become weak. Thus the boundary of robust harmonic can be 
marked. The more the number of the robust harmonic is, the higher the probability of 
the speech-presence is. Accordingly, we can employ the number of robust harmonic to 
adapt an algorithm for estimating speech-presence probability. 
 
2.2. Speech-Presence Probability 

Speech presence can be determined by the ratio between the local energy of the noisy 
speech and its minimum within a specified time window. A speech-presence probability 

),( ωmp  can be computed by [13] 

),()1(),1(),( ωαωαω mImpmp pp ⋅−+−⋅=  (8) 

where pα ( pα  = 0.2) is a smoothing parameter. ),( ωmI  denotes an indicator function 
for speech-activity. It can be computed by 
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where )(mγδ  is a speech-presence threshold for a power ratio ),( ωγ m  (the ratio 
between the smoothed local power and the minimum power in a local segment). 

In [13], the speech-presence threshold for the power ratio )(mγδ  is set to a constant 5. 
Here we modify this threshold by adapting with the number of robust harmonic K given 
in (7). If a frame is vowel-like, the speech indicator ),( ωmI  should approach unity. Thus 

a weak vowel frame can be classified as speech-presence frame. The ratio )(mγδ  can be 
expressed by 

Km ⋅
−

−=
2

)( minmax
max

δδδδγ  (10) 

where maxδ  and minδ are empirically chosen to 8 and 3, respectively. In order to prevent 
the threshold )(mγδ  from being too small or negative, a lower bound for the threshold 

)(mγδ  should be provided, given as =)(mγδ  }),(max{ minδδγ m . 
The value of speech-presence probability lies between 0 and 1 as shown in (8). We 

can employ it to control the fusion weighting for the pre-processed and the HM filtered 
spectra. 
 
2.3. Hybrid-mean filter 

The hybrid-mean filter is constituted of directional-mean and block-mean filters. 
Directional-mean filtering is performed when a frame has strong harmonic structure. 
The direction candidates are shown in Figure 1, where the center spectrum is denoted 
by a filled circle. The center spectrum is classified as vowel-like when the number of 
robust harmonic is great enough. In turn, we further check whether the center spectrum 
is a vowel by the speech-presence probability. If the value of speech-presence 
probability exceeds a given threshold, the center spectrum is classified as a vowel and 
kept unchanged to maintain speech quality. On the other hand, if the value of speech-



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 6, No. 4, August, 2013 

 

 

170 

presence probability lies between 0.2 and 0.8, the center spectrum is classified as 
vowel-like and filtered by the directional mean filter, given as 
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(11) 

where i* denotes the optimum direction. ),(~ ωmS  represents the pre-processed spectrum. 
The symbols a-f represent the pre-processed spectrum. 

As shown in Figure 1, the optimum motion direction of the center spectrum should 
be selected among the eight candidate directions (1-8). The decision rule is to select the 
direction with the minimum spectral-distance. The spectral-distance measure )ω,()( md i  
can be expressed by (12)-(19), given as [12] 

eahdmd −+−=),()1( ω  (12) 

hbgamd −+−=),()2( ω  (13) 

gbmd −⋅= 2),()3( ω  (14) 

gcfbmd −+−=),()4( ω  (15) 

fedcmd −+−=),()5( ω  (16) 

edmd −⋅= 2),()6( ω  (17) 
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Figure 2. Motion Directions of the Center Spectrum, Directions (a) 
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hamd −⋅= 2),()7( ω  (18) 

fcmd −⋅= 2),()8( ω  (19) 

The direction with the minimum spectral-distance given in (12)-(19) is declared as 
the optimum motion direction for the center spectrum. The optimum distance measure 
can be expressed as 

{ }81 ,   ) ,( min),( )(*)( ≤≤= imdmd ii ωω  (20) 

The directional-mean filter can mitigate the fluctuation of random spectral peaks on 
the optimum direction, enabling the musical effect of residual noise to be reduced. In 
order to improve the performance in the reduction of musical tones, we further employ 
a block-mean filter to significantly smooth the variation of musical tones when a center 
spectrum is classified as noise-like. The larger the size of the window is, the greater the 
reduction of the spectral variation is. Increasing window size causes a quantity of 
speech distortion. Accordingly, we adopt the window size 3×3 to analyze and filter the 
pre-processed spectra. 
 
3. Experimental Results 

In the experiments, speech signals are Mandarin Chinese spoken by five female and five 
male speakers. Those speech signals are corrupted by various kinds of additive noise, such as 
white, F16-cockpit, factory, and helicopter-cockpit noise signals which are extracted from the 
Noisex-92 database. Three input average segmental SNR levels, including 0, 5, and 10dBs, 
are used to evaluate the performance of a speech enhancement system. A minimum statistics 
algorithm [14] is performed to estimate the power of noise for each frequency bin. This 
algorithm updates the noise estimate in both speech-activity and speech-pause regions, which 
fact represents the advantage of the minimum statistics approach. The following parameters 
are used in the experiments: (1) sampling frequency is 8 kHz; (2) the frame size is 256 with 
50% overlap; (3) Hanning window is utilized; (4) total number of critical bands is 18, the 
center frequency and the corresponding bandwidth of each critical band can be found in [1].  

Objective measures, including the average of segmental SNR improvement 
(Avg_SegSNR_Imp) and the perceptual evaluation of speech quality (PESQ) [17] are 
conducted to evaluate the performance of a speech enhancement system. Only the 
performance in speech-activity regions is evaluated. Speech spectrogram comparison is also 
performed. In order to evaluate the performance of the proposed system, a two-step-decision-
directed algorithm [5] and the Virag method [1] are implemented as the first stage for 
comparisons. The proposed hybrid-mean filter is cascaded after the first stage to improve the 
performance by the more reduction of musical residual noise. 
 
3.1. Noise Estimate 

Noise estimator has been a major role on deciding the quality of a speech enhancement 
system. If the noise estimate is too low, residual noise increases. Conversely, if the level of 
noise estimate is too high, enhanced speech sounds would be muffled and intelligibility would 
be lost. The traditional voice activity detectors (VADs) are difficult to tune in non-stationary 
noise corruption. In addition, the voice activity detector (VAD) application to low SNR 
speech results often in clipped speech. Thus, the VAD cannot well estimate the noise level in 
non-stationary and low SNR environments. 
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Martin [14] proposed the minimum statistics algorithm to estimate the power of noise for 
each subband. The algorithm does not use the VAD, instead it tracks power minimum in each 
subband to decide the noise estimate. The minimum statistics noise tracking method is based 
on the observation that even during speech activity a short-term power density estimate of the 
noisy signal frequently decays to values which are representative of the noise level. This 
method rests on the fundamental assumption that during speech pause or within brief periods 
in between words and syllables, the speech energy is close or identical to zero. Thus, by 
tracking the minimum power within a finite window large enough to bridge high power 
speech segments, the noise floor can be estimated. Detailed procedure of the minimum 
statistics noise estimation algorithm can be found in [14]. 

Table 1. Comparison of SegSNR Improvement for the Enhanced Speech in 
Various Noise Corruption 

 SNR Average SegSNR improvement 
noise type (dB) TSDD TSDD 

+Post 
Virag Virag 

+Post 
 0 6.82 6.97 6.38 6.99 

White  5 4.79 4.92 4.90 5.43 

 10 3.04 3.20 3.48 3.93 

 0 4.99 5.10 5.09 5.35 

F16 5 3.52 3.75 3.66 4.24 

 10 2.32 2.58 2.39 3.18 

 0 4.71 4.83 4.64 5.01 

Factory  5 3.37 3.55 3.20 3.99 

 10 2.23 2.48 1.97 3.00 

 0 6.75 7.21 6.44 7.12 

Helicopter 5 4.87 5.44 4.70 5.68 

 10 3.24 3.87 3.19 4.28 
 
3.2. Segmental SNR Improvement 

The quantities of noise reduction, residual noise and speech distortion can be measured by 
the average segmental SNR improvement (Avg_SegSNR_Imp). The average of segmental 
SNR (Avg_SegSNR) of a test signal is evaluated according to clean speech ) ,( nms , and the 
enhanced signal ) ,(ˆ nms . It can be expressed by 

 )
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where } {I  represents a set of speech-activity frames. M and N denote the numbers of speech-
activity frames and of samples per frame, respectively. m is frame index. 
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The Avg_SegSNR_Imp is computed by subtracting the Avg_SegSNR of noisy speech 
from that of enhanced speech. Table 1 presents the performance comparisons in terms of the 
average segmental SNR improvement. The larger the value of the Avg_SegSNR_Imp is, the 
better the quality of enhanced speech is. Observing the performance presented in the TSDD 
and the TSDD+Post, to cascade the proposed hybrid-mean filter after the TSDD method 
(TSDD+Post) can improve the performance of the pre-processed speech (TSDD). The 
performance of the Virag method (Virag) can be improved by the hybrid-mean filter 
(Virag+Post), too. Accordingly, the proposed hybrid-mean filter can improve the performance 
for a speech enhancement system in various noise corruptions. The major reason is attributed 
to the fact that the proposed method can remove the musical effect of residual noise; 
meanwhile, the harmonic structure of a vowel speech is well preserved. 
 
3.3. Perceptual Evaluation of Speech Quality 

The perceptual evaluation of speech quality (PESQ) measure, which has better correlation 
with subjective tests than the other objective measures, was selected as the ITU-T 
recommendation P.862 [17] to evaluate the speech quality of a test signal. In the computation 
of PESQ score for an enhanced speech signal (or a noisy speech signal), the clean and 
enhanced speech signals were initially level-equalized to a standard listening level, and then 
filtered by a filter with response similar to a standard telephone handset. The clean and 
enhanced speech signals were aligned in the time domain to correct the time delays between 
these two signals. Hence, these two signals were processed through an auditory transform, 
similar to that of perceptual speech quality measure (PSQM) to obtain the loudness spectra. 
The disturbance, obtained by computing the difference between the loudness spectra for the 
clean and the enhanced speech signals, was computed and averaged over time and frequency 
to produce the prediction of subjective mean opinion score. The detailed procedures for 
computing the PESQ score can be found in [17]. 

Table 2 presents the performance comparisons in terms of the PESQ. The maximal PESQ 
score corresponds to the best speech quality. We can find that the proposed hybrid-mean filter 
obtains higher PESQ scores than the TSDD and the Virag methods. It shows that the 
proposed hybrid-mean filter does not seriously deteriorate speech components while 
efficiently suppressing the musical effect of residual noise. These results are consistent with 
that in terms of average segmental SNR improvement shown in Table 1.  
 
3.4. Waveforms 

Figure 3 demonstrates an example of waveform plots for comparison. A speech signal 
uttered by a female speaker was corrupted by helicopter-cockpit noise with Avg_SegSNR = 0 
dB. In Figure 3(c), the TSDD method can efficiently remove background noise, in particular 
in a speech-pause region. The quantity of residual noise of the proposed method (Figure 3(d)) 
is comparable to that of the TSDD method (Figure 3(c)). It is due to the proposed method 
aims at smoothing musical tones over successive frames and neighbor subbands, rather than 
to further suppress the magnitude of musical tones. Therefore, the proposed method will not 
cause additional speech deterioration when conducting hybrid-mean filtering.  
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Table 2. Comparisons of Perceptual Evaluation of Speech Quality (PESQ) for 
the Enhanced Speech in Various Noises 

 SNR PESQ 

Noise type (dB) Noisy TSDD TSDD 
+Post Virag Virag 

+Post 
 0 1.63 2.05 2.12 2.07 2.20 

White 5 1.91 2.36 2.43 2.45 2.57 

 10 2.25 2.65 2.72 2.80 2.92 

 0 1.84 2.18 2.24 2.29 2.34 

F16 5 2.18 2.51 2.56 2.63 2.70 

 10 2.53 2.81 2.86 2.97 3.03 

 0 1.81 1.97 2.06 2.21 2.21 

Factory 5 2.16 2.37 2.43 2.58 2.59 

 10 2.52 2.71 2.78 2.93 2.95 

 0 2.02 2.43 2.52 2.55 2.67 

Helicopter 5 2.37 2.75 2.83 2.88 3.01 

 10 2.73 3.05 3.11 3.16 3.30 

Comparing the waveform plots of enhanced speech shown in Figures 3(e) and (f), the 
proposed hybrid-mean filter can slightly improve the Virag method by reducing the musical 
effect of residual noise during the speech-pause regions. A vowel with weak energy can be 
restored. It may be attributed to the adaptation of harmonic on the directional-mean filter, 
yielding a vowel with weak energy being restored by the neighbor vowel with stronger energy.  
Therefore, the proposed hybrid-mean filter does not suffer from the deterioration of speech 
when reducing the effect of residual noise. 
 
3.5. Spectrograms 

Objective measures cannot easily quantify the quantity of residual noise in the enhanced 
speech. Analyzing the time-frequency distribution of the enhanced speech and evaluating the 
structure of residual noise, are particularly important. The speech spectrograms are therefore 
observed, to yield more information about the residual noise and speech distortion.  

 
Figure 3. Example of Speech Signal Spoken by a Female Speaker. (a) Clean 

Speech, (b) Noisy Speech Corrupted by Helicopter-cockpit Noise with Average 
SegSNR = 0 dB, Enhanced Speech using (c) TSDD Method, (d) TSDD Method 

with Post Processing, (e) Virag Method, (f) Virag Method with Post Processing 
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Figure 4 presents the spectrogram comparisons for various speech enhancement methods. 
Speech signals were corrupted by F16-cockpit noise signal with Avg_SegSNR = 5 dB. 
Observing the spectrograms of enhanced speech during speech-pause regions shown in Figure 
4(c), plenty of isolated spectral patches with strong energy exist in the enhanced speech for 
the TSDD method. After post-processed by the proposed hybrid-mean filter, these isolated 
patches tend to whiten (Figure 4(d)), i.e., the isolated spectral patches of musical tones spread 
to the neighbor subbands and frames. This enables the musical tones to vary smooth in the 
successive frames and to sound less annoying than that produced by the TSDD method 
(Figure 4(c)). The musical effect of residual noise is then reduced. In Figure 4(e), there is a 
quantity of residual noise in the enhanced speech of Virag method. This noise is very 
annoying to the human ear and can be efficiently removed by the proposed hybrid-mean filter 
(Figure 4(f)). The major reason is attributed to residual noise being efficiently smoothed by 
the block-mean filter, enabling the isolated random spectral peaks to vary smoothly over 
successive frames and neighbor subbands. Accordingly, the musical effect of residual noise is 
efficiently reduced, while the harmonic structure of a vowel is well preserved. In addition, a 
muffled effect is absent in the hybrid-mean filtered speech. This results in the post-processed 
speech sounding more comfortable than the pre-processed one. 

Based on the above discussion, the hybrid-mean filter can efficiently reduce the musical 
effect of residual noise and can adequately preserve the harmonic spectra of a vowel, yielding 
the post-processed speech sounding more comfortable than that without post-processing for 
the TSDD and the Virag methods. Accordingly, the proposed hybrid-mean filter can improve 
the performance of a speech enhancement system. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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(f) 

Figure 4. Spectrograms of Speech Spoken by a Female Speaker, (a) Clean 
Speech, (b) Noisy Speech Corrupted by F16-cockpit Noise with Average 

SegSNR = 5 dB, Enhanced Speech using (c) TSDD Method, (d) TSDD Method 
with Post Processing, (e) Virag Method, (f) Virag Method with Post Processing 

4. Conclusions 
Employing the hybrid-mean filter to post-process enhanced speech was proposed in this 

study. The major contribution is to significantly reduce the spectral variation of residual noise 
by block-mean filtering on the spectrogram of a noise-dominant region, and to slightly 
smooth the spectra of residual noise by directional-mean filtering in a speech-dominant region. 
Hence, the pre-processed and the hybrid (block or directional) mean filtered spectra are 
adequately fused according to speech-presence probability. It prevents the spectra in speech-
dominant regions from being severely deteriorated by the proposed hybrid-mean filter. 
Experimental results show that the proposed post-processor can efficiently reduce the musical 
effect of residual noise for a speech enhancement system, yielding the post-processed speech 
sounding more comfortable than that without post-processing. 
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