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Abstract 
Difference co-array can be constructed by using Khatri-Rao (KR) product, which can 

increase the degrees of freedom (DOF) significantly. Combined with fourth order cumulants, 
the KR product can be used to constructed fourth order difference co-array. The fourth order 
difference co-array of a four level nested array contains a uniform linear array (ULA), 
however, its second order difference co-array has missing holes, which may result in the 
ambiguity for DOA estimation. And the method based on KR product and fourth order 
cumulants has two main drawbacks. First it cannot be employed to Gaussian source signals. 
Second it needs a large number of snapshots. In this paper, a novel approach is proposed to 
construct a virtual ULA based on KR product and redundancy spacing of arrays for a four 
level nested array. Unlike the existing method based on KR product and fourth order 
cumulants, the new method only uses second order statistics. And compared to the method 
based on KR product and second order statistics, the new method achieves higher resolution. 
Numerical results are provided to demonstrate the effectiveness and superior performance of 
the proposed algorithm. 
 

Keywords: Augmented covariance matrix; Difference co-array; Direction-of-arrival 
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1. Introduction 

DOA estimation with nonuniform linear array (NLA) has been an active research area in 
these years mainly due to that it can span larger aperture than uniform linear array (ULA) for 
the same number of sensors. Moreover, NLA can resolve more sources than sensors in some 
cases. 

There were mainly three ways to detect more sources than sensors in earlier works. The 
first way is to exploit the minimum redundancy arrays (MRA)[1]. In [2] and [3], it has been 
shown that by constructing an augmented covariance matrix, the degrees of freedom (DOF) 
can be almost increased up to ( 1) / 2N N − with N sensors array. However, the augmented 
covariance matrix is not positive definite for finite number of snapshots. Besides, there is no 
close form expression for the sensor positions and computer search must be done to find the 
optimal sensor placement. Using high order cumulants is the second way to increase the DOF. 
It has been shown that in [4-6], the cumulant based algorithm can increase the DOF 
significantly. However, these methods are only applicable to non-gaussian sources, and a 
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large number of snapshots are needed to compute the high order cumulants. Lately, by using 
Khatri-Rao (KR) product, Ma[7] proposed a novel approach which can detect 2 1N − sources 
using a ULA with N sensors. After that, much attention has been attracted to the use of 
Khatri-Rao product. Based on KR product and second order statistics, a new array geometry 
called nested array was proposed by Pal.P[8], where the DOF was increased up 
to 2( )NΟ using only N elements by constructing the difference co-array. It was shown that the 
second order difference co-array of a two level nested array is a filled ULA, but has miss 
holes for more than two stage of nesting. In [9], by exploiting KR product and 2 ( 2)q q ≥ order 
cumulants, Pal.P extended the two level nested array to 2q level nested array, which showed 
that 2 th( 2)q q ≥ order difference co-array of 2 ( 2)q q ≥ level nested array contains a ULA 
with 2( )qNΟ virtual sensors, where N is the number of the original array. However, a large 
number of snapshots are needed to be computed high order cumulants. Besides, the method 
cannot be applicable for Gaussian sources. In this paper, we propose a novel approach to 
construct a half of the fourth order difference co-array, and by exploiting four level nested 
array, we can identify 4( )NΟ sources using only N sensors. Firstly, we construct the second 
order difference co-array of a four level nested array using KR product. Then, by making use 
of the redundancy lag of the covariance matrix, we construct the final virtual array based on 
the second difference co-array. Our method can be used to detect Gaussian and non-Gaussian 
signals since it only exploits second order statistics. And compared with the method based on 
KR product and second order statistics[8], our method shows higher resolution ability. 
 
2. Signal Model and Preliminaries 

In this section, we first introduce the signal model, then two existing DOA estimation 
methods will be presented, which will be exploited in the proposed method thereafter.  
 
2.1. Signal Model 

Consider the case in which K narrowband far-field sources are impinging on a NLA 
of N elements. The received signal of the thi element is 

1
( ) ( ) ( ), 1,2,...,

K

i ik k i
k

x t a s t v t i N
=

= + =∑  (1) 

where 2exp( sin )ik i ka j dπ θ
λ

= −  ,whereλ denotes the wavelength of the signal, id denotes the 

position of the thi sensor, we assume the sensors to be placed on a linear grid, which is an 
integer multiple of the smallest spacing in the underlying grid. ( )ks t denotes the thk signal 
and ( )iv t denotes the noise received by the thi sensor.  

Using matrix notation, (1) can be rewritten as 

( ) ( ) ( )t t t= +x As v  (2) 

where 1 2( ) [ ( ), ( ),..., ( )]T
Nt x t x t x t=x  is the vector of the received signals, 

1 2[ ( ), ( ),..., ( )]Kθ θ θ=A a a a , 1 2( ) [ , ,..., ]T
k k k Nka a aθ =a . A and ( )kθa are the array manifold and 

the steering vector of the array, respectively. 1 2( ) [ ( ), ( ),..., ( )]T
Kt s t s t s t=s denotes the vector of 

the source signals. 1 2( ) [ ( ), ( ),..., ( )]T
Nt v t v t v t=v denotes the vector of the received noise. 
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To estimate the incident angles of the signals, we make the following assumptions: 

A1): The signals are uncorrelated each other and uncorrelated with the noise. 

A2): The noise is assumed to be spatially and temporally white. 

A3): The signals are nonstationary, but each source signals are stationary with frame 
length L , i.e., 

2{ ( ) ( )} , [( 1) , ], 1,2,..., , 1,2,...,H
k k kmE s t s t t m L mL m M k Kσ= ∀ ∈ − = =  (3) 

The covariance matrix of the thm frame received signals can be expressed as 
2

m{ ( ) ( )}H H
m m sm nE t t σ= = +R x x A A IΣ  (4) 

where 2 2
1[ ,..., ]sm m Kmdiag σ σ=Σ , where 2 , 1,..., , 1,...,km k K m Mσ = = denotes the power of 

the thm frame of the thk signal, and 2
nσ denotes the power of noise.  

 
2.2. th2q Order Nested Array 

Nested array, which is proposed by Pal.P et. al., [9], is a new array geometry and can 
significantly increase the DOF of linear arrays. A ‘2q-Level’ nested array, parameterized 
by 1 2 2, , ,..., qq N N N , is defined as one where the sensor positions are given by the 

set 2
2 1

q
q level ii

S S− =
= , where 

1

1

2 1

2
1

{ , 1,2,..., 1}, 1,2,...,2 1

{ , 1,2,..., }

i

i j i
j

q

K j q
j

S nd N n N i q

S nd N n N

−

=

−

=

= = − = −

= =

∏

∏
 (5) 

where d denotes the minimum grid. The nested array has 
2

1
( 1) 1

q

i
i

N
=

− +∑ sensors, each level 

with 1kN − sensors in the -thk level except 2qN sensors in the th2q level. It has been shown 
that the 2 thq order difference co-array of a 2q level nested array with N sensors contains a 
ULA with 2( )qNΟ virtual sensors[9]. However, the second order difference co-array of an 
array with more than two stage of nesting is not a ULA[8]. In this paper, we consider the 
problem of the second order difference co-array of four level nested array. A virtual ULA will 
be constructed from four level nested array based on Khatri-Rao product and redundancy 
spacing of arrays. 
 
2.3. Directed Augmented Approach 

By employing the MRA, the directed augmented approach constructs an augmented 
covariance array almost to increase the DOF to ( 1) / 2N N − with an N element array. 
The ( , )i j entrance of the covariance matrix of the thm frame received signals is 

2 ( )sin2 2
, ,

1
e ( )i j k

K j d d

mz m i j m ij km n
k

r r i j
π θ
λσ σ δ

− −

−
=

= = + −∑ R  (6) 
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It is well known that the covariance matrix of the received signals of a ULA is toeplitz. 
And there are 1N + spatial lags in a covariance matrix of a ULA with N elements. As long as 
all the spatial lags are measured, a ULA is just constructed. From (6), we know that we can 
use fewer sensors to measure all elements in the covariance matrix of a ULA. However, as we 
mention above, there is no close form for the array geometry so that exhaustive computer 
search must be performed to find the optimal placement for a given number of sensors. The 
MRA for the sensor number 17N < is given in[10].  

After finding all the spatial covariance lags for z from 0 to Z , the augmented covariance 
matrix can be constructed as follows: 

0 1
*
1 0

0 1
* *

1 0

m m mZ

m m
ma

m m

mZ m m

r r r
r r

r r
r r r

 
 
 =
 
 
 



 

 



R  (7) 

And maR behaves like a covariance matrix of a ULA with 1Z + elements, which is half of 
the difference co-array of the physical array. The subspace methods such as MUSIC can be 
applied to the augmented covariance matrix to get better performance. 
 
2.4. KR-based Method 

KR-based method vectorizes the covariance matrix of the original array to obtain a new 
vector, which can be treated as received signal vector of a new array. Vectorize mR to get the 
following vector: 

2 * 2( ) ( ) ( ) , 1,...,H
m m sm n m n nvec vec m Mσ σ= = + = + =1


y R A A I A A pΣ  (8) 

where 2 2 2
1 2[ , ,..., ]T

m m m Kmσ σ σ=p , 1 2[ , ,..., ]T T T T
n Ne e e=1


with ie being a column vector of all zeros 
except a 1 at the thi position and the symbol  denotes the KR product of two matrix. 
Compared it with (2), it can be noted that my behaves like a received signal of a new array, 
where * A A is the array manifold matrix, mp is the new signal vector and the noise is 
denoted by 2

n nσ 1


. If the positions of sensors of the original array are in the set{ ,1 }ix i N≤ ≤
 , 

the positions of the virtual array can be expressed as{ ,1 , }i jx x i j N− ≤ ≤
  , that is just the 

sensor location of the difference co-array. Some classic DOA estimation methods can be 
applied to the co-array to acquire better performance compared to the physical array.  
 
3. The Proposed Method 

Here we focus on four level nested array, whose fourth order difference co-array contains a 
ULA with 1 2 3 4 1 2 32( ) 1N N N N N N N+ − sensors. Although the second order difference co-array 
is not a filled ULA, we can use the co-array to construct an augmented covariance matrix, 
whose aperture length is equivalent to a ULA with 1 2 3 4 1 2 3N N N N N N N+ sensors.  

Define a new matrix 1A , which is constructed from * A A , to be the manifold matrix of 
the second order difference co-array. 1A  is acquired by removing the repeated rows from 

* A A and sorting the location of the virtual sensor in ascending order. Here we provide a 
smoothing way to decrease the variance. For instance, we can average the same rows 
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of * A A , and use the averages in place of the original rows. The same operation is 
performed to my and n1


to get new vector 1my and w . Thus we have 

2
1 1m m nσ= +y A p w  (9) 

The covariance matrix of the vector 1my is 

2 2 H
1 1 1 1

2 2 4
1 1 1 1

{ } {( )( ) }H
m m m n m n

H H H H H H
m m n m n m n

E E σ σ

σ σ σ

= = + +

= + + +A A A

R y y A p w A p w

A p p p w wp ww
 (10) 

Let 
H

m m p= = +p p B B Σ  (11) 

where pΣ is the diagonal matrix of the matrix B . Substituting (11) into (10), we have 

2 2 4
1 1 1 1 1 1

1 1

H H H H H H
p n m n m n

H
p

σ σ σ+ + + +

= +

A BA A A

A

 R = A A p w wp ww

A U

Σ

Σ
 (12)

where 2 2 4
1 1 1 1

H H H H H
n m n m nσ σ σ= + + +BA A AU A p w wp ww . Note that the diagonal elements 

ofΒ are far more than the non-diagonal elements ofΒ , we will verify that in Section 4.1. 
SoU can be regard as the noise part. Unfortunately it is color noise.  

The ( , )i j entrance of the covariance matrix of 1my is 

2 ( )sin

1

i j k
K j d d

ij k ij
k

P e
π θ
λ

− −

=

= +∑
 

R U  (13) 

where kP denotes the power of the thk signal of mp , id and jd denote the thi and thj sensor of 
the difference co-array, respectively, and ijU is the noise term of the covariance matrix.  

Define 
2 ( )sin

1

i j k
K j d d

z i j k ij
k

r r P e
π θ
λ

− −

−
=

= = +∑
 

  U  (14) 

where ijU is the average of ijU satisfied with i j z− = . i jr − is approximately equal to the i j−
R , 

and we use i jr − to replace i j−
R . This replacement operation may result estimation error, 

however, simulation demonstrates that our method shows superior performance. Interestingly 
when four level nested array is exploited, these autocorrelation lags are identical with those 
corresponding to a uniform array, which is contained by one half of fourth order difference 
co-array of the four level nested array. The difference is that the virtual noise is no longer 
temporally white. From section 2.3, it can be seen that the final virtual array is non-negative 
part of the fourth order difference co-array, which can be expressed as the set  

{ 0,1 , , , }i j k l i j k lx x x x x x x x i j k l N+ − − + − − ≥ ≤ ≤
         (15) 

where ,0ix i N≤ ≤
 is the position of the physical array. After measuring all the covariance of 

the spatial lag, we can construct the covariance matrix of the final co-array to use the similar 
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way just like (7). Then the classic method such as MUSIC can be employed to perform DOA 
estimation. Considering that the virtual noise is not temporally white, the generalized 
eigenvalue decomposition will be used to obtain the signal subspace and noise subspace. 

For a four level nested array, each level with sensor 1 2 3, ,N N N and 4N , we summarize the 
proposed algorithm as follows: 

1) Divide the received signal sequences 1( )T
tt =x into M segments, andT L M= × . 

2) Estimate the covariance matrix ˆ
mR of each segment, 1,..,m M= . 

3) Vectorize all the covariance matrices ˆ
mR to get signal vector my in each segment. 

4) Use the smoothing method to get 1A from * A A , and perform the same operation to all 
the y to obtain 1y . 

5) Compute the covariance matrix R of 1y and all the zr for 1 2 3 4 1 2 30,1,...,z N N N N N N N= + . 

6) Construct a new covariance matrix a
R using the similar way just like (7). 

7) Apply MUSIC or some other subspace methods to a
R to estimate all the DOAs. 

 
4. Simulation 

In this section, we firstly verify that auto-correlation coefficients of the actual signal 
powers are far smaller than the cross-correlation coefficients of those. Then we demonstrate 
some numerical examples to show the superior performance of the proposed method. We 
consider a NLA with 6 sensors. We place them to form a four level and a two level nested 
array, whose positions are given by the 
set { ,2 ,3 ,6 ,12 ,24 }d d d d d d and { ,2 ,3 ,4 ,8 ,12 }d d d d d d , respectively, where d is selected as 
half of the wavelength of the signals. We mainly compare the proposed algorithm to the 
method based on KR product and two level nested array[8]. For short, we call the two 
methods KR-ACM and KR, respectively. From section 3, we know the proposed method can 
identify 35 sources whereas the KR method can detect 23 sources. The sources are assumed 
to be nonstationary, which is generated by Table 2 in[7]. Note that our algorithm and KR 
algorithm are also applicable stationary, but need to use spatial smoothing[11] to 
preprocessing. The noise is assumed to be spatially and temporally white. 
 
4.1. Correlation Coefficients of the Power of the Actual Signals  

In this example, ten trials of correlation coefficients of the power of the actual signals are 
given in Table 1, where ijρ denotes the correlation coefficient and , 1, 2,...,10Ti i = denotes the 
thi run. The correlation coefficient is defined as 

 ,1 ,
rij

i j Kij r rii jj
ρ = ≤ ≤

⋅
 

where rij denotes the ( , )i j element of the covariance matrix B . Obviously 1ijρ = when i j= . 
Here, we consider three non-stationary signals. The number of snapshots is 2000, which was 
divided into 20 segments, each with frame length 100. The SNR is 5dB. According to the 
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literature[12], two vectors usually have a small correlation when the correlation coefficient of 
the two vectors are less than 0.3 and can be regarded as non-correlated when it is less than 
0.1. From Table 1, it can be clearly seen that all the correlation coefficients is less than 0.3, 
and most of them are less than 0.2, which shows that the cross-correlation of the power of the 
actual signals is far less than the auto-correlation thereof. 

Table 1. The Correlation Coefficients of the Power of the Actual Signals. 
ijρ Denotes the Correlation Coefficient of the thi and thj Signal Powers, 

, 1,2,...,10Ti i = denotes the thi run 

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

12ρ  0.013 0.012 -0.078 -0.058 0.022 0.067 0.049 0.006 0.047 -0.058 

13ρ  0.095 -0.281 -0.077 0.003 0.088 -0.097 0.110 0.208 -0.150 0.001 

23ρ  -0.105 0.090 -0.042 -0.222 -0.236 -0.236 -0.143 0.103 -0.186 -0.109 

 
4.2. Spatial Spectra 

We now investigate the spatial spectrum of the proposed methods. Figure 1 depicts the 
spatial spectra of the two methods. Two sources are given by 18 and 20 degrees. The SNR is 
0dB. The number of snapshot is 6400, which is divided to 80 segments, with 80 snapshots in 
each segment. It is clearly to say that the two methods can identify the two sources well, but 
the proposed method KR-ACM shows sharper peaks than the KR method. 
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Figure 1. Spatial Spectra of the Two Methods, SNR=0dB, 80L M= = , 6400T =  

4.3. RMSE versus SNR 

In this example, a Monte Carlo simulation is carried out to evaluate the RMS angle error 
performance of the KR and the proposed method, with respect to signal-to-noise ratio (SNR). 
The RMSE is defined as 

 2

1

1 ˆ{ ( ) }
K

k k
k

RMSE E
K

θ θ
=

= −∑  
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where îθ and iθ denotes the thi estimating and real bearing angle, respectively. We consider 
two sources radiated from -15 and 22 degrees, and the frame length L and the number of 
frame M are both 100. 1000 Monte Carlo trials are run. The RMSE of the two methods as a 
function of SNR is given at Figure 2. It can be noted that the proposed method performs 
better in low SNR, compared to the KR algorithm, which is due to that the KR-ACM method 
produces more sensors than the KR method. But when SNR is large enough, KR outperforms 
KR-ACM. 
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Figure 2. RMSE versus SNR of the KR and the Proposed Method 

4.4. RMSE versus Snapshot 

From the above examples, we can note that thousands of snapshots were used to estimate 
the DOAs. In the experiment, we investigate that how many snapshots almost are needed in  
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Figure 3. RMSE versus the Number of Snapshots of the KR, KR-CUM and the 
Proposed Method, SNR=10dB 
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the KR-ACM method. We compare the KR-ACM method to the method in [9], which is 
based on KR product and fourth order cumulants with four level nested array. We denote it 
KR-CUM for short. The RMSE of the KR, KR-CUM and KR-ACM with respect to snapshot 
is depicted in Figure 3, where the two sources also are given at 5 and 15 degrees, and SNR is 
10dB. 1000 Monte Carlo trials are carried out. The performance of all the three methods 
improves significantly with the increasing of the snapshots, and the KR method shows a 
lower RMSE than the two other methods. However, fewer snapshots are needed for the KR-
ACM method to acquire a steady variance, compared to the KR-CUM method. 
 
4.5. Resolution versus SNR 

In the second example, we can note that the KR-ACM method showed higher resolution 
than the KR algorithm. We now show it specifically. We consider two closely space signals 
placed at 10 and 12 degrees. By the definition in [13], the two sources are identified in a trial 
if both the 1 1θ̂ θ− and 2 2θ̂ θ− are smaller than 1 2 / 2θ θ− , where 1θ and 2θ denote the true 

DOAs, and 1̂θ and 2̂θ denote the estimating DOAs. We depict the probability of resolution 
versus SNR for T=10000 snapshots, averaged over 1000 Monte Carlo trials in Figure 4. It is 
clearly to note that the KR-ACM method outperforms the KR method.  
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Figure 4. Resolution versus SNR of the KR and the Proposed Method, 

100 100 10000T = × =  

5. Conclusions 
In this paper, a novel approach is proposed to construct half of the fourth order 

difference co-array. We make use of only the second order statistics of the observed 
signals and KR product, hence Our approach is applicable to Gaussian signals. And by 
exploiting four level nested array, we can increase the DOF to 4( )NΟ only 
using N sensors. Our method shows higher resolution compared to the standard KR 
method using two level nested array. In the future area, we will extend to the proposed 
method to wideband case, and investigate the effectiveness of the proposed method in a 
real world. 
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