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Abstract 

In recent years, semi-supervised learning has been a hot research topic in machine learn-

ing area. Different from traditional supervised learning which learns only from labeled data; 

semi-supervised learning makes use of both labeled and unlabeled data for learning purpose. 

Co-training is a popular semi-supervised learning algorithm which assumes that each exam-

ple is represented by two or more redundantly sufficient sets of features (views) and addi-

tionally these views are independent given the class. To improve the performance and ap-

plicability of co-training, ensemble learning, such as bagging and random subspace has 

been used along with co-training. In this work, we propose to use the rough set based ensem-

ble learning method with co-training algorithm (RSCO). Inherited the inherent characteris-

tics of rough set, ensemble learning is expected to meet both the diversity and accuracy re-

quirement. Finally experimental results on the UCI data sets demonstrate the promising per-

formance of RSCO. 
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1. Introduction 

In many practical applications, labeled data are difficult (or costly) to obtain since labeling 

is a labor-intensive and time-consuming process. Conversely, unlabeled data are far easier to 

obtain because they do not need human labeling effort. Due to this fact, we need techniques 

which can learn from both labeled and unlabeled data.  

In machine learning literature, mainly there are three paradigms can combine the labeled 

and unlabeled data for learning: semi-supervised learning [1-5], transductive learning [6-9] 

and active learning [10-12]. Semi-supervised learning attempts to use unlabeled data together 

with labeled data to train better classifiers by either modifying or reprioritizing hypotheses 

obtained from labeled data only. 

Co-training is an important algorithm of semi-supervised learning which is devel-oped by 

Blum and Mitchell [13]. It is proposed for the problem in which the features of each example 

can be partitioned into two distinct views (two disjoint feature sets). Generally co-training 

works well only if the two feature sets are sufficient an indepen-dent. 

There exists several works which extend standard co-training algorithm to improve its per-

formance and applicability. The Co-EM algorithm [14] extends the original bootstrap ap-

proach of the co-training algorithm to operate simultaneously on all unlabeled samples in an 

iterative batch mode. Democratic Co-learning proposed by Goldman and Zhou [15] uses two 
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different supervised learning algorithms to cooperate, and cross-validation is taken to label 

the unlabeled data. In recent years, people have proposed to use ensemble learning along with 

co-training to boost the performance of co-training. Tri-Training [16] uses bootstrap (bagging) 

approach to train three classifiers. RASCO [17] uses the random subspace of the feature 

space and trains ensemble classifiers based on each subspace.  

In this paper, we propose a novel co-training algorithm. It combines the rough set theory 

with co-training (thus, called RSCO). RSCO mainly consists of three phases. The first phase 

is to obtain multiple subsets of features which have the same approxi-mation ability as the 

whole features based on the rough set theory. Such a subset of feature is called a reduct in 

rough set theory. Then the second phase is to train ensem-ble classifiers with these multiple 

reducts. The third phase is to combine the trained ensemble classifiers with co-training.  

In essence, RSCO is a kind of algorithm which combines ensemble learning with co-

training. In this sense, it is similar to RASCO and Tri-Training. However, they are different 

on the ways to generate the diversities in ensemble learning. Tri-Training adopts “bagging” 

method to generate different sets of training data to achieve the diversity among ensemble 

classifiers. RASCO is based on random subspace which promotes the diversity through fea-

ture set manipulation instead of training set manipulation. RSCO promotes the diversity by 

training classifiers with different reducts.  

Reduct is the key concept in rough set. It is the subset of the whole feature space which 

has the same discernibility ability as the whole features. Generally one data set consists of 

multiple reducts referring to different subsets of features.  

Compared with RASCO and Tri-Training, RSCO is more similar to RASCO since both of 

them generate the diversity among ensemble classifiers by feature set manipulation. In 

RASCO, the randomly subset of feature is used to train each classifier. Although diversity is 

achieved, we cannot ensure the quality (i.e. accuracy) of each classifier since it is trained on 

the randomly selected features. In this sense, RSCO is superior to RASCO. On one hand, the 

different reducts of rough set generate the diversity among multiple classifiers. On the other 

hand, the quality of each classifier is ensured because it is trained on the reduct which has the 

same approximation ability as the whole feature.  

We use a set of benchmark data sets from the Machine Learning Database Repository to 

test the performance of RSCO. Experimental results demonstrate the good performance of 

RSCO.  

The rest of the paper is organized as follows. Section 2 describes the related works on co-

training. Then we present the knowledge related to rough set in Section 3. In Section 4 we 

present our proposed rough set based co-training method. Section 5 discusses the experi-

ments by using benchmark data. Section 6 summarizes our contributions and future work. 
 

2. Related Works 

Co-training [13] (Table 1) is a well-known semi-supervised learning algorithm which ex-

ploits unlabeled in addition to labeled training data for classifier learning. It has been widely 

used in many domains with two independent views [18-19]. Although co-training shows the 

good performance for these applications, they cannot be directly applied on the applications 

where multiple independent views are not available. 

There are some works which aim to extend co-training’s applicability for the applications 

where multiple independent views are not available. In some works, co-training was applied 

by artificially splitting the available feature set into two views [19-20]. In addition to these 
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works, in recently years, it was found that co-training’s performance and applicability could 

be effectively improved through combining ensemble learning.  
 

Table 1. Standard Co-Training Algorithm 

Algorithm 1: Standard Co-training Algorithm 

Input:  

L (set of m labeled data) 

U (set of unlabeled data) 

V1,V2 ( two views of data) 

numIter (maximal number of co-training iterations) 

baseAlg (base learning algorithm) 

1{Pr }K

k k
(prior probability of class k ) 

 

1: (0)

1 1h baseAlg(V (L)) , 
2 2

(0)h baseAlg(V (L))  

2: for 1i  to numIter  

3: if U is empty 

4: 1numIter i   and abort loop 

5: end if 

6: Apply ( 1)

1

th  on U  

7: Select a subset 
1S as follows: for each class k , select the 

kn ∝ Prk
most confident examples 

assigned to class k  

8: Move
1S from U to L  

9: Apply ( 1)

2

th  on U  

10: Select a subset 
2S as follows: for each class k , select the 

kn ∝ Prk
most confident examples 

assigned to class k  

11: Move 
2S from U to L  

12: Retrain classifiers ( )

1

th and ( )

2

th using the new L  

(t)

1 1h baseAlg(V (L))  2 2

(t)h baseAlg(V (L))  

13: end for 

14: return combination of the predictions of ( )

1

Th and ( )

2

Th  

 

In Ref [16], Tri-Training algorithm is proposed. In Tri-Training, initially three classifiers 

are trained on bootstrap subsamples generated from the original labeled training set. These 

classifiers are then refined during the Tri-Training process, and the final hypothesis is pro-

duced via majority voting. The construction of the initial classifiers is trained from the la-

beled data with Bagging. At each iteration, an unlabeled data is added to the training set of a 

classifier if the other two classifiers agree on their prediction under certain conditions. Tri-

Training is more applicable than co-training because it neither requires different views nor 

does it depend on different supervised learning algorithms as in Ref [13].  

Another similar work is RASCO [17] which combines random subspace with co-training. 

RASCO chooses the random subspace of the feature space to train each classifier. Each sub-

space can be seen as a view of the example. The main idea of RASCO is that different classi-

fiers are sensitive to different features, and can complement each other. Then these classifiers 

are used for co-training to enlarge the training data set of the base classifiers.  
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An important factor that affects the performance of ensemble learning based co-training 

(Table 2) is how to measure the confidence of a given unlabeled example which deter-mines 

its probability of being selected. In this study, the confidence of labeling is estimated through 

consulting the number of classifiers which give the same label for an unlabeled data. For 

example, for a two-class classification problem, suppose there are five classifiers. For an 

unlabeled data, four classifiers label it as class 1, and one classifier label it as class 2. Then in 

Alg. 2, it is given the label of class 1 with confidence 4/5.  
 

Table 2. Co-Training with Ensemble Learning 

Algorithm 2: Co-training with ensemble learning 

Input:  

L (set of m labeled data) 

U (set of unlabeled data) 

numIter (maximal number of co-training iterations) 

ensembleAlg (ensemble learning algorithm) 

numClassifier (number of classifiers in ensemble learning) 

baseAlg (base learning algorithm) 

1{Pr }K

k k
(prior probability of class k ) 

1: Construct multiple classifiers (0) ( , , )H ensembleAlg L baseAlg numClassifer  

2: Create a set 'U of examples chosen randomly from U without replacement 

3: for 1i  to numIter  

4: if 'U is empty 

5: 1numIter i   and abort loop 

6: end if 

7: 'jx U  , measure ( 1)( , , )t

jConfidence x H K  

8: Select a subset S as follows: for each class k , select the 
kn ∝ Prk

with the highest confidence 

assigned to class k  

9: Set ' 'U U S   and L L S  

10: Replenish 'U with S training examples chose at random from U  

11: (t)H = ensembleAlg(L,baseAlg,numClassifier)  

12: end for 

13: return multiple classifiers ( )TH   

 

One important reason of the success of combining ensemble learning with co-training is 

the creation of diversity among a set of classifiers by exploiting different techniques: training 

set manipulation by Bagging [21] or feature set manipulation by Random Subspace [22]. An 

ensemble consists of a set of individual classifiers whose predictions are combined when 

classifying a given sample. In Ref [23], Dietterich has pointed out two essential conditions 

for an effective ensemble: error diversity and the accuracy of its member classifiers. Two 

classifiers are diverse if they produce different errors for a given set of instances. Bagging 

relies on the available training data for encouraging diversity. So if the size of the training set 

is small, then the diversity among the ensemble members will be limited. Consequently, the 

ensemble error reduction will be small. On the other hand, the diversity of Random Subspace 

is enough for the training set with small size since different subsets of features are used to 

train the classifiers. The work in [17] has proved the better performance of RASCO com-

pared with Bagging based co-training.  



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 6, No. 3, June, 2013 

 

 

37 

 

Is random subspace algorithm perfect for co-training? Intuitively RSCSO meets the re-

quirement of diversity. However, the accuracy of each classifier is hard to ensure since they 

are trained on the randomly selected features. On the whole, the “random feature selection” 

of random subspace can ensure the diversity, but not the accuracy.  

To struggle with both diversity and accuracy, we propose to use rough set-based ensemble 

learning in co-training. The background knowledge of rough set theory and our proposed 

method will be presented in the next section. 

 

3. Ensemble Learning based on Rough Set 

Recent researches showed that a well-devised feature selection algorithm would signifi-

cantly improve the efficiency and accuracies of subspace ensembles because attribute reduc-

tion lessens the impact of the “curse of dimensionality” and speeds up the training and test 

process [24]. The key problem of this ensemble method is how to get a set of attribute subset 

with good predicting power. Rough set theory, which was introduced by Pawlak [25-27], has 

attracted much attention from AI society. In the rough set framework, reducts are minimal 

attributes subsets which keep the discernibility of the original data and have no redundant 

attributes. There generally exist multiple reducts for a given data set. All the reducts can be 

employed for constructing multiple classifiers [28]. In this paper, we will use such multiple 

classifiers for co-training. 

 

3.1. Preliminary Knowledge on Rough Set 

Rough set theory [25] is a new mathematical approach to imprecision, vagueness and un-

certainty. It approximates a given concept below and from above, using lower and upper ap-

proximations.  

Knowledge representation in rough sets is done via information systems. Let ( , )I U A be 

an information system, where U is a non-empty set of finite objects (the universe) and A is a 

non-empty finite set of attributes so that : aa U V for every a A . aV is the set of values that 

a can take. For any p A , there exists an associated equivalence relation ( )IND P : 

2( ) {( , ) | , ( ) ( )}IND P x y U a P a x a y      

The partition generated by ( )IND P is denoted as / ( )U IND P or abbreviated to /U P and is 

calculated as follows:  

/ ( ) { | / ({ })}U IND P a P U IND a   / ({ }) {{ | ( ) , }| }aU IND a x a x b x U b V     and 

{ | , , }A B X Y X A Y B X Y       , Where A and B are families of sets. 

If ( , ) ( )x y IND P , then x and y are indiscernible by attributes from P . The equivalence 

classes of the P-indiscernibility relation are denoted by [ ]px . Equivalence classes generated 

by P are also called P-elemental granules, P-information granules. The set of elemental gran-

ules forms a concept system, which is used to characterize arbitrary subsets in the infor-

mation system. Given an arbitrary subset X in the information system, two unions of ele-

mental granules are associated with { | [ ] }pPX x x X  , { | [ ] }pPX x x X                

The concept X is approximated by the two sets of elemental granules. PX and PX are 

called lower and upper approximations of X in terms of attributes P. PX is also called posi-

tive region. X is a definable set if PX PX . This means the concept X can be perfectly 

characterized with the knowledge P, otherwise, X is indefinable. An indefinable set is called 
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a rough set. ( )BND X PX PX  is called the boundary of the approximations, and as a defin-

able set, the boundary is empty.  

Let P and Q be attribute sets that induce equivalence relations over U , then the positive, 

negative and boundary regions can be defined as 
/

( )P
X U Q

POS Q PX


 , 

/

( )P
X U Q

NEG Q U PX


  , 
/ /

( )P
X U Q X U Q

BND Q PX PX
 

   

The boundary region is the set of elemental granules which cannot be perfectly described 

by the knowledge P, and the positive region is the set of P-elemental granules which com-

pletely belong to one of the decision concepts. The size of positive or boundary regions re-

flects the approximation power of the condition attributes. By employing the definition of the 

positive region it is possible to calculate the rough set degree of dependency of a set of at-

tributes Q on a set of attributes P. This can be achieved as follows: for ,P Q A , it can be 

said that Q depends on P in a degree k ( 0 1k  ), this is denoted as ( ( )kP Q ) if 

s
| ( ) |

( )
| |

P

P

POS Q
k Q

U
   

The dependency coefficient k measures the approximation power of a set of condition at-

tributes. Given a decision table ( , )DT U C D , C is the conditional feature set and D  is the 

decision feature set. if P Q C  , we have ( ) ( )Q PD D   

Let B C , a B , we say attribute a is indispensable in B if ( ) ( ) ( )B a BD D   ; otherwise, 

we say a  is redundant. We say B C is independent if any a in B is indispensable.  

Attribute subset B is a reduct of the decision table if  

(1) ( ) ( )B CD D   (2) : ( ) ( )B B aa B D D      

A reduct of a decision table is a subset of condition attributes, which keeps the approxima-

tion power of the whole condition attributes, and has no redundant attributes. Usually there 

exists a number of reducts for a given decision table. Let ( , )DT U C D be a decision table, 

and { | }jB j r be the set of reducts, we denote the following attribute subset: 

j
j r

Core B


 ,  j
j r

K B Core


  , j jK B Core  , j
j r

I A B


   

Core is the attribute subset which cannot be deleted from any reduct, otherwise the dis-

cernibility of the system will decrease. Therefore, the core attributes will be in all of the re-

ducts. I is called the completely irrelevant attribute set. The attribute in I will not be includ-

ed by any reduct, which means I is completely useless in the system. jK is a weak relevant 

attribute set. The union of Core and jK forms a reduct of the information system.  

Rough set theory discloses the fact that there exist multiple subsets of attributes which can 

keep the distinguish ability of the original data. They characterize the recognition problem in 

distinct subspaces and, therefore, capture different information of classification tasks. They 

are complementary to each other. The generalization power may be improved via combining 

a set of rough-set-based reducts. 
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3.2. Ensemble Learning with Reducts 

We propose to train the multiple classifiers of ensemble learning with rough-set-based re-

ducts (Figure 1). Given a decision table, there are a set of attributes 1 2{ , ,..., }na a a . These at-

tributes are grouped into a number of reducts 1 2{ , ,..., }NR R R with a reduction algorithm. Then 

each reduct is used to train a base classifier with some learning algorithm. 

 

 

Figure 1. Ensemble Learning with Multiple Reducts 

Several algorithms for finding a good reduct have been proposed based on heuristic strate-

gies, such as discernibility matrix [29], dependency function [30], and the information entro-

py [31]. Here we give the dependency-based algorithm.  

Let C and D be the condition attribute set and decision attribute, respectively. B C , 

a B  , we define a coefficient  

( ) ( )
( , , )

B B aPOS D POS D
SIG a B D

U U


 

 

as the significance of attribute a in B relative to decision D. Because the core attributes 

belong to any reducts, the reduction process can be started with the core. The core can be 

defined as 

{ | ( ) / ( ) / , }C a CCore a POS D U POS D U a C  
 

The algorithm for searching the core attributes is shown in Alg. 3.  
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Table 3. Searching Core in Decision Table 

Algorithm 3: Searching core in decision table 

Input: ,DT U C D   

Output: core 

1: core  

2   for i=1 to n  //n is the number of attributes 

3        ( , , ) ( ) / ( ) /
ii C C aSIG a C D POS D U POS D U   

4        if ( , , ) 0iSIG a C D   

5          
iCore Core a  

6        end if 

7   end for 

8   return Core 

 

Started with core, there exist several methods to search the reducts. In this work, we con-

sider the WADF (worst-attribute-drop-first) algorithm proposed in [28]. WADF consists of 

two phases. The first phase is to search for the best reduct. The second phase is to search for 

multiple reducts. The two phases are shown in Alg. 4 and 5 respectively.  

Table 4. Searching for the Best Reduct 

Algorithm 4: Searching for the best reduct 

Input: ,DT U C D  , core 

Output: reduct 

1: B C core   

2: *  B in the order of ascending g(b)B sorted ,  

g(b)= ( / ) / /{ } /APOS U D U U a U  

3:  *C C core   

4:  for i=1 to *B  

5:           * *( , , ) ( ) / ( ) /
i

i C C b
SIG b C D POS D U POS D U


   

6:            if ( , , ) 0iSIG b C D   

7:                  * * { }iC C b   

8:            end if 

9:  end for 

10: return *C  
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Table 5. Searching for Multiple Reducts 

Algorithm 5: Searching for multiple reducts 

Input: ,DT U C D  , core 

Output: multiple reducts 

1: B C core   

2: 
*  B in the order of ascending g(b)B sorted , where 

g(b)= ( / ) / /{ } /APOS U D U U a U  

3:  
*C C core   

4:  Find the best reduct, ( )RED C , basd on Alg. 4 

5:  ( )K RED C core   

6:  for i=1 to K  

7:       
* * { }iC C k   

8:      Find a new reductiRED   

9:      If  then i iRED RED RED RED RED    

10:      
* * { }iC C k   

11: End for 

12: Output: Reducts 
1 2{ , ... }NRED RED RED RED  

13: Output: Number of reducts= RED  

 

4. Experiments 

Five data sets from the University of California at Irvine (UCI) Machine Learning Reposi-

tory [32] are used in the study. The information about the data is shown in Table 6. 

Table 6. Data Description 

 Data Samples Features Classes 

1 vote 435 16 2 

2 t3 958 9 2 

3 breast 449 9 2 

4 diabetes 768 9 2 

5 ionosphere 351 35 2 

 

In the experiment, we compare our method (RSCO) with RASCO due to their similarity, 

i.e. manipulating feature space to generate diversities among multiple classifiers. Each data 

set is divided into training set and test set. RSCO and RASCO works on the training set and 

generates the augmented training set. Then, the test set is classified by the augmented train-

ing set with the decision tree algorithm. Classification accuracy is the measure to evaluate the 

performance of RSCO and RASCO, where  

No. of correct classifications on testing instances
classification accuracy=

No. of testing instances
 

When two semi-supervised learning methods are applied on the same data set with the 

same decision tree algorithm, higher classification accuracy means that the semi-supervised 

learning performance is better. To obtain the classification accuracy, each data set D is pro-

cessed as follows:  

(1)  Data set D is randomly partitioned into two parts: labeled set L and unlabeled set U .  
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(2) Ten trials derived from ten-fold cross-validation on L are used to evaluate the perfor-

mance of RSCO and RASCO. At each trial, 90% of L , that is T is used as training set. T is 

processed by RSCO and RASCO. The remaining 10% of L is used as test set to evaluate the 

performance of RFCO & RASCO.  

(3) The average classification accuracy is obtained by averaging ten trials’ accuracies.  

(4) Considering that the partition of data set could influence this average classification accu-

racy, we execute the partition five times and get five classification accuracies (execute step 

1-3 five times).  

(5) Finally the reported accuracy is the further averaged value of these five values.  

In the experiment, ensemble learning (by multiple reducts and random subspace) is con-

figured as follows. The number of classifiers equals to the number of reducts which are gen-

erated by Alg. 3. In random subspace, the number of randomly selected features in each sub-

space equals to [n/2], where n is the dimensionality of the feature space. In the ensemble-

based-co-training process, iterNum is set to 20, 
1
min k

k K
n

 
 is set to 3.  

When the setting of ensemble learning is fixed, there is only one parameter which can af-

fect the experiment. It is the parameter determining data partitioning, i.e. the ratio between 

labeled data to whole data, referred to labeled ratio. In the experiments, we consider various 

labeled ratios including 10%, 20%, 30%, 40%, and 50%.  

The experimental results are shown in Table 6. Table 6 consists of the classification accu-

racies of RASCO and RSCO for each dataset under different labeled ratios. For each compar-

ison, the higher accuracy between RASCO and RSCO is shown in bold. Table 5 clearly 

shows the outstanding performance of RSCO: among five datasets with four different labeled 

ratios (thus, totally 20 cases), RSCO wins 18 cases.  

Table 6. Experimental Results 

Dataset Labeled ratio Classification accuracy 

RASCO RSCO 

vote 20% 0.917 0.917 

30% 0.921 0.923 

40% 0.920 0.937 

50% 0.918 0.923 

tic-tac-toe 

 

20% 0.692 0.721 

30% 0.757 0.767 

40% 0.805 0.822 

50% 0.812 0.854 

breast 

 

20% 0.827 0.824 

30% 0.836 0.841 

40% 0.852 0.857 

50% 0.873 0.895 

diabetes 20% 0.844 0.860 

30% 0.858 0.879 

40% 0.885 0.896 

50% 0.885 0.899 

ionosphere 20% 0.878 0.890 

30% 0.886 0.893 

40% 0.907 0.914 

50% 0.910 0.918 
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5. Conclusions and Future Works 

Co-training is an important semi-supervised learning technique which has been widely 

used in many applications. Standard co-training suffers from the applicability limita-tion. It 

can only be applied to the applications which can be represented by multiple independent 

views.  

Ensemble learning has been proposed to use along with co-training to extend the perfor-

mance and applicability of co-training. Under this methodology, we propose to combine co-

training with rough set-based ensemble learning method. This ensemble learning method 

exploits rough-set-based attribute reduction algorithm to get a set of reducts of the original 

data and train base classifiers with reducts. Theoretically speaking, reducts are the optimal 

attribute subsets of the original data because they do not lose any indistinguishing infor-

mation and have the least redundancy. Therefore, the base classifiers trained with reducts 

will get good generalization. At the same time, the base classifiers are constructed in differ-

ent subspaces; there is a great opportunity for them to get diversity. Experimental results 

show that our proposed method is better than random subspace-based co-training in most of 

the cases in terms of classification accuracy.  

In this work, we proposed to combine rough-set theory with co-training algorithm. In the 

future, we will explore to utilize rough-set theory with other semi-supervised classification or 

regression techniques. 
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