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Abstract 

Three dimensional (3D) reconstruction of the tumor from medical images is an important 

operation in the medical field as it helps the radiologist in the diagnosis, surgical planning 

and biological research. Thus in this paper, we propose an effective and efficient approach to 

3D reconstruction of brain tumor and estimation of its volume from a set of two dimensional 

(2D) cross sectional magnetic resonance (MR) images of the brain. In the first step, MR 

images are preprocessed to improve the quality of the image. Next, abnormal slices are 

identified based on histogram analysis and tumor on those slices is segmented using modified 

fuzzy c-means (MFCM) clustering algorithm. Next, the proposed enhanced shape based 

interpolation technique is applied to estimate the missing slices accurately and efficiently. 

Then, the surface mesh of the tumor is reconstructed by applying the marching cubes (MC) 

algorithm on a set of abnormal slices. The large number of triangles generated by the MC 

algorithm was reduced by our proposed mesh simplification algorithm to accelerate the 

rendering phase. Finally, rendering was performed by applying Phong lighting and shading 

model on the reconstructed mesh to add realism to the 3D model of the tumor. The volume of 

the tumor was also computed to assist the radiologist in estimating the stage of the cancer. 

All experiments were carried out on MR image datasets of brain tumor patients and 

satisfactory results were achieved. Thus, our proposed method can be incorporated into the 

computer aided diagnosis (CAD) system to assist the radiologist in finding the tumor 

location, volume and 3D information. 

 

Keywords: Brain tumor, Magnetic resonance imaging, 3D reconstruction, Interpolation, 

Mesh simplification 

 

1. Introduction 

Brain tumor is inherently serious and life-threatening because of its invasive and 

infiltrative character in the limited space of the intracranial cavity . Hence determining 

its pathology, volume and complexities is crucial for surgical planning and knowing the 

stage of cancer. Magnetic resonance imaging (MRI) is the commonly used imaging 

modality for non-invasive analysis of the brain tumor. MRI uses radio waves and 

magnetic fields to acquire a set of cross sectional images of the brain. That is anatomic 

details of the 3D tumor are presented as a set of 2D parallel cross sectional images. 

Representation of a 3D data in the form of 2D projected slices does result in loss of 

information and may lead to erroneous interpretation of results [1]. Also, 2D images 

cannot accurately convey the complexities of human anatomy and hence interpretation 

of complex anatomy in 2D images requires special training. Although radiologists are 

trained to interpret these images, they often find difficulty in communicating their 

interpretations to a physician, who may have difficulty in imagining the 3D anatomy. 

Hence, there is a need for 3D reconstruction of the tumor from a set of 2D parallel cross 
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sectional images of the tumor. 3D visualization enables better understanding of the 

topology and shape of the tumor, and enables measurements of its geometrical 

characteristics. The extracted information is helpful in staging of tumor, surgical 

planning, and biological research [2]. Therefore, how to reconstruct a trustworthy 

surface from the sequential parallel 2D cross sections becomes a crucial issue in 

biomedical 3D visualization.  

 

2. Proposed Methodology 

The main task of 3D reconstruction of the tumor from a set of 2D parallel cross 

sectional images is divided into several subtasks as shown in Figure  1. 
 

 

Figure 1. Flowchart of the Proposed 3D Tumor Reconstruction Approach 

In the first step, preprocessing is performed to improve the quality of the acquired 

images. Then the segmentation is performed by modified fuzzy c-means (MFCM) 

clustering algorithm [8] on each abnormal slice of the brain to identify the region of the 

tumor. The normal slices are eliminated from the set. In order to provide the smooth 

surface, the gap between the slices is filled by performing inter -slice interpolation using 

the proposed enhanced shape based interpolation technique. In the next step, slices are 

connected through a triangulation to generate mesh of the tumor in 3D space using the 
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marching cubes (MC) algorithm [4]. The large number of triangles in the surface mesh 

is reduced by the proposed mesh simplification algorithm. The realistic effects are 

added to the tumor by shading the generated mesh. Finally, the volume of the tumor is 

computed from the abnormal slices. 
 

2.1. Preprocessing 

The noise can mask and blur the important features in the MR image and thus make 

the further steps in medical image analysis difficult. In this work, the noise has been 

eliminated from MR images by applying 3×3 median filter resulting in the smoothening 

of edges in the image. Hence, to improve the perceptibility of the tumor and other 

structures in the brain unsharp masking was used after median filtering. A 3×3 unsharp 

filter was constructed using the negative of the 2D Laplacian filter. The sizes of filters 

were chosen empirically. Image contrast was enhanced by applying histogram 

equalization. As the analysis has to be performed on brain region, the skull region was 

eliminated from each MR image of the brain by converting original MR image to a 

binary image and retaining only the pixels in the largest connected component which 

corresponds to the brain region. 

 

2.2. Segmentation 

MRI of the brain gives a set of slices containing normal and abnormal slices. Hence, 

before segmentation we need to identify the abnormal slices containing the tumor. The 

normal slice consists of three regions white matter (WM), gray matter (GM) and 

cerebrospinal fluid (CSF). Whereas a slice with tumor consists of four regions (WM, 

GM, CSF and tumor). Thus in order to determine whether the given MR image of the 

brain is normal or abnormal, the histogram of the brain region is computed using 

Equation (1) and the number of clusters present in the brain region is determined based 

on the histogram analysis  [7]. 
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Where, the function h(g) gives the number of pixels having a gray level equal to g in the 

image of size M×N. The gray level g lies in the range [0:L-1] and L is the maximum gray 

level in the image. Function δ(0) = 1 and δ (g≠0) = 0. If the histogram consists of three peaks 

then the given MR image is considered as the normal slice and further processing of the MR 

image is not carried out. Otherwise, we consider that the slice contains the abnormal region 

and proceed to apply our previously proposed brain tumor segmentation method [8] which 

combines wavelet transform and MFCM clustering algorithm to segment the tumor in the MR 

image. The resulting clusters of the brain region are shown in Figure 2. The contour of the 

tumor is identified using 4-connected neighbors. 
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Figure 2. Clusters of the Brain in MR Image: (a) White Matter (b) Gray Matter (c) 
Cerebrospinal Fluid (d) Tumor 

2.3. Inter-Slice Interpolation 

After the segmentation, slices of the segmented tumor are stacked up to form the 

volume data in the 3D space. Generally, the set of slices acquired from the MRI device 

is such that the distance between the slices is larger than the distance between the pixels 

within the slice. The surface reconstructed with such a set of slices is inaccurate and not 

smooth. Thus in this work, the missing slices are estimated using our proposed 

enhanced shape based interpolation technique. The original shape based interpolation 

proposed by Raya et al., [3] converts binary image into a gray scale image via a city 

block distance transform which assigns to every point in the binary image a gray level 

equal to its shortest distance from the boundary of the object. Then the intermediate 

slice is estimated by linearly interpolating the distances on two sequential slices. 

Finally, the interpolated image is converted to a binary image by threhsolding at zero. 

The Euclidian distance transform is a global operation since for each pixel a shortest 

distance to boundary pixel must be assigned. Therefore it requires O(n
2
) operations. 

Hence, the city block distance transform which computes the distance transform based 

on n-neighborhood was used in the original shape based interpolation. However, the 

city block distance metric provides faster computation of the distance transform but it 

provides a bad approximation to the Euclidian distance [9]. This is because, the city 

block distance metric  over estimates the diagonal distances since it counts diagonal 

connections as 2 steps, rather than 2 . Thus in the present work, another n-

neighborhood distance metric called chamfer distance metric used by Herman et al., 

[10] is incorporated to perform distance transform in shape based interpolation. It 

counts the horizontal/vertical connections as 1 and diagonal connections as 2  Hence, 

it better approximates the Euclidean distance compared to the city block distance 

metric. Since the distance transform is computed by considering the local 

neighborhood, it requires only O(n) operations and thus consumes less time compared 

to the Euclidean distance transform [11].  

Another problem with shape based interpolation is that it produces anomalous results 

if there is a drastic shift in the object position on sequential slices. That is the object 

reconstructed with such a set of slices is not accurate. In order to overcome this 

problem we perform centroid alignment of the tumors to match the centroids of tumors 

in the consecutive slices prior to interpolation. This results in gradual changes in both 

shapes and spatial positions of the object in interpolated slices. With the above two 

concepts incorporated into the original shape based interpolation algorithm, we 

summarize our enhanced shape based interpolation algorithm as follows: 
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Algorithm 1: Slice_Interpolation 

Input: Two consecutive slices of the scanned tumor. 

Output: original and estimated slices. 

 
Begin 

1. Compute the centroid (C) of the consecutive slices a and b. 

2. Compute the centroids Cs and Ct of the tumor region Rs and Rt on slice a and b  

respectively. 

3. Translate Rs and Rt to align the centroids Cs and Ct on the line passing through the 

centroids of the slices. 
4. Perform shape based interpolation. 

4.1.  Compute a distance transform for slice a and b. 
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        Where, O represents the tumor region Rs or Rt and bO represents the boundary of   

        the tumor region on slice z = a,b. d(x,y,z) represents chamfer DT of point (x,y,z). 

4.2.  Interpolate distance values on slice a and b using linear interpolation to 

determine pixel value on new slice z. 
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4.3.  Convert the gray scale image to binary image. 

5. Restore  Rs and Rt  to its original position. 

6. Compute the new centroid for a newly interpolated slice. 
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7. Translate the tumor region Rz on new cross section to a new location using the 

corresponding centroid Cz. 

End. 

 

2.4. Mesh Generation 

Once we have the complete set of slices, we apply the MC algorithm proposed by 

Lorensen et al., [4] to reconstruct 3D surface of the tumor from a set of 2D cross 

sectional images. The MC algorithm operates on a logical cube created from eight 

pixels; four each of two adjacent slices. It processes one cube at a time and determines 

how the surface intersects each cube using the isovalue of the surface and cube-

isosurface intersection patterns shown in Figure 3. The problem with these patterns is 

that there is a possibility of ambiguous faces and hence holes to appear in the 

reconstructed surface. An ambiguous face is the one which has an intersection point in 

each of its four edges. In this case, the topologically correct connection between the 

intersection points becomes ambiguous, which leads to the hole problem with MC [12]. 
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Figure 3. Basic Cube-Isosurface Intersection Patterns 

It was observed that only patterns 3, 6, 7, 10, 12 and 13 have ambiguous face and hence 

modification was required only for these patterns. In order to solve the hole problem in these 

patterns, we employed the method developed by Montani et al. [13].  By this method, the 

additional six patterns shown in Figure 4 which are complement of patterns 3, 6, 7, 10, 12, 13 

were added to the list of basic 15 patterns. Thus, we considered total 21 patterns to identify 

cube-surface intersection in the process of surface reconstruction of the tumor. With the help 

of intersection points and cube-isosurface intersection patterns the mesh of triangles was 

generated to represent the 3D surface of the tumor. 

 

 

Figure 4. Cube Configurations to Solve the Ambiguity Problem [13] 

2.5. Mesh Simplification 

The MC algorithm results in a large number of triangles. Hence, we propose a mesh 

simplification algorithm for accelerating the rendering phase and saving storage space. 

Among the existing mesh simplification algorithms, Qslim [5] and memoryless 

simplification (MS) [6] are identified as best algorithms with respect to producing high 
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quality simplified mesh models. But both of these algorithms cannot preserve important 

shape features such as highly curved regions as their error metrics is  based on distance 

metric and volume loss, respectively. In order to overcome these drawbacks we propose 

a mesh simplification method where edges are iteratively collapsed based on the error 

metric consisting of curvature, volume loss and shape of adjacent  triangles. The 

curvature factor helps in identifying flat and curved regions in the mesh. Thus with the 

help of vertex curvature, mesh simplification can be performed in flat regions and thus 

preserving details of highly curved region. Whereas volume loss  and shape of adjacent 

triangles help in preserving the shape of the original model and avoid skinny triangles 

which do not contribute much to mesh geometry. 

The notations used in the proposed mesh simplification method are shown in Table 1. 

The proposed method has a two phase greedy approach to mesh simplification where 

edge collapsing is performed iteratively by collapsing in each step least significant edge 

of internal vertices on a flat region of the mesh.  

Table 1. Notations for Mesh Simplification Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

During the edge collapse the start point is removed and the position of the end point is 

taken as the position of the new vertex. Removing boundary vertices may distort the shape of 

the mesh and hence edge collapse operation is performed on internal vertices. Details of the 

two phases of the proposed mesh simplification are given below. 

 

 Phase-I: Assignment of Vertex Priority 

In this phase, interior vertices of the mesh are prioritized based on curvature at a vertex. 

This is because the aim is to collapse more edges in flat regions and retain details of highly 

curved regions. The curvedness R at a vertex is defined by using mean curvature and 

Gaussian curvature as given below [14]. 

                                                                    KHR  22                                                          (2) 

Where, H and K represent mean curvature and Gaussian curvature at a vertex respectively. 

They are defined by the following equations. 

 

Symbol Description 

vi Vertex of mesh M 

eij Edge of mesh M connecting set of vertices {vi, vj}. vi and vj 

form origin and head of eij. 

t Triangular face of M is a set of edges (eij, ejk, eki) or vertices (vi, 

vj, vk) 

ivT  Set of triangles incident on vertex vi 

ijeT  Set of triangles incident on edge eij. 

ivE  Set of edges incident on vertex vi 

ivN  Set of vertices in the neighborhood of vertex vi 
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Where, A is the sum of the areas of the adjacent faces around a vertex vi. i and i  denote 

the angle between two successive edges and dihedral angle of an edge respectively. Internal 

vertices of the mesh are ordered based on their curvature. Vertex with highest curvature is 

given the least priority and vertex with the least curvature is given the highest priority. This is 

to ensure that edges are eliminated in flat regions and edge collapsing in highly curved 

regions is delayed. After assigning priorities, vertices are maintained in a heap with least 

curvature vertex at the top. 

 

 Phase-II: Edge collapse 

The important features of the surface cannot be preserved by considering only the 

curvature of the vertex. This is because when the edge collapse takes place, adjacent 

triangles’ shape is changed. Thus, the lowest priority vertex is eliminated by collapsing the 

edge (eij  
ivE ) that causes minimum geometric distortion in its local neighborhood. This 

edge is termed as optimal edge (eo). For finding eo, we employ a volume loss measure 

proposed by Lindstrom et al. [6] and also take into consideration the changes in shape of the 

adjacent triangles. An edge collapse eoi: (vo,vi) -> vi causes each triangle t
ivT  to sweep out a 

tetrahedral volume defined by the four vertices (vi,v1,v2,vo) as illustrated in Figure 5. 

  

 

Figure 5. Volume Loss caused by Edge Collapse Operation [6] 

The volume of this tetrahedron represents the volume loss due to the movement of t as a 

result of edge collapse and is indicative of the geometric deviation. The geometric deviation 

introduced due to triangle t (v1, v2, v0) is defined in Equation (4). 
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The geometric deviation introduced by the change in triangle shape is given as [15]: 
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Where l1, l2, l3 are lengths of the edges and A is the area of the triangle. S(t) takes values in 

the interval 0 to 1 indicating the equilateral triangle with 1 and the collinear triangle with 0. 

Finally, the total cost of collapsing an edge is given by: 
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                                  (6)  

For each edge eij
ivE , we compute Collapse_Cost (eij) and choose the one as optimal 

edge eo for which Collapse_Cost (eij) is minimum. The proposed mesh simplification 

algorithm is summarized in Algorithm 2. 

 

Algorithm 2: Mesh_Simplification  

Input: Set T of triangles, V of vertices, E of edges and percentage of simplification P.  

Output: Reduced set T of triangles, V of vertices and E of edges. 

 

Begin 

1. Calculate the curvature at each internal vertex using the following equation. 

KHvCurvature i  22)(  

        Where, K and H are Gaussian curvature and mean curvature at a vertex respectively.      

         They are calculated using Equation (3).      

2. Set curvature threshold to the average curvature at vertices. 

n
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3. Form candidate set of vertices based on curvature. 

4. Insert all the candidate vertices into the heap with lowest curvature vertex at the top. 

5. Perform edge collapse by selecting an optimal edge of the vertex. 

5.1. Remove top vertex from the heap. 

5.2. For each edge eij  ivE , compute collapse cost using the following equation. 






ivTt

ij tStVeCostCollapse ))(1(*)()(_  

Where, V(t) and S(t) represent volume loss and  triangle shape change which is  incurred by  

collapsing edge eij. They are calculated using Equation (4) and Equation (5).    
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5.3.  Select the optimal edge eo
ivE  such that                          

                    Collapse_Cost(eo) = min{Collapse_cost(eij)|eij ivE }     

5.4.  Collapse eo : (vi,vj)->vj, by eliminating faces incident on the edges {vi,vj} and 

substituting vj for every occurrence of vi in the left over faces in 
ivT .   

6. For each vi


ivN , compute its curvature and if it is less than the threshold then put it in 

candidate set and update heap.   

7. Repeat steps 5 to 6 until the P% reduction of faces is achieved or the candidate set is 

empty. 

End.  

 

2.6. Rendering 

In the final step, realistic effects are added to the surface of the 3D model by applying 

Phong lighting and shading model [16]. First the normals of the triangle vertices in the mesh 

are computed by taking the average of the adjacent triangle normals. Then the shading model 

linearly interpolates the vertex normal and then applies the lighting model at each point on the 

surface to determine the intensity at that point and thus shades the entire surface. 

 

2.7. 3D Tumor Volume Computation 

The volume of tumor is the vital information that can be extracted from the 3D model of 

tumor for knowing the severity of cancer and treatment planning. In this work, the volume of 

the tumor is estimated by considering the slice thickness, inter-slice gap and area of the tumor 

on each abnormal slice as given in the following equation.  

                      




n
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iAthicknessSlicegapInterslicevolumeTumor
1
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                 (7)   

Where, n indicates the total number of slices containing tumor and A is the area of tumor 

on each slice which is calculated by 

              dimensionPixelisliceonregiontumorinpixelsofNoAi *.             (8) 

 

3. Experimental Results 

The proposed methods are implemented using MATLAB. All the experiments were 

performed on a personal computer with 3GHz Pentium processor and 3GB of memory 

running under Windows XP operating system. 

 

3.1. Dataset 

The input dataset consists of non enhanced T2-weighted brain MR images of 53 patients 

(female: 20, male: 33) with verified and untreated tumors. The patients’ ages were in the 

range of 15 to 74 years (mean age: 48 years). Images were acquired from 1.5 Tesla MRI 

clinical scanner at Shirdi Sai Cancer Hospital, Manipal, India. The scan of each patient 

produced a set of slices with each slice having a thickness of 2mm and inter slice gap of 

3mm. All images in the dataset were gray scale images with size 640x480. T2-weighted MR 
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images were used in the experiments as they provide appreciable contrast between brain 

regions. 

 

3.2. Performance Evaluation 

The performance of the proposed 3D reconstruction approach is evaluated in terms of 

effectiveness and efficiency. 

 

3.2.1. Effectiveness of 3D reconstruction method: The proposed 3D reconstruction 

approach involves automatic segmentation of the brain tumor in non-contrast enhanced MR 

image. The MRI scan of the patient produces a set of slices containing normal and abnormal 

slices as shown in Figure 6. After identifying the abnormal slice, the tumor was segmented on 

that slice as shown in Figure 7. 

 

 

Figure 6. Set of Brain Slices 

 

 

Figure 7. Set of Segmented Slices 

The proposed segmentation technique was able to perfectly distinguish between normal 

and abnormal slices in a set of 1166 slices in the dataset as shown in Table 2. 
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Table 2. Slice Recognition Rate  

Slice Normal decision Abnormal 

decision 

Recognition rate 

Normal slice 636/636 0/636 100% 

Abnormal slice 0/530 530/530 100% 

 

The evaluation of the segmentation results of the proposed method was performed through 

a quantitative comparison with the results of a manual segmentation carried out by an 

experienced radiologist. The quantitative comparison was made by calculating relative error 

which is given as follows: 

 

                                                    

g
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||
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
                                                 (9) 

Where, Np and Ng denote the total number of pixels in the segmented region generated by 

the proposed method and radiologist respectively. Table 3 shows the comparison between the 

automatic segmentation (proposed method) and the manual segmentation in terms of relative 

error of the segmented region. The average relative error computed over the entire dataset is 

2.36%. This shows that the results of automatic segmentation provide a good match with the 

expert radiologist’s results. 

Table 3. Comparison of Automatic and Manual Segmentation Results 

Case Automatic segmentation 

(No. of Pixels in the 

tumor region) 

Manual segmentation 

(No. of Pixels in the 

tumor region) 

 

Relative Error (%) 

1 1764 1805 2.27 

2 3841 3785 1.47 

3 1249 1231 1.46 

4 2852 2793 2.11 

5 3671 3755 2.23 

6 4840 4783 1.19 

7 1572 1581 0.56 

8 2663 2735 2.63 

9 4793 4631 3.49 

10 3862 3828 0.88 

     

After the tumor segmentation, 2D tumor contours are arranged exactly in real spatial 

positions. This forms the volume data of the tumor as shown in Figure 8 (a). We estimated the 

missing slices in the volume data by applying our proposed enhanced shape based 

interpolation technique on the sequential slices as shown in Figure 8 (b). 
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Figure 8. Stacking of Tumor Contours (a) Original Set of Contours (b) Set of 
Contours after Interpolation  

 

In order to verify our enhanced shape based interpolation technique, we took three 

consecutive slices Si, Si+1, Si+2. Slices Si and Si+2 were considered as input to the proposed 

interpolation algorithm and slice Ŝi+1 was estimated by the proposed method. The estimated 

slice was compared with the original slice Si+1 using the overlap-based error measure 

computed  using  Equation (10) as the ratio of the wrongly estimated pixels with respect to 

the area of the reference slice. 
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Where, Δ is the symmetric difference and card is the cardinal function. This measure is 

computed for three interpolation methods: LG-linear gray level interpolation, SO-original 

shape based interpolation, SE: enhanced shape based interpolation (proposed method). The 

results are summarized in Table 4. It can be seen that proposed SE method outperforms other 

interpolation techniques as it takes into account shifts of a cross section in the slices. 

Table 4. Comparison of Interpolation Results  

Dataset Slices 

(Si,Si+1,Si+2) 

Error measure (ε %) 

LG SO SE 

 

MRI 

4,5,6 6.91 5.22 5.03 

10,11,12 8.07 6.24 3.91 

18,19,20 11.17 8.79 3.33 

20,21,22 5.38 2.93 2.77 

 

After the interpolation, surface mesh was reconstructed using the MC algorithm. In order 

to improve the rendering time and storage space, mesh was simplified using a proposed mesh 

simplification algorithm. We demonstrate the effectiveness of the proposed mesh 

simplification algorithm by presenting images of simplified models and error graphs. Figure 9 

shows the simplified meshes and their corresponding rendered 3D models. In order to analyze 

the effectiveness, the original model was simplified at different levels (40%, 60%, 80%). It is 
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observed that even at 60% reduction the simplified model retains the features of the original 

model. The model gets distorted for reductions above 70%. 

 

                                                       
(a) Original mesh(P=0%, Faces=6116)                                      (e) Original 3D model(P=0%, Faces=6116) 

                                                       
(b) Simplified mesh(P=40%, Faces=3669)                              (f) Simplified 3D model(P=40%, Faces=3669) 

 

                                                                                        
(c) Simplified mesh(P=60%, Faces=2446)                                    (g) Simplified 3D model(P=60%, Faces=2446) 

 

                                                      
(d) Simplified mesh(P=80%, Faces=1223)                                  (h)  Simplified 3D model(P=80%, Faces=1223) 

Figure 9. Mesh Simplification Results 

The quality of the simplified models is evaluated using symmetric Hausdorff distance 

(SHD). It measures the mesh approximation error by measuring the distance between the 

original and simplified mesh and  is defined using the following equation. 

             ))1(max),2(maxmax()2,1(
21

MdMdMMSHD v
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v
Mv 

                      (11) 
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Where, dv(M) is the minimum distance from vertex v to the closest vertex of mesh M. 

Figure 10 shows the comparison of the proposed method with other state of the art mesh 

simplification methods such as Qslim [5] and MS [6]. It can be seen that the proposed method 

has an improvement over Qslim and MS as it is based on selecting edge contractions with 

minimum effect on curvature, volume and shape of adjacent triangles. In order to assist the 

radiologist in staging of the brain tumor, the volume of the tumor is computed using Equation 

(7). The volume of the tumor shown in Figure 9 is computed as 215.26 mm
3
. 

 

 

Figure 10. Comparison of Mesh Simplification Methods with SHD 

We also provided the facility to rotate the reconstructed 3D model of the tumor so that the 

radiologist can analyze the structure of the tumor thoroughly. Two views of the 3D tumor are 

shown in Figure 11.  

 

                      

Figure 11. Two Views of the Tumor obtained by Rotation 

The surface of the brain can also be reconstructed using the similar 3D reconstruction 

approach but by considering the brain region instead of tumor region. Using our proposed 

approach various types of cuts can also be performed on the brain by the radiologist in order 

to understand the tumor growth as shown in Figure 12. 
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Figure 12. Cut away Surface (a) Traverse Cut (b) Longitudinal Cut 

 

3.2.2. Efficiency of 3D reconstruction method: Table 5 shows the time complexity of different 

phases of 3D reconstruction of  the brain tumor on MR images. 

Table 5. Time Complexity of Different Phases of 3D Reconstruction of Tumor 

3D 

reconstruction 

phase 

Segmentation Inter-Slice 

interpolation 

Meshing Mesh 

simplification 

Rendering 

Time 

complexity 

O(GCI) O(N
2
) O(D) O(VlogV) O(T’) 

 

Where, G is the number of gray levels in the image, C is the number of clusters, I is the 

number of iterations required for clustering algorithm to convergence, N is the total number 

of pixels in the image, D is the number of cubes processed in the reconstruction of the tumor, 

V is the number of vertices in the mesh, T’ is the reduced set of triangles in the simplified 

mesh.  

In the segmentation step of proposed 3D reconstruction approach, we make use of our 

previously proposed automatic brain tumor segmentation method which is based on MFCM 

clustering. It has a time complexity of O(GCI). It takes less time to find the tumor cluster as it 

performs clustering on the basis of the gray level histogram of the image instead of pixels in 

the image. The number of gray levels is less than the number of pixels in the image. The 

proposed method SE takes less time for interpolation as it is based on the chamfer distance 

transform which computes the distance transform for each pixel using a local neighborhood. 

Thus, it results in time complexity of O(N). The MC algorithm has time complexity O(D) to 

generate the 3D surface mesh of the tumor. The proposed mesh simplification method 

operates on the edges of a subset of vertices rather than on the entire vertices of the mesh. It 

makes one pass through the vertices to select the candidate vertices for edge collapse and then 

inserts them into a heap. It then performs maximum V pop operations where V is the total 

number of vertices, so its time complexity is O(V log V). Whereas the time complexity of 

Qslim and MS algorithms is O(E log E), where E is the total number of edges in the mesh. 

This is because in Qslim and MS algorithms, global greedy decision involves choosing an 

edge based on the error metric. Mesh simplification also accelerates the rendering time as the 

input to the rendering phase is the mesh with a reduced set of triangles (T’) instead of a large 

number of triangles (T) generated by the MC algorithm.  
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4. Conclusion 

The aim of this paper was to develop a 3D reconstruction and quantification approach for 

assisting the physician in surgical planning and volume computation of the tumor. The 3D 

model of the brain tumor was reconstructed from a given set of 2D slices of the brain by 

developing methods for segmentation, inter-slice interpolation, mesh generation and 

simplification. Slices containing tumor were extracted from a given set of slices of the brain 

and the tumor was segmented with the proposed segmentation technique. The centroid 

alignment technique in the proposed enhanced shape based interpolation helped in accurately 

estimating the missing slices by handling the shifts in the cross sections and the inclusion of 

the chamfer distance transform improved the efficiency of shape based interpolation method. 

Rendering phase was accelerated by simplifying the mesh with the proposed mesh 

simplification algorithm. The reconstructed tumor was also quantified by measuring its 

volume.  The experimental results showed that our proposed 3D reconstruction approach can 

generate an accurate 3D model in less amount of time and thus can assist the radiologist in the 

diagnosis, identifying the stage of the tumor and treatment planning.  

 

References 
 
[1] K. Narayan and Y. Karunakar, “3-D Reconstruction of Tumors in MRI Images”, International Journal of 

Research and Reviews in Signal Acquisition and Processing, vol. 2, no. 1, (2011). 

[2] N. Archip, R. Rohling, V. Dessenne, P. J. Erard and L. P. Nolte, “Anatomical structure modeling from 

medical images”, Computer Methods and Programs in Biomedicine, vol. 82, (2006).  

[3] S. P. Raya and J. K. Udupa, “Shape based interpolation of multidimensional objects”, IEEE Transaction on 

Medical Imaging, vol. 1, no. 9, (1990). 

[4] W. E. Lorensen and H. E. Cline, “Marching cubes: a high resolution 3-D surface construction algorithm”, 

Computer Graphics, vol. 4, no. 21, (1987). 

[5] M. Garland and P. S. Heckbert, “Surface simplification using quadric error metrics”, SIGGRAPH '97 

Proceedings of the 24th annual conference on Computer graphics and interactive techniques, (1997).  

[6] P. Lindstrom and G. Turk, “Fast and memory efficient polygonal simplification”, Proceedings of Conference 

on Visualization, (1998). 

[7] A. Castro, C. Bveda and B. Arcay, “A new method for the initialization of clustering algorithms based on 

histogram analysis”, IASTED International Conference on Visualization, Imaging and Image Processing, 

ACM, (2007). 

[8] M. P. Arakeri and G. R. M. Reddy, “Efficient fuzzy clustering based approach to brain tumor segmentation 

on MR images”, Proceedings of CIIT 2011, CCIS. Springer, vol. vol. 250, (2011). 

[9] P. E. Danielsson, “Euclidian distance mapping”, Computer Graphics and Image Processing, vol. 14, (1980). 

[10] G. T. Herman, J. Zheng and C. A. Bucholtz, “Shape-based interpolation”, IEEE Computer Graphics and 

Applications, vol. 3, no. 12, (1992). 

[11] G. Borgefors, “Distance transformations in digital images”, Computer Vision, Graphics and Image 

Processing, vol. 34, (1986).  

[12] M. J. Durst, “Additional reference to marching cubes”, Computer Graphics, vol. 4, no. 22, (1988). 

[13] C. Montani, R. Scateni and R. Scopigno, “A modified look-up table for implicit disambiguation of marching 

cubes”, The Visual Computer, vol. 10, (1994). 

[14] N. Dyn, K. Hormann, S. J. Kim and D. Levin, “Optimizing 3D triangulations using discrete curvature 

analysis”, Mathematical Methods for Curves and Surfaces, (2001).  

[15] L. Wang, J. Li and I. Hagiwara, “A topology preserved mesh simplification algorithm”, World Congress on 

Computer Science and Information Engineering, (2009). 

[16] J. D.  Foley, A.  Van Dam, S. K.. Feiner and J. F. Hughes, “Computer graphics: principles and practice”, 2nd 

Edition, Addison-Wesley, (1997). 

 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 6, No. 3, June, 2013 

 

 

128 

 

Authors 
 

Megha P. Arakeri, obtained her masters degree in computer science 

from Jawaharlal Nehru National College of Engineering, Shimoga, India. 

She is currently pursuing Ph.D in Medical Image Processing at National 

Institute of Technology Karnataka, Surathkal, India. Her research 

interests include Medical Image Processing, Computer Vision, 

Information Retrieval and Pattern Recognition.  

 

 

 
G. Ram Mohana Reddy, he is a Professor in Information Technology 

Department, National Institute of Technology Karnataka, Surathkal, 

India. He received his masters degree from Indian Institute of 

Technology, Kharagpur, India. He was awarded common wealth 

fellowship for pursuing Doctoral Research at University of Edinburgh, 

U.K. His research interests include Applied Perception, Human 

Computer Interaction and High Performance Computing. 

 


