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Abstract 

Unimodal biometric systems have to contend with various inherent limitations, such as 

restricted degrees of freedom, non-universality, susceptibility to spoofing attacks and 

unacceptable error rates. Multibiometric systems, which fuse two or more biometrics traits 

together, are able to effectively overcome most of these problems. In this paper, different face 

traits are fused considering convenient acquiring of visible face and the intrinsic anti-

spoofing of thermal face. Initially, the complex fusion strategies at both pixel level and feature 

level are proposed, which can provide higher discrimination superiority. The 2D-

classification methods, including 2DPCA, 2DLDA, (2D)
2
PCA, (2D)

2
LDA and (2D)

2
FPCA are 

applied into the complex fusion, which can overcome the small size sample problems. Both 

identification and verification experiments are conducted on the NVIE visible and thermal 

face database. Various tests based on this database ascertain the efficacy of the proposed 

approaches in identification and verification. The better performances are in favor of the 

proposed approaches, FC_(2D)
2
LDA and FC_(2D)

2
FPCA, the training number 6 and 8, and 

the visible face fusion weight 0.4 and 0.6. 

 

Keywords: Multibiometric, Complex fusion, Visible and thermal face, Pixel level fusion, 

Feature level fusion, 2D-classification 

 

1. Introduction 

With the rapid development of the world society, the need for reliable user authentication 

techniques has increased in the wake of heightened concerns about security and rapid 

advancements in networking, communication and mobility. Establishing the identification 

based on biometric systems has drawn much more attention recent decades [1]. Researchers 

have started to work on different kinds of biometric model, such as visible face [2], voice [3], 

thermal face [4], fingerprint [5], iris [6], vein [7], plamprint [8], lip [9], ear [10], etc. However, 

unimodel biometric system has to contend with inherent limitations such as noisy sensor data, 

large intra-class variations, restricted degrees of freedom, non-universality and unacceptable 

error rates. Another significant point is susceptibility to spoofing attacks [11-14]. 

Multibiometrics has attracted more interesting recently [15-17], because of addressing most 

of the above disadvantages effectively. Based on this, many large scale identification 
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multibiometric systems have been widely adopted (e.g., FBI’s IAFIS, the Department of 

Homeland Security’s US-VISIT, and the Government of India’s UID) [18, 19]. 

The selection of attributes type should be considered deliberately. Visible and thermal face 

biometrics have been adopted into application. However, visible face imagery is sensitive to 

uncontrolled illumination conditions but is convenient. Thermal face imagery is affected by 

temperature changes but immune to forgery [20, 21]. Considering the acquiring convenience 

and application security, the fusion of visual and thermal face imagery is implemented to 

improve the performance of identification. Because of the inherent correlations of visible and 

thermal face and the solitary biometric traits [15, 22], we select pixel level and feature level 

fusion in this paper. 

Numerous research efforts have been made on the fusion of visible and thermal face 

imagery during the last decade. Considering the homologous property of visible and thermal 

face imagery, several fusion algorithms based on multi-scale analysis (e.g., DWT) are 

developed [23-26]. Neural network-based algorithms try to train useable parameters in 

transformed domain for robust multibiometric recognition [27-29]. Other researchers 

performed some effective methods to find an optimal strategy to perform multibiometrics, 

such as Genetic Algorithm (GA) [30, 31], Particle swarm optimization (PSO) [32], and so on 

[33-35]. Some contributions relay on PCA, LDA and KPCA [23, 24, 30]. All the above works 

show the competitive recognition performance. However, pixel level fusion in DWT domain 

has too much data to deal with. The neural network and optimization algorithms are time 

consuming. Besides, all these fusion approaches are based on the weight sum rule fusion 

sketch, which limits the advantages of discrimination of solitary sample. On the other side,, 

traditional PCA and LDA have small sample problems [36]. 

Yang et al., [37] developed 2DPCA for image representation, which is based on 2D 

matrices rather than 1D vectors. It is easier to evaluate the covariance matrix accurately and 

less time is required to determine the corresponding eigenvectors [38]. Other 2D-based 

methods such as 2DLDA [39], (2D)
2
PCA [40], (2D)

2
LDA [41] and (2D)

2
FPCA [42] also 

have the above superiorities. Yang et al., [43] proposed the complex fisher method for face 

recognition to fuse face features. Wang et al., [44] extend this complex method for 

multibiometrics based on KFDA. This method reflects the differences inherited from 

separately sensors comparing with weighted sum rule fusion strategy. 

In this paper, we propose complex fusion approaches in pixel and feature level. At pixel 

level complex fusion, our strategy is to combine visible and thermal face imagery via 

complex vectors, and then to input them into an operation container called complex 2D-based 

methods (generated from 2DPCA, 2DLDA, (2D)
2
PCA, (2D)

2
LDA and (2D)

2
FPCA) for a 

second feature extraction. At feature level complex fusion, we implement an alternative 

strategy to combine the 2D-based visible and thermal face features into a complex vector.  

Based on all the experimental comparisons, we give the selection suggestions of 

methodologies and parameters on NVIE visible and thermal face database. 

The rest of this paper is organized as follows. Detailed of the proposed complex fusion 

approaches are given in Section 2. The experimental results and comparisons are discussed in 

Section 3. Finally, Section 4 concludes this paper. 

 

2. Proposed Complex Fusion Approaches 
 

2.1. 2D-based Complex Fusion in Pixel Level 

In this section, we introduce the proposed complex fusion method of pixel level. The 

framework is shown in Figure 1. The visible and thermal face images are fused as different 
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components of a complex vector, and then the features are extracted based on complex 

features using 2D-based methods. 

 

Complex vector 

Z=W*X+(1-W)*Y*i

Sample X

Sample Y

2D-based 

methods
Classifier

 

Figure 1. The Illustration of Proposed Pixel Level Complex Fusion Strategy 

Suppose Y  and Z  are two image spaces defined on the pattern sample space p . Given 

an arbitrary sample px , suppose the corresponding two images are y Y  and z Z  with 

same dimension. Our idea is to combine them into a complex vector via Eq. (1): 

(1 )x y z i            (1) 

where   stands for the weight parameter, and i  is the imaginary unit. 

Let dC  be the combined sub-space on p  expressed in Eq. (2), and the inner product for 

d

pC  can be defined as Eq. (3): 

{ (1 ) | , , }dC w y w z i y Y z Z w R            (2) 

H, , , dC              (3) 

where H  is the denotation of conjugate transpose. Under this inner product, we can easily 

prove that Eq. (3) satisfies: 

• , ,        

•  , 0   , where , 0    if and only if 0   

•  1 1 2 2 1 1 2 2 1 2 1 2, , , , , , , ,dk k k k C k k R                      

The space dC  defined by the above inner product is a Unitary space. Let the training set be 

composed of C classes, where each class contains N  samples, then we have the complex 

within-class scatter matrix, complex between-class scatter matrix and the complex total 

scatter matrix as given in Eqs. (4), (5) and (6). 

H

1

( ) {( )( ) | }
C

w i i i i

i

S p E x x x x 


        (4) 

H

1

( )( )( )
C

b i i i

i

S p x x x x


       (5) 

H{( )( ) }t w bS S S E x x x x         (6) 

where, ( )ip   denotes the prior probability of x  belongs to class i , ix  and x  denote the 

i th sample mean and total sample mean, {}E   denotes the expectation operation. Usually, 
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( ) 1ip C  . Eqs. (4), (5) and (6) are all semi-positive definite Hermite matrices [36]. 

Moreover, 
wS  and 

tS  are both positive definite matrix when 
wS  is nonsingular [43]. 

In the light of the above, the complex 2DPCA criterion function can be defined as Eq. (7): 

H( ) tJ G        (7) 

where   is an n-dimensional nonzero vector, and 
tG  is the image complex covariance 

matrix [37]. The 2DLDA criterion function is defined as Eq. (8): 

H

H
( ) b

w

G
J

G

 


 
       (8) 

where 
bG  is the image complex between-class scatter matrix and 

wG  the image complex 

within-class scatter matrix [39]. 

Since wS  is positive definite and bS is semi-positive definite, for any arbitrary  , we 

have H 0tG   , H 0bG    and H 0wG   . This means that the values of ( )J   are all 

nonnegative. So, the physical meaning of the complex 2D-based discrimination criterion 

defined in Unitary space is similar to the classical 2D-based discrimination criterion defined 

in Euclidean space. 

The vector *  maximizing the complex total scatter is called complex 2D-based optimal 

projection direction. The physical meaning is that after the projection of samples onto * , 

the square error sum of complex image samples is minimized in Unitary space. However, the 

single optimal projection direction is generally not enough in real-world applications. The 

direction of   is more important than its amplitude. We could get the optimal projection axis 

which are the eigenvectors of 
tG for 2DPCA and of 1

w bG G  for 2DLDA corresponding to the 

several largest eigenvalues. 

The feature extraction method described above is called pixel level complex 2D-based 

method denoted as PC_2DPCA and PC_2DLDA. On the same principle, we can get the 

discrimination criterion function of (2D)
2
PCA, (2D)2LDA and (2D)

2
FPCA. Obviously, the 

traditional 2D-based methods are the special case of complex 2D-based methods. Generally, 

we can extend this pixel level complex fusion methodology to these 2D-based approaches. 

 

2.2. 2D-Based Complex Fusion in Feature Level 

This section gives the simply description of complex feature level fusion. It is clearly that 

Figure 2 shows its framework. Visible and thermal face imageries features are extracted using 

2D-based methods, and are fused into a complex vector as different components. 

 

Complex vector 

Z=W*X+(1-W)*Y*i

Sample X

Sample Y

2D-based 

methods

Classifier

2D-based 

methods
 

Figure 2. The Illustration of Proposed Feature Level Complex Fusion 
Strategy 
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Suppose fY  and fZ  are two feature spaces defined on the 2D-based feature space f . 

Given an arbitrary feature vector f fx  , suppose the corresponding two 2D-based features 

are f fy Y  and f fz Z  with the same dimension. The idea is to combine them via Eq. (9): 

(1 )f f fx w y w z i            (9) 

Note that, if the dimensions of fy  and fz  are not equal, then padding the lower 

dimensional one with zeros until its dimension is equal to the others’ before combination. 

Obviously, the space f  is an n  dimensional complex vector space, where 

{ , }F Fn max dimY dimZ . The features fy  and fz  can be extracted by any feature extraction 

method. Our aim is to propose 2D-based method for feature extraction implementation. 

 

2.3. Complex Feature Vector Distance 

In our fusion system, each class has the respective feature complex template matrix 

ˆ ( 1,..., )TD T C . During recognition, let ˆ
testD  be a given complex image for recognition, then 

the 
2|| . ||  between ˆ

testD  and the template ˆ
TD  based nearest neighbor classifier is used for 

classification. The distance Dis  between ˆ
testD and ˆ

TD  can be defined as Eq. (10): 

H

2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) || || ( ) ( )test T test T test T test TDis D D D D D D D D        (10) 

 

3. Performance Evaluation with Multi-Modal Biometrics 

In this section, results of multi-model matching experiments are presented. Several existing 

thermal and visible face fusion algorithms and proposed complex fusion algorithms are 

conducted on a visible and thermal face database. Several evaluation protocols including EER, 

ROC cuve, and recognition rate are carried out for the algorithm performance.  

False Reject Rate (FRR) and False Accept Rate (FAR) are used to test the performance of 

the whole recognition system. However, False Matching Rate (FMR) and False Non- 

Matching Rate (FNMR) are preferred to evaluate the performance of the algorithms in an off-
line technology test [45]. ROC curve is a plot of FMR(t) against 1-FNMR(t) for various 

decision thresholds t, and provides more direct view of the error-vs-error tradeoff. The Equal 

Error Rate (EER, when FMR=FNMR) can be acquired from the performance curves. For 

every evaluation index, the heat maps are also provided to indicate which parameters are 

better for performance. The larger the value, the more warm the colors, and vice versa. 

 

3.1. Database Description 

Proposed algorithm for thermal face image is tested on the Natural Visible and Infrared 

facial Expression (termed NVIE) database which is constructed by The Key Laboratory of 

Computing and Communication Software of Anhui Province (CCSL). It contains six different 

expressions as shown in Figure 3, and is recorded simultaneously by a visible and an infrared 

thermal camera. The posed database also includes expression image sequences with and 

without glasses [46]. We utilize the sub-database including 90 classes, which contains 12 

samples with six expressions, to test the proposed approaches and the other existing methods.  
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Figure 3. The Samples in NVIE Thermal Database 

3.2. Comparison between proposed PC_2DPCA and the other Fusion Approaches 

The recognition comparisons between the proposed complex fusion strategy PC_2DPCA, 

and other approaches can be seen in Table 1. The configurations of every method are 

explained in the following: 

• PF_PCA: Fuse in pixel level and then use PCA [23]. 

• DF_PCA: Fuse the coefficients of DWT and then implement iDWT and PCA [24]. 

• PCA_GA:  Get PCA feature, and then use GA to find a better fusion strategy [31]. 

• PCA_KNN: Get PCA feature for fusion, and then use KNN for matching [34]. 

• DP_MLP: Get DWT PCA feature for fusion, then use Multi-layer percept neural net[27]. 

• PCA_PSO: Get PCA feature, and then use PSO to find a better fusion strategy [32]. 

• IPCA_SVM: Get IPCA feature for fusion, and then use SVM for matching [35]. 

• PC_2DPCA: Proposed PC_2DPCA for feature extraction in pixel level fusion. 

Table 1. The Comparison of Different Approaches for NVIE Database 
 

Method Recognition rate(%) 

PF_PCA [23] 89.53 

DF_PCA [24] 89.53 

PCA_GA [31] 93.31 

PCA_KNN [34] 89.37 

DP_MLP [27] 92.51 

PCA_PSO [32] 91.26 

IPCA_SVM [35] 90.72 

PC_2DPCApro 94.02 

 

These experiments are performed in 5 training and 7 testing samples. From Table 1, we 

can find out that, there is no difference in methods PF_PCA and DF_PCA. Though methods 

DP_MLP, PCA_GAs and PCA_PSO give a little better recognition performance, the 

operation is time-consuming. The iteration of DF_MLP in our experiment is 11000, and it 

takes more than one hour for running. The generations of PCA_GA and PCA_PSO are 100, 

and the population is 80. Method IPCA_SVM and PCA_KNN haven’t played the best 

performance as we expected either. The proposed pixel level complex fusion method 
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PC_2DPCA shows the best result. That’s because PC_2DPCA not only extract feature in two 

dimensional, the more important reason is it puts every feature into different matching space 

separately. 

 

3.3. Performance Comparisons between Proposed Approaches 

 

3.3.1. Experiment Setup: In the following experiments, we test the performance of proposed 

pixel level complex (PC) and feature level complex (FC) fusion algorithms. To compare the 

different approaches in detail, we conduct the following experiments in diverse training 

number trn  and visible face fusion weight  . We fix the total number of samples to 12 for 

every class in the NVIE database. Those trn  images are randomly selected from each class to 

construct the training data set, and the remaining images are used for testing. To ensure 

sufficient training and simplify article, the training number of trn  starts from at least 2 and at 

intervals of 2, and the visible face fusion weight   starts from at least 0.2 and at intervals of 

0.2. 

Table 2. The Abbreviations of Different Methods 

NO. Abbrev. Description 

1 M1 2DPCA 

2 M2 2DLDA 

3 M3 (2D)
2
PCA 

4 M4 (2D)
2
LDA 

5 M5 (2D)
2
FPCA 

 

In order to specifically measure the effectiveness of proposed approach, different 

abbreviations of the proposed and conventional methods are compared. The abbreviation of 

each method is illustrated in Table 2. 

3.3.2. Verification Performance of Pixel Level and Feature Level Complex Fusion 

Strategies: This section compares the verification performance of different approaches. Table 

3 and Table 4 show the EER of different approaches in different parameters. The best EER of 

every method is shown in under line, and the worst EER is shown in under wave line. The 

better EERs in PC fusion methods distribute in larger training numbers 6, 8 and 10. And in 

FC fusion methods, they distribute in training number 10 mainly. 

 

Table 3. EER of Pixel-based Complex Algorithms 

No. ( , )trn   
Pixel-based complex algorithms 

PC_M1 PC_M2 PC_M3 PC_M4 PC_M5 

1 (2, 0.2) 0.1498 0.1263 0.1471 0.1348 0.1297 
2 (2, 0.4) 0.0976 0.0923 0.0987 0.0895 0.0850 

3 (2, 0.6) 0.0763 0.0854 0.0793 0.0913 0.0736 

4 (2, 0.8) 0.0907 0.1050 0.0920 0.1018 0.0894 

5 (4, 0.2) 0.1251 0.1036 0.1240 0.1068 0.0912 

6 (4, 0.4) 0.0791 0.0721 0.0792 0.0626 0.0519 

7 (4, 0.6) 0.0573 0.0676 0.0601 0.0633 0.0435 

8 (4, 0.8) 0.0840 0.0914 0.0860 0.0800 0.0652 

9 (6, 0.2) 0.1088 0.0918 0.1084 0.0884 0.0737 
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10 (6, 0.4) 0.0693 0.0620 0.0674 0.0464 0.0405 

11 (6, 0.6) 0.0473 0.0454 0.0475 0.0501 0.0387 

12 (6, 0.8) 0.0589 0.0699 0.0626 0.0577 0.0490 

13 (8, 0.2) 0.1003 0.0766 0.0980 0.0679 0.0522 

14 (8, 0.4) 0.0527 0.0423 0.0559 0.0350 0.0302 

15 (8, 0.6) 0.0486 0.0413 0.0496 0.0371 0.0384 

16 (8, 0.8) 0.0566 0.0664 0.0599 0.0491 0.0474 

17 (10, 0.2) 0.1003 0.0711 0.0891 0.0653 0.0609 

18 (10, 0.4) 0.0619 0.0455 0.0593 0.0415 0.0278 

19 (10, 0.6) 0.0603 0.0483 0.0600 0.0421 0.0417 

20 (10, 0.8) 0.0739 0.0680 0.0732 0.0637 0.0402 

 

0.01 0.02 0.03 0.04 0.05 0.06

0.94

0.95

0.96

0.97

0.98

0.99

1

FMR

1-
F

N
M

R

ROC curve of different pixel-based complex approaches

 

 

PC_M1

PC_M2

PC_M3

PC_M4

PC_M5

EER

0 0.01 0.02 0.03 0.04 0.05 0.06

0.94

0.95

0.96

0.97

0.98

0.99

1

FMR

1-
F

N
M

R

ROC curve of different feature-based complex approaches

 

 

FC_M1

FC_M2

FC_M3

FC_M4

FC_M5

EER

 
(a) ROC curve of PC methods                (b) ROC curve of FC methods 

Figure 4. The recognition Performance of Different Complex Methods 

To compare the recognition performance of different complex approaches, Figure 4 shows 

the recognition results in parameter (6, 0.6). Obviously, method PC_M5 gives the best 

performance among pixel level complex approaches in Figure 4(a). Comparing Figure 4(a) 

and Figure 4(b), the results of feature-based complex approaches are better and more 

concentrated than the results of pixel-based complex approaches. From heat maps in Figure 

5(a) and Figure 5(b), we can see that the better parameters are concentrated in the lower right 

part of heat maps. It means the performance turns better as the training number increases. 

Figure 6 illustrates this phenomenon deeply, which shows the EER of PC and FC fusion 

approaches in all the parameters. Figure 6(a) and Figure 6(b) also illustrate that the visible 

face fusion weight ω is better in 0.4 and 0.6, and is a little worse in 0.2 or 0.8. It means that 

the ratio of visible and thermal face should not be too large. 

 

Table 4. EER of Feature-Based Complex Algorithms 

No. ( , )trn   
Feature-based complex algorithms 

FC_M1 FC_M2 FC_M3 FC_M4 FC_M5 

1 (2, 0.2) 0.1149 0.1080 0.1108 0.1197 0.1191 
2 (2, 0.4) 0.0787 0.0719 0.0744 0.0823 0.0739 

3 (2, 0.6) 0.0726 0.0862 0.0693 0.0943 0.0736 

4 (2, 0.8) 0.0940 0.1035 0.0944 0.1044 0.0900 

5 (4, 0.2) 0.0987 0.0802 0.0953 0.0831 0.0805 

6 (4, 0.4) 0.0654 0.0566 0.0585 0.0546 0.0494 

7 (4, 0.6) 0.0552 0.0563 0.0569 0.0532 0.0482 
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8 (4, 0.8) 0.0789 0.0751 0.0762 0.0731 0.0629 

9 (6, 0.2) 0.0907 0.0735 0.0846 0.0781 0.0678 

10 (6, 0.4) 0.0524 0.0467 0.0490 0.0380 0.0441 

11 (6, 0.6) 0.0398 0.0365 0.0403 0.0375 0.0339 

12 (6, 0.8) 0.0559 0.0582 0.0576 0.0560 0.0446 

13 (8, 0.2) 0.0781 0.0649 0.0727 0.0552 0.0557 

14 (8, 0.4) 0.0340 0.0302 0.0335 0.0245 0.0249 

15 (8, 0.6) 0.0385 0.0307 0.0367 0.0307 0.0267 

16 (8, 0.8) 0.0578 0.0523 0.0586 0.0421 0.0433 

17 (10, 0.2) 0.0776 0.0601 0.0696 0.0503 0.0527 

18 (10, 0.4) 0.0305 0.0302 0.0296 0.0256 0.0241 

19 (10, 0.6) 0.0350 0.0378 0.0340 0.0344 0.0361 

20 (10, 0.8) 0.0661 0.0650 0.0673 0.0465 0.0360 
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Figure 6. The EER of Different Complex Methods 

3.3.3. Identification Performance of PC and FC Approaches: The identification 

performance comparisons of different approaches in feature level are discussed in this section. 

Table 5 and Table 6 show the recognition rates of different approaches in different parameters. 

The best results of every method are also shown in under line, and the worst results are shown 

in under wave line. The best rates in PC and FC fusion methods also distribute in larger 

training numbers. The heat maps of rate matrixes are shown in Figure 7. From Figure 7(a) and 
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Figure 7(b), the better parameters are also concentrated in the lower right part of heat maps. 

Figure 8 shows the same phenomenon as Figure 6 shows. 

Pixel-based complex fusion approaches implement scatter matrix computing operation in 

complex matrix directly, this takes too much data and makes the computing more complex. 

Feature-based complex fusion approaches compute scatter matrix first, and then fuse together. 

This kind of computing method only put less features into complex space and makes the 

matching more precise. 
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Figure 7. The Heat Maps of Rate Matrixes of Different Complex Methods 

Table 5. Recognition Rate of Pixel-based Complex Algorithms 

No. ( , )trn   
Pixel-based complex algorithms 

PC_M1 PC_M2 PC_M3 PC_M4 PC_M5 

1 (2, 0.2) 0.8570 0.8767 0.8616 0.8686 0.8651 

2 (2, 0.4) 0.9070 0.9093 0.9035 0.9174 0.9198 

3 (2, 0.6) 0.9233 0.9140 0.9186 0.9151 0.9302 

4 (2, 0.8) 0.9105 0.8977 0.9105 0.8953 0.9140 

5 (4, 0.2) 0.8837 0.8968 0.8779 0.8939 0.9055 

6 (4, 0.4) 0.9186 0.9302 0.9172 0.9390 0.9506 

7 (4, 0.6) 0.9404 0.9288 0.9448 0.9317 0.9578 

8 (4, 0.8) 0.9215 0.9099 0.9172 0.9230 0.9317 

9 (6, 0.2) 0.8973 0.9109 0.8915 0.9109 0.9322 

10 (6, 0.4) 0.9341 0.9341 0.9322 0.9554 0.9593 

11 (6, 0.6) 0.9535 0.9574 0.9535 0.9496 0.9651 

12 (6, 0.8) 0.9360 0.9264 0.9399 0.9380 0.9516 

13 (8, 0.2) 0.9012 0.9186 0.9041 0.9360 0.9390 

14 (8, 0.4) 0.9448 0.9593 0.9506 0.9651 0.9651 

15 (8, 0.6) 0.9506 0.9593 0.9506 0.9622 0.9593 

16 (8, 0.8) 0.9390 0.9331 0.9448 0.9506 0.9506 

17 (10, 0.2) 0.9012 0.9302 0.9070 0.9302 0.9419 

18 (10, 0.4) 0.9419 0.9477 0.9360 0.9593 0.9709 

19 (10, 0.6) 0.9419 0.9477 0.9419 0.9593 0.9593 

20 (10, 0.8) 0.9302 0.9360 0.9302 0.9360 0.9593 
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Figure 8. The Recognition Rate of Different complex methods 

Table 6. Recognition Rate of Feature-based Complex Algorithms 

No. ( , )trn   
Feature-based complex algorithms 

FC_M1 FC_M2 FC_M3 FC_M4 FC_M5 

1 (2, 0.2) 0.8767 0.8942 0.8884 0.8802 0.8849 
2 (2, 0.4) 0.9233 0.9326 0.9256 0.9209 0.9267 

3 (2, 0.6) 0.9233 0.9093 0.9360 0.9081 0.9209 

4 (2, 0.8) 0.9140 0.8977 0.9012 0.8977 0.9116 

5 (4, 0.2) 0.9026 0.9201 0.9099 0.9172 0.9201 

6 (4, 0.4) 0.9375 0.9404 0.9404 0.9462 0.9506 

7 (4, 0.6) 0.9462 0.9433 0.9477 0.9491 0.9535 

8 (4, 0.8) 0.9259 0.9273 0.9230 0.9259 0.9331 

9 (6, 0.2) 0.9109 0.9244 0.9167 0.9302 0.9341 

10 (6, 0.4) 0.9457 0.9516 0.9516 0.9632 0.9574 

11 (6, 0.6) 0.9593 0.9632 0.9632 0.9632 0.9690 

12 (6, 0.8) 0.9438 0.9380 0.9438 0.9457 0.9554 

13 (8, 0.2) 0.9215 0.9360 0.9273 0.9477 0.9477 

14 (8, 0.4) 0.9622 0.9680 0.9651 0.9797 0.9738 

15 (8, 0.6) 0.9622 0.9622 0.9622 0.9709 0.9738 

16 (8, 0.8) 0.9390 0.9535 0.9390 0.9593 0.9593 

17 (10, 0.2) 0.9244 0.9360 0.9244 0.9535 0.9535 

18 (10, 0.4) 0.9767 0.9709 0.9709 0.9767 0.9709 

19 (10, 0.6) 0.9709 0.9593 0.9651 0.9651 0.9651 

20 (10, 0.8) 0.9302 0.9360 0.9302 0.9535 0.9651 

 

3.4. Remarks 

In the light of the experimental results, the performances of feature level complex fusion 

approaches are better than the pixel level complex fusion ones. Based on comprehensive 

consideration of EER and recognition rate, we suggest the parameters could be selected in the 

middle right of corresponding parameter matrix. The best results are in favor of are 
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FC_(2D)
2
LDA and FC (2D)

2
FPCA. The appropriate training numbers are 6 and 8, and the 

visible face sample fusion weight are 0.4 and 0.6. 

 

4. Conclusion 

In biometric systems, unimodel biometric systems have inherent problems and 

multibiometric systems can address most of their limitations. Considering the acquiring 

convenience and application security, the fusion of visible and thermal face images is 

proposed in this paper. The proposed approaches deal with the problems of multibiometric 

fusion using 2D-based algorithms in pixel level and feature level. The theoretical derivation 

of pixel level complex fusion approach PC_2DPCA and PC_2DLDA are proposed, and also 

be extended to 2D-based classification methods: (2D)
2
PCA, (2D)

2
LDA and (2D)

2
FPCA. 

Besides, the complex fusion methods in feature level for visible and thermal face images are 

proposed. These methods evaluate the covariance matrix accurately and reflect the differences 

inherited from separately sensors. All the approaches are tested in the multimodal database 

NVIE that contains visible and thermal face images with six different expressions. Several 

experiments conducted on this database ascertain the efficacy of the proposed approaches in 

identification and verification. In the light of the experimental tests, the best results are in 

favor of the proposed approaches, FC_(2D)
2
LDA and FC_(2D)

2
FPCA, the training number 6 

and 8, and the visible face fusion weight 0.4 and 0.6. 
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