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Abstract 

Data fusion aims at synergistic use of information and knowledge from different sources to 

aid in the overall understanding of a phenomenon. In the domain of remote sensing, where 

images are acquired by multiple sources or by the same source in multiple acquisition 

contexts, the data made available by different sources are complementary to each other, 

proper fusion of the data can bring better and consistent interpretation of the scene. The 

paper presents application of Kalman filter at pixel-level fusion. The input data collected 

from Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite is subjected to the 

proposed algorithm. The performance of the algorithm is evaluated by few well-known image 

quality metrics. 
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1. Introduction 

The course of action to combine multiple frames of the same scene into one image is 

known as image fusion. It is a procedure to acquire complete information representation of 

the same scene, such as temporal, spectral and spatial information for better understanding 

and inferences. It can improve the robustness of the multi-sensor system to the variation of 

condition and occasion, and it can reject or filter some uncorrelated or redundant information. 

Due to the predictable benefits of multi-sensor image fusion, the applications of image fusion 

have been successfully extended to remote sensing applications [1].  

Although, Kalman filter was designed for optimal control of navigation, because of its 

inherent potential it has been used for various engineering applications including real-time 

imaging [2]. The Kalman filtering algorithm [3] works by combining the information 

regarding the system dynamics with probabilistic information regarding the noise.  The filter 

is very prevailing in that it supports estimations of past, present and even future states and, in 

particular, can do so even when the precise nature of the noise is unknown. In addition to the 

basic mechanism of the filter to reduce the noise, the algorithm provides a running average of 

fusion of pixels. 

The paper is organized such that, we first discuss briefly about various data fusion 

techniques in remote sensing domain, satellite data and inferences, then the Kalman equations, 

finally concluding the image-quality enhancement of fused data in results and conclusion 

section.  
 

2. Related work 

Development of various data fusion techniques is an active research area in 

Geoscience and remote sensing applications. Here we have brief description of various 

techniques. Typically, the algorithms for remote sensing image employing pixel -level 
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fusion can be divided into three general categories, component substitution (CS) fusion 

technique [4-7], modulation-based fusion technique [8-10] and multi-resolution analysis 

(MRA) based fusion technique [11-12]. 

The typical algorithms of component substitution fusion technique are intensity hue 

saturation (IHS) transform fusion algorithm [5-6, 13]. This algorithm is suitable when 

exactly three multispectral (MS) bands are concerned since the IHS transform is defined 

for three components only. When more than three bands are available, Tu, et al., [14] 

presented a generalized IHS (GIHS) transform by including the response of the near -

infrared (NIR) band into the intensity component.  In order to overcome color distortion 

problem in IHS and the wavelet fusion technique Zhang and Hong [15] presented a new 

fusion approach that integrates the advantages of both the IHS and the wavelet 

techniques to reduce the color distortion of IKONOS and QuickBird fusion results.  

Visual and statistical analyses demonstrated that the new IHS and wavelet integrated 

fusion approach does improve the fusion quality of the IKONOS and QuickBird images 

compared to the original IHS technique and the wavelet technique. 

Garzelli and Nencin [16] proposed Generalized Intensity-Hue-Saturation-Genetic 

algorithm (GIHS-GA) based on CS strategy and genetic algorithm. The weights of the 

MS bands in synthesizing the intensity component and the injection gains are achieved 

by minimizing a global distortion metrics by means of a GA.  

GIHS with Tradeoff Parameter (GIHS-TP) [17] is a CS-based method that trades off 

the performances of GIHS in terms of spectral distortion and spatial enhancement. 

Gonzáles Audícana and Otazu [18-19] presented a low computational-cost method to 

fuse IKONOS images using the spectral response function of its sensors. Andreja and 

Krisˇtof [20] found that for preserving spectral characteristics, a high level of similarity 

between the panchromatic image and the respective multispectral intensity is needed. In 

order to preserve spectral and spatial resolution, spectral sensitivity of multispectral and 

panchromatic data was performed, and digital values in individual bands were modified 

before fusion. Aiazzi, et al., [7] adopted multivariate regression to create the synthetic 

low-resolution-intensity images which is used in the Gram-Schmidt transform. The 

proposed enhanced strategy is effective in improving the quality of the images than 

ordinary GS technique.   

Ling and Ehlers, et al., [21] presented a method which combines a standard IHS 

transform with FFT filtering of both the panchromatic image and the intensity 

component of the original multispectral image. Other common used CS-based method, 

PCA transform [5-6], assumes that the first principal component (PC) of high variance 

is an ideal choice for replacing or injecting it with high spatial details from the high-

resolution histogram-matched PAN image.  Shah, et al., [22] used the adaptive PCA to 

reduce the spectral distortion in the fusion scheme combining adaptive PCA approach 

and contourlets. Another CS technique reported in the literature is Gram–Schmidt (GS) 

spectral sharpening [23], which is widely used since it has been implemented in the 

Environment for Visualizing Images (ENVI) program package. 

Li and He [24] proposed a new pan sharpening approach that integrates the 

advantage of both the Induction and correspondence analysis techniques to reduce the 

color distortion of IKONOS and Quick Bird fusion results. In order to solve the color 

distortion problem in the fusion process, the new approach takes two steps. First, using 

Induction to upscale the MS images to overcome the miss-registration problem caused 

by cubic interpolation; second, injecting the spatial details from PAN image into MS 

images by correspondence analysis to better preserve the spectral information of the MS 

images.  
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The modulation-based fusion technique utilizes the concept that the spatial details 

are modulated into the multispectral images by multiplying the multispectral images by 

the ratio of the panchromatic image to the synthetic image, which is a lower resolution 

version of the panchromatic image generally. Typical modulation based fusion 

algorithms include High-pass filtering  (HPF) method by Chavez [6] Synthetic Variable 

Ratio (SVR) merging method by Zhang [9], Brovey transform fusion algorithm by 

Vrabel [25], Smoothing Filter Based Intensity Modulation (SFIM) fusion algorithm by  

Liu [8] and optimized the high pass filter addition technique By Gangkofner, et al., [10]. 

 Multi resolution analysis (MRA) based fusion techniques adopt multi -scale 

decomposition methods such as multi-scale wavelet and Laplacian pyramid to 

decompose multi-spectral and panchromatic images with different levels, and then 

derive spatial details that are imported into finer scales of the multi -spectral images in 

the light of the relationship between the panchromatic and multi -spectral images in 

coarser scales, resulting in enhancement of spatial details [11-12, 26].  

Ranchin, et al., [27] presented the method for improving spatial resolution by 

structure injection, the concept was based on the assumption that the missing 

information is linked to the high frequencies of the datasets to be fused. Some fusion  

techniques jointly using component substitution with multi -scale analysis were 

developed, such as the algorithms combing wavelet transform and IHS transform [15, 

28, 29] or PCA transform [22]. These hybrid schemes used wavelets to extract the detail 

information from one image and standard image transformations to inject it into another 

image, or propose improvements in the method of injecting information [30].  

Otazu, et al., [19] introduced concept of sensors spectral response and ground 

spectral features into fusion technology based on MRA. Aanæ s, et al., [31] utilized the 

regularization method to optimize the fusion results to satisfy the higher resolution 

multispectral image model. Yang, et al., [32] generalized this idea and proposed a new 

model quantifying the mathematical relationship between the fused higher multispectral 

images and the original multispectral image, the spatial details being extracted from the 

high-resolution panchromatic image, and the adopted fusion strategies.   

A detailed literature could be found in special issues and recent review papers 

published pertaining to various algorithms [33-37]. 
 

3. Satellite Data and Inferences  

Input data is an image collected by Ozone Monitoring Instrument (OMI) on NASA’s Aura 

satellite [38]. The sensors are specialized developed to tracks global ozone changes and 

monitors aerosols in the atmosphere. Figure 1 and Figure 2 shows input and output images. 

Out-of-control fires burning on the eastern shore of Sumatra (center of image) created an 

air quality emergency for bordering Malaysia in early August 2005 as smoke shrouded few 

parts of the countryside. The smoke hung densely over Malaysia’s busy capital, Kuala 

Lumpur. Red-colored areas give you an idea about where smoke was thickest. The densest 

smoke hangs over the Strait of Malacca, between Sumatra and mainland Malaysia to the 

northeast. Winds in this region regularly blow from the west, diffusing smoke from burning 

peat swamp forest in coastal Sumatra toward the east. The thickness of the smoke tapers off 

to mostly green and blue values between mainland Malaysia and the island of Borneo, farther 

east.  

A less concentrated smoke plume is located on the west coast of Borneo, coming from a 

much smaller assortment of fires. The smoke contains many substances like water vapor, 

carbon dioxide, carbon monoxide, and particulate matter. OMI measures smoke by tracking 

black carbon particles, or soot, that absorb ultraviolet (UV) radiation, the wavelengths of 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 6, No. 2, April, 2013 

 

 

78 

 

sunlight that cause sunburns. By measuring the amount of UV radiation, OMI provides 

estimates of the amount of black carbon aerosol in the smoke layer. This method of detecting 

aerosols based on their interaction with UV rather than visible (rainbow) light allows OMI to 

measure absorption by black carbon in smoke even if the smoke is mixed with or floating on 

top of the clouds. Thus to sum up, the image under study depicts ‘Air Quality Emergency in 

Malaysia”. 

Proper inferences on the satellite data is an active research area in global warming domain. 

The net effect of aerosols on Earth’s energy budget and global climate change can be studied 

by measuring how much radiation can be absorbed by the aerosols. 

 

 

Figure 1. Input Image  
(The image of Malaysia captured by the OMI on NASA’s Aura satellite [38]) 

 

 

Figure 2. Output image (Kalman filtered-fused image) 
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4. Kalman Equations 

The representation of an image in a Kalman filter can either be or block-wise or pixel-wise, 

here we have considered the latter approach. The image model is as follows. Let xk represent 

a particular pixel found in frame k (taken at time k) of the image .Then, each pixel represents 

a time series in frame k.   

The Kalman equations are as follows:   

The ideal noise-free pixel value is given by Sk , which is assumed to be a first order 

Adaptive Recursive model. This model is generally used to study the behavior of pixels in 

video signals [39].  

The process model is 

sk+1 = ask + nk ,                   (1) 

where a is a constant that depends on the signal statistics and nk is the process noise, which is 

assumed to be white Gaussian with zero mean and variance σ
2

n . Assuming that noise is 

Gaussian simplifies the design. On the other hand, it will be desirable to construct the class of 

filters in such a way as to be extensible to different noise sources. Thus, the measured signal 

is given by  

xk = sk + vk                        (2) 

where vk is the independent additive zero mean Gaussian white noise with variance of σ
2
v . 

If the noise and signal are wide-sense stationary random processes that are fully 

determined by their second-order statistics, then the Kalman filter is essentially a Weiner 

Filter.  

The Kalman filter output is represented by yk, which is the estimate of the signal at time k. 

The variance of the estimation error variance is defined by 

σ
2
k= E [ (yk - sk ) 

2
]                        (3)       

The Kalman filter gain is Kk.  

For the single pixel case, the Kalman filtering algorithm is given by the following 

algorithm.  

We consider y-1 =0 and σ
2 
-1 = σ

2
v ,  

 

                                                                   (4) 

 

yk = Kk xk + a[ 1- Kk ] yk-1,                          (5) 

σ
2
k = a

2
 [ 1- Kk ] σ

2
k-1 + σ

2
n.                           (6) 

This algorithm is applied to each pixel, and each time instant. The estimated pixel value, yk 

is output for each iteration, k to provide the filtered image output for display or image 

analysis purposes. The updated Kalman filter gain Kk and updated noise estimation, σ
2
k, are 

also output at each iteration. As before, a is a constant that depends on the signal statistics. 

The Kalman filter will output the updated, filtered estimates of the pixels from each of the 

cameras. In addition, the covariance of the errors in the state estimates at each time k provides 
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information as to the reliability of the estimates. If the state covariance matrix is not diagonal, 

then there exists a transformation of the states so that the covariance of the new states is 

diagonal. That transformation is given by the matrix whose columns are the eigenvectors of 

Pk(+), Let ti be the ith eigenvector of Pk(+). Then, 

  Pk(+) t k,i = λi tk,i                                   (7)   

and  

                                   (8) 

where Tk is the matrix whose columns are the orthonormal eigenvectors. 

Since new states are statistically independent of each other with known variances given the 

eigenvalue associated with the corresponding eigenvector, a weighted average pixel can  

computed. The weights represent the fraction of the total variance associated with each 

element of and are given by  

 

                                        (9) 

 

The optimal estimate of the pixel value is  

 

                                                   (10) 

Thus, the output image is formed with fusion of optimal estimates of pixel values. 

 

5. Results and Discussion  

The input satellite image is subjected to proposed algorithm. The output or fused image 

however, often needs to be correlated with the original image, in order to ensure that the 

resulting image is rendering better quality. Aside from the visual examination, which is 

mandatory, image quality indices such as correlation coefficient, entropy, universal image 

quality index, anisotropy, and Von Mises (VM) distribution and many others are very useful, 

when deciding which fused image is the most satisfactory [40].  

We have selected few image quality indices to compare and contrast original and fused 

images. 

Although the comparison results are not so enormously exciting but are convincing and 

satisfactory, please refer Tables 1 to 4.  

1) Image Entropy (E): This index reflects the amount of information included in a 

certain image. Entropy requires histogram analysis: p is the percentage of the pixels, whose 

value falls into a certain bin class, while bc, is the total number of bin classes. It is given by :  

    

 

                   

2) Correlation Coefficient (CC): It characterizes the correlation between the original 

and the processed image. It is considered as a reliable index and is commonly used. It has a 

dynamic range of [-1 1]. Value zero, indicates absolutely no correlation between the x data 
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and y data, while value 1, indicates that x = y. Value -1, means that x is the exact opposite of 

y, or x = -y. 

 

 

3) Universal image quality index (Q): It describes the quality of the processed image. It 

is a stout index, as it uses x, y means and standard deviations, to produce the result. Like 

correlation coefficient, it has a dynamic range of [-1 1] with the same interpretations in values. 

 

                       

4) Anisotropy: Quality and entropy are fairly related issues. If the source is a given 

image, the obstacle for the entropy to be considered a quality index is that noise cannot be 

distinguished from information, noise being a kind of information itself. From a human 

observer point of view, objects constitute the areas of interest in a picture, and humans with 

good eye correction are easily capable of distinguishing the sharpest objects. Noise or 

blurring is easily identifiable by the visual system. Analytically, entropy increases with 

sharpness but, in general, there is not a fair correlation when images are noisy. Hence, 

entropy by itself is not a good indicator of image quality. To overcome this problem, we have 

used measure of anisotropy also as a measure of image quality.  

Anisotropy is certainly one of the properties of natural images and is related to its 

directional dependency. Image anisotropy is sensitive to noise and blur parameters. 

Directional entropy can be achieved by means of the Rényi entropy. Differences in the 

directional entropy give the figure of anisotropy, which is used to measure image quality [41]. 

 

    

 

Where R = Rényi entropy measure, P= probability density function, here n and k represent 

the spatial and frequency variables, respectively. In addition, α≥2 are values recommended 

for space–frequency distribution measures [41]. 

5) Von Mises (VM) distribution: The von Mises (VM) distribution belongs to 

probability theory and is used to handle directional statistics for continuous probability 

distribution on a circular basis. It appears, in many respects, analogous to the normal 

distributions for a scalar variable. This distribution has also been applied to diverse 

applications in many fields and has become an important tool in the statistical theory of 

directional data [42]. The difference in distribution values for input and output images are 

shown in Figure 3 and 4.  

The standard form of the Von Mises probability density function is: 

 

   

 

where I0(x) is the modified Bessel function of order zero. 
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The parameters μ and 1/κ are analogous to μ and σ2 (the mean and variance) in the normal 

distribution. μ is a measure of location (the distribution is clustered around μ), and κ is a 

measure of concentration (a reciprocal measure of dispersion, so 1/κ is analogous to σ2).  If κ 

is zero, the distribution is uniform, and for small κ, it is close to uniform. If κ is large, the 

distribution becomes very concentrated about the angle μ with κ being a measure of the 

concentration. In fact, as κ increases, the distribution approaches a normal distribution in x 

with mean μ and variance 1/κ. 
 

Table 1. 

Image Entropy (E) 

Band Input Image Output Image 

(Kalman filtered) 

1 6.4219 6.5602 

2 6.6255 6.7290 

3 6.5638 6.6798 

Average 6.5371 6.6563 

Total 6.7255 6.8415 

 

 

Table 2. 

Correlation Coefficient (CC) 

 

Band Input Image Output Image 

(Kalman filtered) 

1 0.95199 1 

2 0.95207 1 

3 0.93865 1 

Average 0.94757 1 

 
 

Table 3. 

Universal image quality index (Q) 

Band Input Image Output Image 

(Kalman filtered) 

1 0.95198 1 

2 0.95207 1 

3 0.93864 1 

Average 0.94756 1 
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Table 4. 

Anisotropy 

Channel Input Image Output Image 

(Kalman filtered) 

1 0.0084925 0.0088653 

2 0.0074219 0.0078563 

3 0.0072386 0.0074903 

Average 0.0077 0.0081 

 

 

Figure 3. Von Mises distribution for input image 

 

 

Figure 4. Von Mises distribution for output image 
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6. Conclusion 

Image quality is understood as the subjective impression of how well the image content is 

rendered or reproduced for better interpretation and inferences. Image fusion is one of the 

significant tools to improve the image quality. The paper presents satellite image fusion at 

pixel-level. The output image is formed with fusion of optimal estimates of pixel values. 

Image quality assessment is done by various quality metrics and it is tried to affirm the 

potential of proposed Kalman filter implementation in multisensor satellite data fusion. 
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