
International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 6, No. 2, April, 2013 

 

 

15 

 

A Novel Algorithm for Forest Height Estimation from PolInSAR 

Image 
 

 

Nghia Pham Minh and Bin Zou 

Dept. of Information Engineering, Harbin Institute of Technology, Harbin, China  

nghiapmlqdu@gmail.com, zoubin@hit.edu.cnl 

Abstract 

Forest height is important information for many forest management activities and is a 

critical parameter in models of ecosystem procedures. Recently, there have been plenty of 

researches on the retrieval of forest height by single baseline PolInSAR such as the ESPRIT 

method, three-stage inversion but the methods tend to underestimate the forest height due to 

attenuation of the electromagnetic waves in the ground medium and vary widely in their 

sensitivities. This paper proposes a novel algorithm to retrieve forest height using an adaptive 

scattering model-based decomposition technique with PolInSAR data. The object is to 

describe each interferometry cross correlation as a sum of contributions corresponding to 

odd bounce, double bounce and volume scattering processes. This algorithm enables the 

retrieval not only of the vegetation parameters but also of the magnitude associated with each 

mechanism. Another advantage of the proposed algorithm is that it makes use of all the 

information provided by the covariance matrix, which remains unachieved in the previous 

model-based decompositions. The proposed algorithm has been tested with simulated data 

from PolSARProSim software and spaceborne data from a test site. Experimental results 

indicate that accuracy of the forest height estimation can be enhanced by the proposed 

algorithm.  

 

Keywords: PolInSAR, target decomposition, adaptive decomposition, coherence amplitude, 

forest height estimation 
 

1. Introduction 

Forest canopy structure is a key determinant of forest ecosystem processes, and its 

measurement is essential for ecosystem monitoring, modeling and management [13, 18]. 

Estimation of height forest by means of polarimetric interferometric synthetic aperture radar 

(PolInSAR) observations is one of the most promising applications in the field of active 

microwave remote sensing. Several techniques have been proposed for the forest height 

estimation using single baseline PolInSAR image such as ESPRIT method [16, 19], three-

stage inversion [10]. The ESPRIT technique can detect local scattering centers corresponding 

to the canopy top and ground in the forest area but detection accuracy of the technique 

becomes worse for dense forest regions due to strong volume scattering component. The 

three-stage method requires multiple parameter least-square estimation which is complex and 

often becomes ill-conditioned. For that reason, we propose using model-based decomposition 

technique for forest height estimation from PolInSAR image. Recently, many decomposition 

techniques have been proposed for polarimetric synthetic aperture radar (PolSAR) image 

analysis such as Freeman and Durden decomposition [2], Yamaguchi four-component 

decomposition [9], Cloude-Pottier decomposition [12], most of them expressed the average 
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mechanism as the sum of independent components with each resolution cell, which allows the 

identification and separation of scattering mechanisms in the polarization signature for 

purposes of classification and recognition. However, these decomposition techniques present 

two major flaws in its definition. In first place, the volume scattering terms is assumed the 

scattering reflection symmetry and the same volume scattering model for all pixels. In second 

place, the number of independent observables is limited so they adopt some assumption to 

remove ambiguity and determine the unique solution, as analyzed in [2, 3]. The assumptions 

often cause negative power in the decomposed mechanisms especially for forest areas where 

volume scattering component is dominant [11]. Recently, Arri [5, 6] proposed a general 

volume model and adaptive model-based decomposition to overcome these limitations. The 

model does not require any geophysical media symmetry assumption but in order to estimate 

parameters of the model somewhat complicated computation is required.  

We show that the polarimetric parameters extracted by using different polarimetric 

decomposition techniques are related to the physical characteristic of a target whereas the 

interferometric information can reflect the geometry structure and complexity of the observed 

objects. Therefore, one general solution to overcome restrictions of decomposition technique 

has been to increase the number of observables, as proposed with the polarimetric SAR 

interferometric (PolInSAR) technique [4]. In principle, using PolInSAR is possible to identify 

not only the scattering mechanisms but also their positions or distributions along the vertical 

dimension of the land cover structure [14, 17]. However, these methods tend to underestimate 

the forest height and are not able to distinguish between odd-bounce and double bounce 

scattering. 

In this paper, we propose an adaptive model-based decomposition technique for single 

frequency single baseline PolInSAR measurement. In this algorithm, we apply a generalized 

volume component as in [5] that it can be characterized by two parameters: a mean 

orientation angle and a degree of randomness. Then, we suggest that the reference volume 

scattering covariance can be used to determine the best fit parameters to express general 

volume scattering covariance matrix. The proposed method is executed following three steps. 

Firstly, the ground topography and canopy phase are estimated by the adaptive decomposition 

technique. Secondly, the forest height is estimated by phase differencing method. Finally, the 

height is compensated by the coherence amplitude approach. The propose method enable 

estimate not only of power contribution from soil and volume but also their location along the 

vertical coordinate. Experimental results show that accuracy of the forest height can be 

improved by this scheme. 

The organization of this paper is as follows. In Section 2, we present the elementary 

scattering mechanisms for polarimetric SAR interferometric observations. The retrieval of 

forest height from the proposed algorithm is delivered in Section 3. The experimental results 

of the parametric inversion with simulated data and space-borne data are presented and 

discussed in Section 4. Finally, the conclusion and future work are drawn in Section 5. 
 

2. Elementary Scattering Mechanisms for PoInSAR Data 

For forest observations, the backscattered waves can be considered as the sum of the three 

components shown in Figure 1. The main scattering contributions explicitly denoted are 

surface (s), double-bounce (d) and volume (v) as proposed by Freeman and Durden [2]. 

Hence, the starting point is the definition of the target vector for both ends of the baseline. 

A full polarimetric interferometric system are measured for each resolution element in the 

scene from two slightly different look angles, two scattering matrices [  ] and [  ]. In the 
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case of backscattering in a reciprocal medium, the 3-D lexicographic scattering vector  ⃗   
and 

 ⃗   
are given by: 

 ⃗   
 [     √          ]

 
 

 ⃗   
 [     √          ]

 
                                                (1) 

 

s vd

h v

z=z0

z=z0+hv

 

Figure 1. Three scattering contributions used in model-based decomposition 

The complete information measured by the SAR system can be represented in the form of 

three 3x3 complex matrices [   ], [   ] and [   ] formed using the outer products of the target 

vectors  ⃗   and  ⃗   as follows 

[   ]  〈 ⃗    ⃗
 
  
  〉 

[   ]  〈 ⃗    ⃗
 
  
  〉                                                                 (2) 

[   ]  〈 ⃗    ⃗
 
  
  〉 

Where 〈 〉 denotes the ensemble average in the data processing, and * denotes the complex 

conjugation. [   ] and [   ] are the conventional Hermitian polarimetric covariance matrices, 

which describe the polarimetric properties for each individual image separately, while [   ] is 

a non-Hermitian complex matrix which contains polarimetric and interferometric information. 

The cross correlation matrix [   ] is presented as follow 

[   ]  [

〈        
 〉 〈√         

 〉 〈        
 〉

〈√         
 〉 〈         

 〉 〈√         
 〉

〈        
 〉 〈√         

 〉 〈        
 〉

]             (3) 

The cross correlation matrix [   ]  will be expressed as the sum of three matrices 

accounting for the contributions of single bounce [  ] , double bounce [  ]  and volume 

scattering [  ] as follow 

[   ]  [  ]  [  ]  [  ]                                             (4) 

In the next section, the three scattering mechanisms to polarimetric interferometric 

observables are analyzed. Note that, as already demonstrated in [2], a null correlation between 

co-polar and cross-polar channels will be assumed. 

2.1. Single bounce scattering model 

The single bounce scattering model is presented by the first order Bragg surface scatter, 

plate, sphere and triple-bounce scattering modeling slightly rough surface scattering in which 

the cross-polarized component is negligible. Additionally, the Bragg model states that 
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|  |  |  |. Hence, Bragg scattering parameters for master and slave images, which actually 

depend on the surface complex permittivity and incidence angle. The amplitude of the 

scattering coefficient does not change for both images, except the difference in the phase term. 

This phase term will have two contributions: the difference due to the complex scattering 

coefficient in the case of using different polarization for master and slave image        
   and the interferometric phase related with position in the vertical coordinate   . Note that, 

the phase of direct scattering will not necessarily locate at ground level. The scattering matrix 

of Bragg surface for master and slave images can be expressed in simplified form as 

[  
 ]  [

     
     

]      and   [  
 ]  [

     
     

      
    

]                 (5)           

Where    denotes the interferometric phase for the direct scattering. We assume that the 

same phase of co-polarized for both images. In this case, the covariance matrix for the single 

bounce model is represented as  

[  ]    [
| |   
   
    

]                                                      (6)                                                  

Where    and   are defined as: 

   |   |
      

  
|   |

|   |
                                                                 (7) 

 

2.2. Double bounce scattering model 

The double bounce scattering component is modeled by scattering from a dihedral corner 

reflector, including a double scattering interaction between the ground and tree-trunk or stem, 

where the reflector surface can be made of different dielectric materials. This contribution is 

modeled in (8) for both ends of the baseline [4, 12] 

[  
 ]  [

       
       

        
      

]                             (8) 

where i=1,2 correspond to both master and slave images.     and     are the horizontal and 

vertical Fresnel reflection coefficients of the ground surface. Similarly, the vertical trunk 

surface has reflection coefficients     and     for horizontal and vertical polarizations, 

respectively. These coefficients are assumed to be equal for master and slave images. The 

complex coefficients     and     accounting for wave propagation processing. These terms 

are divided in two parts considering attenuation   and phase propagation  . We assume that 

the attenuation for master and slave images of the interferometric pair and both polarization 

are same. For instance, the complex coefficient difference for both ends of the baseline is 

expressed as 

 (       )   (
   

 
  

   

 
 

   

 
  

  

 
)                         (9) 
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where   ,    are the interferometric phase for the double bounce scattering component 

and polarization phase difference, respectively. Scattering matrices in (8) yields a covariance 

matrix for the double bounce model is given by 

[  ]    [
| |   
   
    

]                                                (10) 

Where    and   are defined as 

   |      |
      

  
      

      
                                                             (11) 

 

2.3. General volume scattering model 

The volume scattering is direct volume scattering from the top layer of forest model. By 

assuming this layer has azimuthal symmetry, so the scattering from canopy forest can be 

reasonably characterized by a cloud of randomly oriented infinitely thin cylinder [5, 9]. The 

scattering matrix for particle in the random volume is [1, 12] 

[    
 ]  [

    
    

]                                                       (12) 

where i=1,2, which refers to each end of the baseline. 

The scattering matrix of each particle inside the canopy layer when rotated by angle around 

the radar line of sight, becomes 

[    
 ( )]  [

        
         

] [    
 ] [

         
        

]                  (13)  

In the theoretical modeling of volume scattering, a cloud of randomly oriented dipoles in 

implemented with a uniform probability function for the orientation angles. However, for 

vegetated areas where vertical structure seems to be rather dominant, the scattering from tree 

trunks and branches display a non-uniform angle distribution. Assuming a volume with a nth 

power cosine-squared distribution of orientation with probability density function as [5, 6]. 

The parameter n ranges from zero to infinity. In practice, there is little difference between 

distributions with values of n larger than about 20 or so. It can be shown that the standard 

deviation   can be evaluated in terms of n as [6]. The standard deviation    varies from a 

range between 0 and 0.91. It changes with the corresponding change in distribution function 

from delta to uniform distribution function for the vegetation orientation angles. 

Assuming that the dipole or the thin cylinder scatters are randomly about the radar look 

direction, the volume scattering covariance matrix can be rewritten as : 

〈[  (    )]〉  [  ]   ( )[  (   )]   ( )[  (   )]                 (14) 

where    is the mean orientation angle of the dipoles. The coefficient  ( ) and  ( ) are 

characterized by sixth-order polynomials as in [5, 6]. The basic covariance matrices [  ] [  ] 

and [  ] are represented as: 

[  ]  
 

 
[
   
   
   

] 
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  [  (   )]  
 

 
[

        √        

√        √       

 √              

]         (15) 

                                    [  (   )]  
 

 
[

       √              

 √               √       

       √             

] 

 

3. The Forest Height Estimation Using Hybrid Algorithm 
 

3.1. Adaptive model-based decomposition algorithm extracting forest height 

In this section we propose the algorithm for the estimation of the forest height using single 

baseline polarimetric interferometric SAR. One of the simplest approaches to forest height 

estimation is to use the phase difference between interferogram as a direct estimate of forest 

height [1, 10]. In general terms we then estimate the phase in two scattering components: the 

first is the volume scattering only which has a phase center near the top of layer, and the 

second is surface scattering dominated which has a phase center near the ground. In this paper, 

forest height estimation can be extracted by an adaptive model-based decomposition 

algorithm [21].  

Based upon the generalized model for volume scattering, we shall develop the adaptive 

decomposition algorithm in this section. Simple replacement of the volume scattering term in 

(4) by (14) provides the new decomposition model as 

[   ]    [  (    )]    [  ]    [  ]                              (16) 

Firstly, the above equation is used to find the volume scattering covariance matrix. In the 

case of vegetation model, the co-polar and cross-polar responses are uncorrelated and cross-

polar response is generated by volume scatters [6, 11]. Consequently, we employed a 

generalized volume scattering mechanism model in (17) using geophysical media symmetry 

as a reference volume scattering model. Under the reflection symmetry assumption for 

reciprocal medial, the covariance matrix for backscatter, regardless of actual physical 

scattering mechanism (volume or surface), obeys the following expression [7] 

[        ]  
 

 

 
(   ) √  ⁄

[

  √  ⁄

 
   

 
 

√ 

 
 

√  ⁄   

]                           (17) 

With    〈|   |
 〉 〈|   |

 〉⁄  

In this paper, we suggest that the reference volume scattering covariance can be used to 

determine the best fit parameters to express general volume scattering covariance matrix. At 

first we calculate the reference matrix          as in (17). Secondly, we implement finding 

the volume scattering covariance matrix so that   (    )approximates to the reference 

volume scattering covariance matrix          by varying randomness  and mean orientation 

angle  0 for their entire range. These parameter sets are equivalent to a best fit under 

condition that subtraction of general volume covariance matrix and reference volume 

covariance matrix becomes zero. Finally, we repeat both above step for each pixel in image. 
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The algorithm is summarized in Figure 2. When the generalized volume covariance matrix is 

selected, we can calculate FV  as : 

   |  | 
    

   (   )

  (   )
                                    (18) 

Power of volume scattering component can be derived by the coefficient    and the canopy 

phase  V can be obtained in (18). Following the proposed algorithm for polarimetric 

interferometric data, when the proper [  ],    and    are selected, we can remove the volume 

scattering component from the original covariance matrices. The remainder matrix is 

presented as:   

  [          ]  [  ]  [  ]  [
| |    | |           

   
               

]       (19) 

As can be seen, in matrix [          ] there appear four complex unknowns  ,  ,    and 

   and four complex observables, since           (   )            (   ) . This 

formulation leads to a determined nonlinear equation system. Therefore, to determine the rest 

of unknown parameters         and   simultaneously, an ESPRIT algorithm is implemented. 

In addition, magnitude of estimated the complex eigenvalues correspond to complex 

coherence of local scatters by the ESPRIT analysis for (18). 
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Figure 2. Adaptive model-based decomposition algorithm for single pixel  
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In order to remove ambiguity and improve the accuracy of each power component, we 

employ the modified ESPRIT-based PolInSAR [3]. If the single bounce is dominant the 

parameters         and   are expressed as: 

  
  ( )  √     ( ) 

   

  ( )  √     ( ) 
   

 

  
  ( )  √   

    ( ) 
   

  ( )  √   
    ( ) 

   
 

   {  ( )  √     ( ) 
   }

 
 

   {  ( )  √   
    ( ) 

   }
 
                                      (20) 

       ⁄  

Where   and   are the eigenvalue and corresponding eigenvector of the ith component of  

           matrix. The coefficients    and    are elements of unitary matrix as in [3]. Finally, 

we choose the argument of coefficient    which corresponds to surface topography to be 

employed into forest height estimation. Then the forest height by phase differencing can be 

expressed as: 

   
     

  
                                                           (21) 

Where kz,  V,  0 are vertical wavenumber, canopy phase and surface phase respectively. 

We show that, this algorithm requires no further assumption or checks to determine which 

canopy model to use in the decomposition technique. We propose the algorithm because it 

allows simple implementation with reasonable flexibility and not complex computation. The 

proposed algorithm is optimum for the forest area. However, it has been applied to other 

types such as bare surface and urban areas. 

 

3.2. The coherence amplitude method 

In the case of forest model the propagation through the volume is independent of 

polarization. Consequently, the volume only complex coherence  ̃  becomes independent of 

polarization [15]. 

 ̃ (    )  
∫  (    )      ⁄      

 
     

 

∫  (    )      ⁄      
 

                                         (22) 

Where       are vertical wavenumber and incidence angle, respectively. In [10], Cloude 

proposed three-stage inversion in vegetation parameters estimation. In particular, assuming the 

extinction approaches zero, the volume only complex coherence  ̃ (    ) is the function which 

can only contain height. Then the volume complex coherence  ̃ (  ) is expressed by: 

 ̃ (  )        
  ∫  (    )      ⁄      

 
     

 

     ( 
(    )      ⁄   )

        ⁄     (     ⁄ )         (23) 

Equation (23) shows that the SINC model is that the coherence amplitude falls with 

increasing height and hence phase variance increases with   . Then we can use estimate of 

measure coherence amplitude to estimate height (for a known baseline). The volume only 

coherence complex  ̃  can be replaced with  ̃ (  ) so the forest height can be written as 

   
        (| ̃ (  )|)

  
                                                  (24) 
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In particular, for short baseline we can expand    function as: 

   
        (| ̃ (  )|

   )

  
                                                 (25) 

The coherence amplitude in equation (25) is sensitive to variation in the vertical structure of 

forest and is generally applied to compensate the underestimated height.  

 

3.3. Estimation of forest height 

In order to estimate height, we first use this height which is estimated by the adaptive 

model-based decomposition algorithm, exactly as proposed in equation (21). However, the 

canopy phase can lie anywhere between halfway and top of the layer, and hence in general 

the true height is underestimated. To progress, one key idea is that this error can be at least 

partly compensated by employing a coherence amplitude correction term. Finally, by 

combining these two terms with a scaling parameter , we then obtain an approximate 

algorithm that can compensate variation in structure, as shown in equation (26): 

   
     
  

 
         (| ̃ (  )|

   )

  
                               (26) 

The first term represents the phase coherence while the second term is the coherence 

amplitude correction. This expression has the right kind of behavior in two important special 

cases. If the medium has a uniform structure function the first term will give half the height 

but the second will then also obtain half the true height (if we set =0.5). At the other 

extreme, if the structure function in the volume channel is localized near top of the layer, then 

phase height will give the true height, and second term will approach zero that reason the 

weight set as =0. To reduce the error from change of extinction coefficient and the vertical 

structure, we select =0.4 [8]. 
 

4. Experimental Results and Discussion 

In this section, the proof of the algorithm concept proposed in Section 3 is addressed. To 

illustrate the technique, we apply the adaptive model-based decomposition algorithm to a data 

set acquired from PolSARProSim software by Mark L. Williams [20], as well as L-band 

image pair of Tien-shan test site by the SIR-C/X-SAR system 

 

4.1. Simulated Data 

The proposed algorithm has been first test a simulated RVoG scenario, named as HEDE in 

the PolSARProSim software, at 1.3GHz and at 30 degree angle of incidence considering 

different soil conditions and averaging window sizes. The interferometer is operated at 10.6m 

horizontal and -6.1m vertical baseline. The stand height 10m, and it is located on a 0.1% 

ground azimuth and 0.2% ground range slope. The forest stand occupies a 0.7854 Ha area and 

stand density is 360stem/Ha. Azimuth and slant range resolution are 1.0m and 0.5m, 

respectively.  
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(a) (b)  

Figure 3. Simulated data and experimental results. Figure 3(a) shows HH 
amplitude image of the simulated data. Figure 3(b) shows height result 

comparison 
 

Figure 3(a) shows HH amplitude image of the simulated data. Figure 3(b) is a histogram of 

the height estimation of proposed algorithm compared with the ESPRIT approach. Compared 

with the actual 10m tree height, Table 1 indicates the proposed approach is more accurate. 

The estimation of forest height using ESPRIT approach is the absolution of the difference 

between the effective scattering phase centers of surface topography and canopy layer. 

Therefore, in the ESPRIT approach the poor performance is caused by the closer two phase 

centers. 

Table 1. Comparison between ESPRIT Model and Proposed Approach 

 Height average (m) average errors (m) RMSE (m) 

ESPRIT method 6.3082 3.6198 0.8496 

Proposed approach 9.3228 0.7672 0.1512 

 

  
(a) (b) 

Figure 4. Amplitude contributions of three scattering mechanisms to (a) HH and 
(b) VV with highest roughness 

 

Figure 4 corresponds to the amplitude of the three scattering mechanism contributing 

to the HH (figure 4(a)) and VV (Figure 4(b)) channel. As shown, the amplitude 

response is dominated by the volume scattering but there are certain areas where the 
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single scattering component is also remarkable. In addition, the double-bounce 

scattering component is low for the VV correlation (as predicted by theory), and it is 

not dominant in the HH channel due to surface has a highest roughness .   

 

 

 

 

 

 

Figure 5. The height estimates for the scattering components. 
 

The height estimates of the volume scattering and odd-bounce scattering component 

are shown in Figure 5. Almost all height estimates of odd-single scattering are 

approximate zero expect a little values have height greater due to the soil roughness, 

moisture conditions and terrain slope. This figure shows that the actual forest heights 

are quite well retrieved, except for pixels around 90, 190, 400, 600 and 700. Likewise, 

the heights are very accurately estimated.   

 

 

Figure 6. Forest height is estimated by proposed algorithm  
 

The result of the proposed method is shown in Figure 6. In this figure it is shown that 

almost the peak differential of the height is located at 10m approximately. The forest 

height estimation between the azimuth 17-20 and 195-200 pixels are overestimated less 

than 22m. The real effective tree height will be higher than these values. Hence, we can 

say that the results are acceptable. Consequently, the proposed method provides relative 

accuracy with small error, and is more accurate for vertical  structural variations. 

Changes in the scene parameters can be noticed by means of the proposed 

decomposition algorithm. Figure 7 represents the amplitude contributions of the three 

scattering mechanism to HH and VV interferometry channels when surface has  the 

lowest roughness. The rest of parameters remain unchanged. We show that the volume 

contribution does not vary, as expected. By comparing Figures 4 and 7, one can observe 

that for this data set the algorithm accounts for the differences on the surface condition 
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by means of the contributions of double-bounce to VV and HH channels. The amplitude 

contribution of the double-bounce has just low value for the VV channel. However, the 

double-bounce contribution increases and becomes dominant in some areas due to 

interaction between smooth surface and trunks (such as at some around pixels 100, 190, 

300, 400). 

 

 

Figure 7. Amplitude contributions of three scattering mechanisms to (a) HH and 
(b) VV with lowest roughness 

 

4.2. Spaceborne Data 

Next, we have also tested the proposed algorithm with space-borne data. In the 

present study, the data used consists of two SIR-C single look complex (SLC) image 

pair of the Tien-shan test site by the SIR-C system. This region has a mixed forestry, 

road and agricultural area. They consist of quad-pol interferometric data at L band with 

a 24.569 degree angle of incidence and 13m baseline. Figure 8(a) is the optical image of 

the test site, Figure 8(b) is the HV amplitude image of test area for evaluation as forest 

and Figure 8(c) is a composite image of the test site in the Pauli basis, with 500 pixels 

in range and 500 pixels in azimuth. 

The analysis has been performed on the azimuth transect. Along this transect, we can 

identify three types of scenes: red areas denote bare surface like agriculture and road, 

green areas represent forest.  

 

 

Figure 8. Test site in Tien-Shan: (a) Optical image (b) HV amplitude image (c) 
Pauli decomposition of test site 
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Figure 9. Amplitude contributions of the three scattering mechanisms to the (a) 
HH, (b) VV cross correlation and (c) to the total power provided by proposed 

algorithm for both ends of the baseline  
 

Results for the amplitude of the three scattering contributions reveal that the volume 

scattering dominates for the HH and VV channels except for pixels around 10, 550 and 

1100 according to agricultural areas see Figure 9(a) and (b). The double bounce 

mechanism is relatively high for the HH correlation but it is not dominant due to the 

relative roughness of terrain. Result from the proposed algorithm for both ends of the 

baseline is shown in Figure 9(c). It is shown that, there are no noticeable differences 

with two above cases, as expected. As seen, the volume contribution mostly dominates 

the response in the forest area, whereas the double-bounce contribution is about 1-5 dB 

below the volume respond to forest areas. When the interferometric information is 

considered, the volume contribution is obtained by the proposed algorithm which is 

slightly different when compared with volume contribution is achieved by Freeman-

Durden decomposition for PolSAR image. Differences between both approaches 

become more evident at the agricultural area, specially, within azimuth intervals 230-

250, 600-620 and 1100-1130. In the Freeman-Durden decomposition, the magnitude of 

volume and single bounce within these areas are nearly equal.  

 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 6, No. 2, April, 2013 

 

 

28 

 

 

Figure 10. Results of the adaptive model-based decomposition (a) power image 
of PS (b) s power image of PD (c) power image of PV and (d) proposed 

decomposition algorithm for test site 
 

Figure 10(a), (b) and (c) show the decomposed power image of odd-bounce (PS), 

double-bounce (PD) and volume scattering (PV) of the data by the proposed algorithm, 

respectively. In these figures, we do not observe negative power component, this means 

that power of volume scattering component is not overestimated. This is caused by the 

selected fit parameters for volume scattering covariance matrix and ambiguity reduction 

for scattering model decomposition. Comparing Figure 10 with Figure 7(a), we found 

out that, the double bounce scattering component in boundary forest and road areas are 

stronger than those of the forest and agricultural areas. Figure 10(d) shows the 

decomposition result of the adaptive model-based decomposition approach. The bold 

blue areas in the upper left and center correspond to agricultural, which shows that the 

single scattering is prominent. The light blue areas correspond to forest, indicating that 

the volume scattering is prominent. 

Figure 11 shows a three dimensional perspective of the estimated height by the 

proposed algorithm. In this figure it is shown that almost the forest height is located in 

the range between 12m and 18m. The forest height estimation at some pixels is 

overestimated less than 30m. The real effective tree height will be higher than these 

values so we can say that the results are acceptable 
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Figure 11. 3-D view of forest height 
 

5. Conclusions 

An adaptive model-based decomposition technique based on the cross correlation 

covariance matrix is proposed for polarimetric SAR interferometric data, which is intended to 

be applied to the general conditions, including both the non-reflection symmetry case and the 

reflection symmetry condition. In this paper, an accuracy enhancement method of vegetation 

height estimation using the adaptive model-based decomposition technique and coherence 

amplitude algorithm has been proposed. By using the proposed method we can not only 

obtain relative accuracy for height estimation but also estimate power contribution of each 

scattering component in each patch and on showing a general volume scattering component 

suitable to both symmetry and non-symmetry media. Simulated and spaceborne data have 

been used for testing the proposed algorithm and its potential has been analyzed also in 

comparison with the ESPRIT method for height estimation. These preliminary results show 

that the proposed model is effective for analysis of forest areas with PolInSAR image. 

Experimental results indicate that vegetation parameters can be retrieved directly and 

accurately by the fusion of these two approaches.  In the future, more experiments using 

different data of different fields will be done and the enhancement performance of proposed 

algorithm will be studied. 
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