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Abstract 

A new switching median filter is proposed for denoising of gray-scale images, extremely 

corrupted by salt-and-pepper noise. The proposed model for noise removal is a multiscale 

detection based adaptive median filter. This method consists of mainly two parts, namely, the 

thresholding based multiscale noise detection and the filtering. The detection of impulse noise 

is carried out in two stages. First, multiscale filtering of the corrupted image is carried out 

using Gaussian kernels at different scales and errors between the original and the filtered 

images at different scales are obtained. In the next stage, the errors at different scales are 

added and then thresholded to detect the impulse noise. The filtering of impulses, detected in 

the first stage of the proposed filter, is finally carried out using an adaptive median filter. 

Incorporation of a multiscale method into the noise detection stage followed by 

thresholding has led to more reliable and efficient impulse noise detection, especially, at high 

noise ratios. To validate the efficacy of proposed scheme, extensive simulations and 

comparisons are done with the competent schemes under a wide range (10% to 90%) of noise 

densities. The results show that the proposed scheme works much better in suppressing high 

level noise than other schemes, keeping the edges and fine details of the original image 

almost intact. 

 

Keywords: Image denoising, impulse noise detection, multiscale method, switching median 

filter 
 

1. Introduction 

Image denoising is one of the active areas of research in digital image processing. The aim 

of image denoising is to recover the original image from the corrupted one with no or 

minimum distortion. The impulse noise is one of the most widespread and important noise in 

digital images. It affects images at the time of acquisition due to noisy sensors or at the time 

of transmission due to channel errors or faulty memory locations in hardware or by 

synchronization errors in the image digitizing or transmission. The data that are affected by 

salt-and-pepper noise change drastically, because their amplitudes are either relatively high or 

relatively low. Thus, the pixel values do not reflect the true intensities of the real scene 

causing degradation of the image quality. Various linear and non-linear filtering schemes 

have been proposed for the removal of impulse noise. But, linear filter lacks usability due to 

blurring of high-frequency components, and sharp details in the image. To overcome the 

shortcomings of linear filters, non-linear filters have been adopted, and are still widely used 

for their useful properties, namely, edge preservation and robustness against impulse noise. 

Among the non-linear filters, standard median (SM) [1] filter is the most prominent 

representative of the non-linear filters because of its good denoising capability and 

computational efficiency [4]. 
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However, with the increasing noise density, some details and edges of the original image 

are smeared by the filter. Also, the modified SM filter, such as the weighted median (WM) 

[2] and the centre weighted median (CWM) [3] filters give more importance to the current 

pixel, preserving good image details, but offer less noise suppression when the centre pixel 

itself is corrupted. To overcome these defects, several variants of the median filter algorithms 

came up with the aim of correcting only those pixels corrupted by impulse noise, leaving 

uncorrupted pixels as such i.e. decisions are to be made by the filtering algorithms as to when 

median is to be applied and when not. Satisfying these necessities, switching median filtering 

is introduced. The rank-order-mean (ROM) filter reported in [4] excludes the central pixel 

itself while computing the median value and thus damages of the uncorrupted pixel is 

minimized. But, this method fails under higher values of noise densities.  

The window size of the median filter also plays an important role in finding the most 

suitable value, larger and smaller windows lead to distortions when the impulse noise ratios 

are low and high, respectively. The adaptive centre weighted median filter (ACWM) [5] gives 

good results in comparison to the above two methods, but spoiling of good pixels is more and 

it results in overall poor performance with the increasing noise density. In progressive 

switching median filter (PSMF) [6] and the directional weighted median filter (DWM) [7], 

numerous iterations are involved both in the detection and the correction phases. Though 

these methods yield better performance in comparison to the above methods, the important 

drawback is the time complexity due to numerous iterations. Further, the above mentioned 

processes cannot guarantee that all uncorrupted pixels are identified and the impulses may be 

wrongly identified as correct pixels [8]. Another method, namely, the boundary 

discriminative noise detection (BDND) [9-10] having a strong noise detection part achieves 

less miss detection up to 60%-70% than the other methods. But, performance of this method 

degrades for higher noise levels (above 70%). Moreover, it is a time consuming method.  

It is thus noteworthy that though all the above mentioned approaches are quite good in 

focusing some aspects of impulse noise filtering requirements; lose their focus on other vital 

aspects like the replacement of uncorrupted pixels under high noise density. It is also 

observed that the performance of any detection based impulse removal technique depends 

highly on the detection mechanism. Stronger the detection better is the filtering performance. 

Keeping this in mind, a new switching based median filter, having a strong detection 

technique even at very high levels of noise corruption, is proposed. It performs quite well at 

noise densities as high as 70% or above.  

In this paper, we adopt a different strategy while considering the detection of the noisy 

pixels than the one existing in most of the detection based median filters. Actually, noise 

exists in different scales of the image and so is true for the detail features in the image too. An 

image mainly consists of coarse and fine scales. The coarse scales consist of the main shapes 

and general features of the image, while the fine scales consist of details and textures [11]. It 

is difficult to know which scales are the most appropriate for describing the noise as well as 

the features in the image data. Therefore, the filtering techniques based on the detection of 

impulse noise in a single scale [5-8], normally fails to give an accurate detection of the 

impulses present across different scales. Hence, the only way to get rid of this problem is to 

use multiscale analysis to decompose an image data into information at multiple scales and 

subsequently carrying out the detection of impulses by multiscale filtering followed by 

thresholding. 

In short, the proposed method is carried out in two stages, namely, the multiscale detection 

and the filtering. In the multiscale detection stage, we use the multiscale filtering method 

reported in [11] using the Gaussian kernels at different scales. It is observed that high 

frequency features and textures are smoothed less compared to that of the uniform intensity 
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regions. The degree of smoothing also varies from scale to scale with higher level of 

smoothing at higher scale. Next, errors are obtained by subtracting the smoothed images at 

different scales from the observed image which are eventually added and normalized to get a 

consolidated error due to all the scales. The normalized error is then thresholded to detect the 

impulses. In the filtering stage, an adaptive median filter is applied for the removal of 

detected impulses. Figure 1 shows a visual comparison of the performance of the proposed 

method with some of the well known single-scale detection based median filters applied on an 

image corrupted by salt and pepper noise at 50% density. The results indicate that the 

proposed filter is able to remove the impulses more clearly than the others. 

The rest of the paper is organized as follows. Section 2 briefly mention about the impulse 

noise model. Section 3 covers image quality metrics, commonly used for performance 

measures of different impulse detection as well as filtering techniques. Section 4 discusses the 

proposed method. Section 5 reports a number of experimental results to demonstrate the 

performances of different switching median filters along with the proposed one. Finally, 

conclusions are drawn in Section 6. 

                        

                             

Figure 1. (a) Original image (b) corrupted by 50 % salt and pepper noise and results 
of (c) the DWM filter (d) the BDND filter (e) the proposed filter 

 

2. Noise Model 

Salt-and-pepper or fixed-valued impulse noise appears as black and/or white spots in 

grayscale images giving the image “salt and pepper” like appearance. Pixels are randomly 

corrupted by two fixed values, 0 and 255 (for an 8-bit grayscale image), generated with the 

same probability. Let us consider a true image X  and Y  be the observed version of it. Then, 

the grayscale value of Y at any location ( , )i j  is modelled by 

(d) (e) 

(a) (b) (c) 
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0, with probability / 2

( , ) 255, with probability / 2
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p

Y i j p
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


 
 

,                                                     (1) 

where p is the noise density. 

 

3. Image Quality Metrics 

An image quality (IQ) metric is an objective criterion to calculate the quality without 

the help of human observers [13]. It is useful for measuring and rating the performance 

of an image processing or a computer vision algorithm. Different noise removal 

techniques apply different detection and filtering parts. So to compare the performance 

of different filtering techniques, measure of image quality is essential. The image 

quality is examined by using various metrics. In the relevant literature, some of these 

are parameters for measuring the performance of impulse detection and some are for 

measuring the filtering performance.  

Impulse detection plays a vital role on filtering to remove it. To evaluate the 

detection performance, the most commonly used metric are: the number of true 

detection (TD), the number of false detection (FD), and the number of miss detection 

(MD). On the other hand, some of the metrics for filtering are the mean squared error 

(MSE), the mean absolute error (MAE), the peak signal-to-noise ratio (PSNR), and the 

mean structural similarity index (MSSIM).  

We use the above metrics for evaluation of the performance of the proposed switching 

median filter. 

 

3.1. Impulse Detection Performance Metrics 

 

3.1.1. Number of true detection (TD): It is the number of noisy pixels detected by the 

detection algorithm and which are the true noisy pixels in the impulse noise corrupted 

image. 

 

3.1.2. Number of miss detection (MD): It is the number of noisy pixels in the 

corrupted image which could not be detected as noisy and instead detected as noise-free 

pixels by the proposed detection algorithm. 

 

3.1.3. Number of false detection (FD): It is the number of pixels in the corrupted 

image which are actually noise-free but detected to be noisy, by the proposed detection 

algorithm. 

As the number of miss detection and false detection value increases, the performance 

of the impulse detector decreases. Due to the wrong detection of the noisy pixels, the 

pixel details may be lost which in turn affects the filtering performance. 

 

3.2. Filtering Performance Metrics 

Let ( , )X i j and ˆ ( , )X i j be the original and the filtered images of size P Q , 

respectively. Then the filtering performance parameters, namely, the mean absolute 

parameter (MAE), the mean squared error (MSE), and the peak signal-to-noise-ratio 

(PSNR) are defined as follows: 
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3.2.1. Mean absolute error (MAE): Mean absolute error (MAE) is used to measure 

how close predictions of the filtered image values are, from the values of the original 

image. Mathematically,  

 

                                        
1 1

1 ˆMAE ( , ) ( , )
QP

i j

X i j X i j
PQ  

                                          (2) 

 

3.2.2. Mean squared error (MSE): MSE is a fidelity measure metric which compares two 

images by calculating the squared error difference between the original image and the filtered 

image, respectively. 

                                      
2

1 1

1 ˆMSE ( ( , ) ( , ))
QP

i j

X i j X i j
PQ  

                                        (3) 

3.2.3. Peak signal-to-noise ratio (PSNR): PSNR is the ratio of the peak signal power to 

noise power. PSNR is expressed in dB. Both PSNR and MSE are reciprocal of each other. 

Greater the PSNR, lesser is the MSE and better is the image quality. It is defined as:         

                       10

2

1 1

2 1
PSNR (dB) 10log

1 ˆ( ( , ) ( , ))

n

QP

i j

X i j X i j
PQ  





,                             (4) 

where 8n   for an 8-bit grayscale image. 

 

3.2.4. Mean structural similarity index (MSSIM): The structural similarity index (SSIM) 

quantifies the visible difference between a noisy image and a reference image. It defines the 

structural information in an image as those attributes that represent the structure of the objects 

in the scene, independent of the average luminance and contrast. The index is based on a 

combination of luminance, contrast, and structure comparison. It is considered to be 

correlated with the quality perception of the human visual system (HVS). The SSIM performs 

better than the PSNR in discriminating structural content in images. 

The SSIM [14] is defined as  

                              늿 1 2

2 2 2 2
늿 1 2

(2 )(2 )ˆSSIM(X,X)
( )( )

x x xx

x x x x

C C

C C

  

   

 


   
,                                      (5) 

where x  and x̂ are the mean intensities; 
2

x and 
2

x̂ are the variances of X and X̂ , 

respectively. Here, 1C is a constant defined as:  

                                     
2

1 1( . )C K L ,                                                                       (6) 

where L is the dynamic range of the image (say, [0, 255] for an 8-bit grayscale image) and 

1 1K  . Here, 2C is similar to 1C , and is defined as: 

                                                     
2

2 2( . )C K L ,                                                           (7) 

where 2 1K  . Generally, the SSIM is computed adaptively by choosing a local 

neighborhood around each pixel of the image [14]. When a single SSIM is computed for the 

entire image, it is known as the mean SSIM (MSSIM). It is a measure for the perceptual 

quality of an image. The MSSIM values lie between -1 and 1. For good quality of denoised 

outputs, the values of MSSIM should be close to unity.  



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 6, No. 2, April, 2013 

 

 

134 

 

 

3.2.5. CPU Time: CPU time is used to compare the computation time of the filtering 

algorithms. To calculate the computation time, MATLAB 7.0.1 on an INTEL PC with 2.67 

GHz processor and 512 MB RAM has been used. 
 

4. Proposed Method 
 

4.1. Impulse Noise Detection 

The noise detection part plays a key role in the performance of a detection based 

impulse noise removal filter. Better the impulse noise detection, the better is the 

filtering performance.  In this paper, a multiscale method is applied on the noisy image 

at different scales for the detection of impulse noise. The reason for applying the 

multiscale detection method is to exploit the fact that the edges and other details present 

in the image are normally spread across different scales [11] and average of these 

intensity values across scales will be always greater than that due to the noise only. In 

particular, we carry out the following two stages. First, corresponding to each pixel, the 

errors between the corrupted image, and the images smoothed by applying the 

multiscale method, are computed. In the next stage, the errors at different scales are 

combined and normalized; the resultant errors corresponding to each pixel are then 

compared to a set of predetermined thresholds. At any pixel, if the resultant error is 

greater than the predefined threshold then the corresponding location of the observed 

image is said have an impulse. Otherwise, it is considered to be noise free. After 

completion of the above procedure, a binary matrix is obtained where ‘0’ indicates the 

position of noise free pixel and ‘1’ for the corrupted pixels. In this method, we 

empirically determine a range of threshold values for each noise level and across 

different test images such that the proposed detection method would give the best 

performance in terms of impulse detection at different values of noise densities. 

 

 

Figure 2. Block diagram of the proposed model 
 

In Figure 2, the input noisy image ( Y ) is a 2-D matrix. At first, the multiscale method 

using the Gaussian kernel is applied on the noisy image at different scales t  resulting into the 

smoothed images tI .  Then, for each scale t , we take the difference between ( , )tI i j and the 

( , )Y i j at every pixel location ( , )i j  of the 2D image and form an error image of dimension 

same as Y .  The same procedure is then repeated for other scales.  
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Thus, we obtain a series of error images equal in numbers as that of the scales used. 

Eventually, they are combined and then normalized to get the resultant single error image.  To 

designate a pixel at ( , )i j in Y  to be noisy, the value of the pixel in the resultant error image 

at ( , )i j must exceed a threshold T . If it exceeds the threshold value, then the pixel is 

considered to be noisy, otherwise it is an uncorrupted pixel and will remain unaltered. If the 

impulse detector detects an impulse (i.e., output of detector is YES) at any instant, then the 

control signal is passed to the filter unit to perform filtering operation on the windowed data 

set. If the detector does not detect any impulse, no signal will be given to the filter unit and 

the window sampler is enabled to fill with the next data samples and the uncorrupted pixel 

remains unchanged. 

Here, the main emphasis is given to demonstrate the application of a simple 

multiscale approach using the Gaussian kernels in order to achieve efficient detection of 

impulses. In a single scale approach, the impulse noise is generally detected by 

applying a series of thresholds to the median subtracted pixels in a local neighbourhood 

[5-8]. Although median is used here to detect the noisy pixels in a small neighbourhood 

but fails to distinguish the noisy pixels from the noise free pixels in a holistic view. It 

does not discriminate the noise free pixels and the noisy pixels from their structural 

relationships which spread across different scales [11]. In the proposed multiscale 

impulse detection method, it is assumed that the noise is present at different scales and 

by averaging the noise can be suppressed well than that of the features. Finally, 

thresholding may be carried out to separate the noisy pixels from the noise free pixels.   

 

4.2. Filtering by Estimation of True value 

The filtering operation is performed only on those pixels which are detected to be 

noisy in the impulse detection stage. The noisy pixel is replaced by its estimated value, 

and other pixels remain unchanged. If the estimation of the true value ( i.e., the value by 

which the noisy pixel to be replaced) is not proper, it may lead to failed detection or 

over detection. As the noisy pixel is replaced with an improper estimated value, it 

affects the result and the details related to the pixel is lost. To estimate the true value, 

we use the adaptive switching median filter. Here, we fix the window size based on the 

noise density, similar to the one reported in [9]. 

Denoting the noise density and the window size by p and FW , respectively, we define the 

following: 

             

If 0% 20%, is 3 3

If 20% 40%, is 5 5

If 40%, is 7 7

F

F

F

p W

p W

p W

   


   
  

                                                    (8) 

In calculating the estimated value, the concerned pixel is excluded as it is already 

been detected as noisy. 

The proposed algorithm for noise detection and filtering are summarized below.  Hereafter, 

without the loss of their usual meanings, we have loosely used the terms ( , )Y i j  and 

( , )tI i j to refer to the observed noisy image and the smoothed image, respectively. 

 

1. Impulse Noise Detection by thresholding:  

a) Multiscale method is applied on the noisy image Y by convolving the samples of the 

noisy image ( , )Y i j with the 2D-Gaussian kernel ( , , )G i j t of variance or scale parameter t . 
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Larger values of t represent coarser resolutions of the image. The convolution of the noisy 

image ( , )Y i j with the Gaussian kernel ( , , )G i j t results into the smoothed image 

( , )tI i j which is given as  

   ( , ) ( , )* ( , , )tI i j Y i j G i j t ,                                                           (9) 

where * represents the convolution operation. 

b) Now, we take the difference between ( , )tI i j  and the noisy image Y( , )i j for 

different values of t  and let the difference M be defined as  

0

1
( , ) ( , )t

t

M I i j Y i j
K





  ,                                                          (10)                                       

where K is a normalizing constant. It is fixed to a value so that detection is efficient using the 

trial and error method. The upper boundary may be varied depending on the detection 

performance. Practically, we take a finite set of values for the scale parameter t .  

c) Now, we apply the thresholding operation on M . Different threshold values are 

considered for different noise levels, and at any particular noise level, the threshold value that 

gives best performance is determined, experimentally. Let the threshold value be T at a 

particular noise level or density. Then the condition for which the concerned pixel is detected 

to be noisy is  

                                                          If ( , ) , then ( , ) isnoisy.M i j T Y i j                            (11) 

From this method, it may happen that the threshold value may vary from image to image 

and for different noise densities. So, the threshold value is considered such that the detection 

performance is optimum. Some of the experimental findings obtained using different 

threshold values are given in the following subsection. 

 

2.  Estimation of true value: 

 If the current pixel ( , )M i j is noisy, it is replaced by the following procedure: 

a) A window FW of suitable size (described above) is considered based on the noise 

density.  

b) If ( , )Y i j is noisy, it is replaced with the estimated value ˆ ( , )X i j as given below 

otherwise it remains unaltered and the window is slid to the next position. 

c) The output ˆ ( , )X i j  of the proposed filter is obtained by 

                             ,
ˆ ( , ) median{ : ( , ) , ( , ) (0,0)}i s j tX i j X s t w s t    ,                       (12) 

 where
( 1) ( 1)

2 2
{( , ) : , }F FW W

w s t s t
 

    . 

 

d) The above steps are repeated until the process completed for the entire image. 

The overall block diagram of impulse detection and filtering using the proposed method is 

shown in Figure (2). 
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4.2. Selection of T  

Fixed threshold is not suitable and may not work well at different noise levels as well 

as for different images. When threshold value is less than 180 and greater than 240, the 

performance of the proposed method is found to be poor. So, threshold values between 

180 and 240 are considered for the evaluation of the proposed method with the state -of-

the-art.   
 

5. Experimental Results 

A number of gray-scale images, namely, the “Lena” (512×512), the “Barbara” 

(512×512), the “Peppers” (256×256) and the “House” (256×256), available as TIFF and 

PNG files from the University of Southern California’s Signal and Image Processing 

Institute, have been used to test the performance of the proposed filter along with some 

of the leading impulse noise removal methods. All these images have been artificially 

corrupted by the salt-and-pepper noise at different noise densities using the impulse 

noise model given in Eq. (1).  

For impulse noise detection, we carry out the multiscale detection method described 

in Section 4. For experimentation on multiscale filtering and impulse detection, we 

consider a Gaussian kernel of size 7×7 for variances, say, t =2, 5, 10, and 15. Similarly, 

for comparatively larger variances, say, t =20, 25, 50, 80 and 100, we consider a 

Gaussian kernel of size 21×21. The size of the kernel may be fixed by trial and error 

method.  

We have carried out a number of experiments to prove the efficacy of the proposed 

method in terms of both the detection and the filtering. They are summarized below. 

(a) Experiments to evaluate the performances of various impulse detection methods at 

high noise levels: 

The accuracy of the impulse detection method is an important issue while studying the 

performance of a decision based median filter. In Table 1 (b), we compare the performance of 

the proposed noise detector with the state-of-the-art at high noise levels. A good noise 

detector should be able to identify most of the noisy pixels, and yet its MD and FD rate 

should be as small as possible. For good performance, the total of the FD and MD should be 

low [9].  

It is observed that at noise densities of 50% and above, the proposed method has the 

highest TD. Clearly, the proposed method has the lowest number of MD in higher noise 

density (above 50%). Moreover, the number of FD of the proposed method is much lower 

than that of the ACWM (up to70%) and the BDND. Though the ACWM and the BDND 

produce less FD than ours, there are too many missed pixels. These pixels will lead to the 

presence of noticeable noise patches. If we add up the numbers of MD and FD, we will find 

that the proposed detection results in the lowest sum (at 50% and onwards). This indicates 

that the proposed detection method clearly out performs other methods at high levels of noise 

corruption.  

(b) Experiments to evaluate the performances of various filtering methods at high noise 

levels:  

In this experiment, we compare the performances of the proposed method with various 

methods at different noise levels, in terms of the MAE, the MSE, the PSNR, and the MSSIM 

in order to evaluate its efficiency in removing the impulse noise from the test images. Table 

2(a) shows the filtering performance in terms of MAE and MSE. Similarly, Tables 2(b) 
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summarizes the filtering performances of the proposed method and various others in terms of 

the PSNR, and the MSSIM. The results show that the proposed method clearly gives better 

performance in terms of both the MAE and the MSE at high levels of noise corruption (50% 

or higher) for all the test images. The same is true in terms of the PSNR and the MSSIM 

values too. Thus, we can conclude that the proposed method is the most suitable one for the 

removal of salt and pepper noise at high noise densities.  

On the other hand, its performance is found to be poor at low noise levels, compared to 

other methods referred above. This is obvious from the results presented in Table 3 in terms 

of the PSNR. But, the performances of the ACWM and the DWM filters are better at low and 

medium noise levels (noise levels up to say 30% or less) than that of the proposed method. 

This is because at low noise levels, the smoothing due to the Gaussian kernels at higher scales, 

predominantly smoothes the true image pixels only along with a few noisy pixels. Due to this, 

the proposed detection fails to detect the noisy pixels correctly at low noise levels. Table 1(a) 

shows the detection performance of the proposed method at low and medium noise levels.   

In Figures 3(a) and 3(b), the filtering performances of various methods along with the 

proposed one are compared graphically in terms of the MAE and the MSE, respectively on 

two images, corrupted by salt and pepper noise at varying noise densities. Similarly, Figures 

3(c) and (d), graphically illustrate the PSNR and the MSSIM performances for two different 

images. It could be clearly observed from all these figures that for images corrupted by salt 

and pepper noise at high noise densities, the results of the proposed filter are far superior to 

that of the competent filters. 

(c)  Experiments to evaluate the computational complexity of various filtering methods: 

Table 3 shows the CPU time for different filtering methods under varying levels noise 

corruption. It is observed that the computation time increases with the increase of both the 

noise density and the image size. We have experimentally found that the BDND [9] method 

takes the highest computational time followed by the DWM [7] and the ACWM methods [5]. 

On the other hand, the SDROM filter and the proposed method take more or less similar time 

for computation, which is much lower than that of the ACWM, the DWM, and the BDND 

methods. This indicates that the proposed method is able to give the best performance out of 

all the methods, with much less computational overhead. 

The BDND method requires more time because of two reasons. First, the impulse detection 

is done by a two-stage procedure; a large window of size 21×21 is centred on the current 

pixel and then a pair of boundary values is determined. Next, if the centre value lies in 

between these two values then the above procedure is repeated by imposing a 3 ×3 window 

over the current pixel. Moreover, the size of the filtering window is also adaptively varied by 

imposing certain conditions on the uncorrupted pixels; make it a comparatively slower 

method. Similarly, in the DWM method, due to the involvement of numerous iterations, 

increasing with the noise densities makes it a slower method. 

From the above discussions, we conclude that the proposed filter slightly underperforms at 

low noise densities, but clearly outperforms the state-of-the-art at high noise densities, i.e., p 

≥ 50. It is also computationally more efficient.  

In Figures 4-6, the results of visual qualities of the restored images are shown for the 

performance comparisons of different filters at high noisy densities. Visual study of the 

restored images obtained by the SDROM, the ACWM, and the DWM filters at high noise 

densities, are hardly recognizable and less acceptable with the presence of prominent impulse 

patches. Although the restored images obtained by the BDND method are recognizable, some 

of the impulse noise still remains with them after filtering. This affect is even more prominent 

at very high noise densities. On the other hand, the visual quality of the restored images, 
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obtained by the proposed method, is outstanding at high noise densities (up to 50%). At very 

high noise densities (70% or higher) the outputs of the proposed method are more 

perceptible by the human eyes. Therefore, the proposed method performs better, and can 

suppress impulse noise successfully while preserving the details in an image in the presence 

of medium to high noise densities.  
 

Table 1. (a) Performance of the proposed and various impulse detection 
methods at low noise levels 

 

 

Table 1. (b) Performance of the proposed and various impulse detection 
methods at high noise levels 

 
 

Table 2. (a) Restoration results in terms of the MAE and the MSE for various 
filters at different noise levels 
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Table 2. (b) Results in terms of the PSNR (in dB) and the MSSIM for various 
filters at different noise levels 

 
 

Table 3. CPU time (in mins) of different filtering methods for different images 
corrupted by salt-and-pepper noise 

 
 

 

 

 Figure 3(a). MAE vs. Noise density                Figure 3(b). MSE vs. noise density  
 

 

 
   Figure 3(c). PSNR vs. Noise density         Figure 3(d). MSSIM vs. noise density 
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Figure 4. Restoration results for corrupted images of LENA and BARBARA    
(a) Original image. (b) Noisy image. (c) the SD- ROM filter (d) the ACWM filter 

(e) the DWM filter  (f) the BDND filter  (g) the PROPOSED filter 
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Figure 5. (a) Original “Boat” image. (b) Image corrupted by 50% noise.  
Restoration results for (c) the SD- ROM filter (d) the ACWM filter (e) the DWM 

filter  (f) the BDND filter and (g) the PROPOSED filter 

           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
            

Figure 6. (a) Original “Pepper” image. (b) Image corrupted by 50% noise. 
Restoration results for (c) the SD- ROM filter (d) the ACWM filter (e) the DWM 

filter  (f) the BDND filter and (g) the PROPOSED filter 

6. Conclusion 

In this paper, we propose a multiscale based adaptive median filter capable of restoring 

gray-scale images corrupted by salt-and-pepper noise at medium and extremely high noise 

   

   

   

   

 

(a) (b) (d) (c) 

(e) (f) (g) 
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ratios. The main contribution of this paper is the design of a simple and strong impulse 

noise detection method based on multiscale filtering, incorporated into the framework of a 

switching median filter. Application of the multiscale method plays the vital role of making 

this method a successful one. The method is very simple, easy to implement, and 

computationally an efficient one. The performances of different switching based median 

filters, namely, the SDROM, the ACWM, the DWM and the BDND are comprehensively 

evaluated and compared with the proposed method by using different objective measurement 

criteria. Simulation results show that the proposed method outperforms some of the existing 

methods, both visually and quantitatively, giving much acceptable and recognizable restored 

images by preserving their textures, details and edges accurately, at medium to very high 

noise levels. Although, the performance of the proposed method is not the best, but works 

reasonably well compared to some of the popular methods mentioned earlier. The 

performance of the proposed method may be improved by using the estimation techniques 

based on regularization and sparse representations as reported in [15-16]. However, the aim 

of the paper is to investigate the efficiency of a multiscale detection mechanism instead of 

using the standard median filter and to study its influence in the overall improvement of the 

filtering performance.  

The proposed method can be further extended for the removal of different types of noises, 

such as the random-valued impulse noise or the impulse-plus-Gaussian noise from both gray-

scale image as well as colour images. Rigorous study is required to fix the threshold value 

analytically which will help further in improving the proposed method. 
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