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Abstract 

We present a system for acquiring synchronized multi-view color and depth (RGB-D) data 

using multiple off-the-shelf Microsoft Kinect and a new method for reconstructing spatio-

temporally coherent 3D animation from time-varying dynamic RGB-D data. Our acquisition 

system is independent of any specific hardware component for the synchronization of the 

camera system. We show that the data acquired by our framework can be synchronously 

registered in a global coordinate system and then can be used to reconstruct the 3D 

animation of a dynamic scene. The main benefit of our work is that instead of relying on 

expensive multi-view video capture setups, multiple low cost Microsoft Kinect sensors can 

capture both the image and the depth data to do a 360
o
 reconstruction of a dynamic scene. 

We also present a new algorithm for tracking dynamic three-dimensional point cloud data 

that can be used to reconstruct a time-coherent representation of a 3D animation without 

using any template model or a-prior assumption about the underlying surface. We show that 

despite some limitations imposed by the hardware for the synchronous acquisition of the data 

we can get reasonably good reconstruction of the animated 3D geometry, which can be used 

in a number of applications. 
 

Keywords: Multi-view video acquisition, 3D and Free-viewpoint video, Dynamic scene 

reconstruction, RGB-D data acquisition 
 

1. Introduction 

Spatio-Temporally coherent time-varying dynamic scene geometry has been employed in a 

number of applications. It can be used for 3D animation in digital entertainment productions, 

electronic games, 3D television, motion analysis, gesture recognition, etc. First step in 

obtaining spatio-temporally coherent 3D video is to capture the shape, appearance and motion 

of a dynamic real-world object. One or more video cameras are employed for this acquisition, 

but unfortunately, data obtained by these video cameras has no temporal consistency, as there 

is no relationship between the consecutive frames of a video stream. In addition, for a multi-

view video, all the cameras have to be synchronized to extract temporal correspondences at 

each frame of the video. This synchronization is typically achieved by means of a hardware-

based camera trigger, which acts as an external synchronizer. From the acquired synchronized 

data, in order to reconstruct a spatio-temporally coherent 3D animation, a spatial structure 

between cameras has to be established along with the temporal matching over the complete 

video data. 

In this paper we present a system for acquiring synchronized dynamic 3D data using 

multiple RGB-D cameras along with a new method for capturing spatio-temporal 

coherence between RGB-D images captured from multiple RGB-D video cameras. 

Synchronized multi-view video (MVV) data is used in a number of applications, e.g., 

motion capture, dynamic scene reconstruction, free-viewpoint video, etc. Traditionally, 
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the MVV recordings are acquired using synchronized color (RGB) cameras, which are 

later processed for use in a number of applications [1, 2, 3, 4, 5]. The acquisition setups 

used for these earlier works comprised of a dedicated system for capturing synchronous 

high quality RGB MVV recordings, which were then used to reconstruct dynamic 3D 

scene representation. 

One of the earlier works in this area was presented by Carranza , et al., [1], who used 

eight multi-view recordings to reconstruct the motion and shape of a moving subject 

and applied it in the area of free-viewpoint video reconstruction. Theobalt et al. [2] 

extended this work so that in addition to capturing the shape and motion they also 

captured surface reflectance properties of a dynamic object. Starck, et al., [5] presented 

a high quality surface reconstruction method that could capture detailed moving 

geometry from multi-view video recordings. Later de Aguiar, et al., [3] and Vlasic, et 

al., [4] presented new method for reconstructing really high quality of dynamic scene 

using multi-view video recordings. Both of their methods first obtained the shape of the 

real world object using a laser scanner and then deformed the shape to reconstruct the 

3D animation. Ahmed, et al., [6] presented a method of dynamic scene reconstruction 

with time coherent information without the use of any template geometry, but unlike 

our method they did not explicitly include multiple matching criteria for extracting t ime 

coherence in their method. 

With the arrival of depth sensors, especially low cost Microsoft Kinect [7], there has 

been a wave of interest in incorporating them in a number of research areas including 

the reconstruction of dynamic scene geometry. For example, one or more depth sensors 

are employed in 3D shape scanning and dense 3D reconstruction of static objects; pose, 

motion and 3D shape estimation [8, 9, 10]. These works show that despite the limitation 

of depth sensors, i.e., low resolution and high noise, it is possible to employ them to get 

high quality results. Recently, two methods have been presented to capture data using 

multiple depth sensors. Kim, et al., [11] presented a system for the fusion and 

calibration of RGB and depth sensors. Their system uses a dedicated hardware setup for 

the synchronization of the color and depth cameras. More recently, Berger , et al., [8] 

presented a method to capture motion using four Kinects but without any active 

synchronization between the sensors. These methods do not try to extract any spatial or 

temporal coherence information from the acquired dynamic data.  

The goal of our work is to present a unified system comprising of multiple Kinects to 

perform synchronous capture using a software-only acquisition setup, and to reconstruct 

spatio-temporally coherent dynamic 3D scene geometry from dynamic RGB-D data. 

Our system is highly scalable and can be extended to any number of cameras. We show 

that the data from our acquisition setup can be merged to reconstruct the dynamic 3D 

scene to a very good approximation of its real world counterpart. Our system is very 

low cost, and we only use easily available open source software solutions to acquire, 

register, and process the data. To our knowledge this is the first system, which shows 

that acquisition, and time-coherent 3D animation reconstruction is possible using 

multiple Kinects. Our work is an extension of the acquisition system presented by 

Ahmed, et al., [12]. In principle, any type and any combination of RGB and depth 

cameras can be used for the acquisition. We chose Microsoft Kinect because it is a 

hybrid color (RGB) and depth camera system which provides both the color and depth 

information at 30 frames per second. Our acquisition system can acquire synchronous 

streams of RGB-D data from multiple Microsoft Kinects. 
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Figure 1. Our system pipeline: (a) Six Kinects are used to acquire the RGB and 
depth images (only one frame from one camera is shown). (b) Shows the 3D 
point cloud from one camera with the mapped RGB image. (c) Shows the top 
down view of six merged 3D point clouds. The alignment of the cameras after 
the global registration is shown in (d) using the color-coded points. The final 

segmented and filtered point cloud is shown in (e) 

The acquired multi-view RGB and depth data is not temporally coherent as each 

frame is independent of the other. We present a system, which can use both depth and 

color information and extract time coherence information from the dynamic three -

dimensional content. The dynamic three-dimensional content is assumed to be in the 

form of a three-dimensional point cloud with color information associated with every 

point at every frame. We will show that we can obtain this information very easily from 

our acquisition setup that provides us not only the depth information of real world scene 

but also its color information. Our work is not limited to the data obtained by the 

Microsoft Kinect cameras but we will also show that our work is equally suitable for 

the three-dimensional content obtained using a traditional acquisition setup of multi -

view color cameras. Main benefit of using Microsoft Kinect cameras is that unlike the 

requirement of employing eight or more color cameras, only one Microsoft Kinect 

camera can be employed to get meaningful depth and color information of a real world 

dynamic scene. The main contributions of our work are: 

1. Acquisition of data using one or more Microsoft Kinect camera and organize it in 

a form of a three-dimensional dynamic point cloud with the color information. 

2. A new method of finding time coherent information from three-dimensional point 

cloud data using both color and depth information. This data can either be acquired 

from Microsoft Kinect cameras as described in step 1 or a traditional setup of multi -

view video acquisition using color cameras. 

 

2. Related Work 

We capitalize on previous research in a number of areas, but primarily our work 

derives from the areas of multi-view video (MVV) acquisition, 3D and free-viewpoint 

video, static and dynamic surface reconstruction from color and depth cameras.  
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MVV data has been used in a number of applications. In one of pioneering works on 

free-viewpoint video, Carranza, et al., [1] used eight color cameras to capture the shape, 

appearance and motion of a real-world actor. Starck, et al., [5] also used a high-

definition acquisition system comprising of eight cameras to capture the moving actor. 

They were also able to capture the high-level cloth deformations on the actor. MVV 

acquisition is not limited to low number of cameras, rather Debevec, et al., [13, 14, 15] 

reconstructed a number of iterations of the so-called “light-stage” which used a large 

number of cameras to capture the static and dynamic objects under static and varying 

lighting conditions. The work on free-viewpoint video by Carranza, et al., was extended 

by Theobalt, et al., [2] where, in addition to eight high resolution color cameras, they 

used to calibrated spot lights to not only acquire the shape, motion and appearance but 

also the surface reflectance properties of a moving person. The estimation of dynamic 

surface reflectance allowed rendering the reconstructed 3D animation in a virtual 

environment having starkly different lighting condition compared to the recording 

environment. 

A number of methods have been proposed to reconstruct spatio-temporally consistent 

3D animation from MVV data. De Aguiar, et al., [3] presented a method to reconstruct 

high quality spatio-temporal reconstruction of dynamic objects by means of a 

deformation based method. They first obtained a high quality template scan of the real-

world person that was deformed over the course of the animation by means of an 

optimization method that ensured that the deformed model is consistent with the input 

MVV data. Similar approach was adopted by Vlasic, et al., [4] where the skeleton-

based deformation was employed to track the high quality template mesh over the 

animation. On the contrary, Ahmed, et al., [6] first reconstructed spatio-temporally 

incoherent visual hulls from MVV data for each frame of MVV data. They tracked the 

first visual hull over the whole sequence by means of a dense correspondence finding 

method that maps one visual hull to the next. None of these methods employed depth 

cameras for the acquisition, and unlike this method, our work does not rely on any 

template data or 3D surface representation for reconstructing spatio-temporally 

coherent 3D animation. 

With the advent of low cost depth sensors, especially Microsoft Kinect [7], there has 

been a wave of interest in incorporating depth sensors for the acquiring 3D static and 

dynamic content. One of the main benefits of using Kinect is that provides both color 

and depth data simultaneously at 30 frames per second. Earlier works relied only on the 

color data where correspondences between cameras had to be used to reconstruct the 

depth information, now directly provided by Kinect. Ahmed, et al., [6] reconstructed 

time-varying visual hulls by similar means. It is not necessary to use Kinect for 

acquiring the depth information as it can also be obtained from other types of sensors, 

e.g., Time of Flight (ToF) sensors [11]. 

One or more depth sensors have been employed in a number of applications to 

reconstruct a three-dimensional representation or static and dynamic objects. Kim, et al., 

[16] presented a multi-view image and depth sensor fusion system to reconstruct 3D 

scene geometry. Castaneda, et al., [17] used two depth sensors for stereo-ToF 

acquisition of a static scene. Microsoft Kinect camera was employed by Weiss , et al., [9] 

for human shape reconstruction. Their method combines low-resolution image 

silhouettes with coarse range data to estimate a parametric model of the body. Similarly, 

Baak, et al., [10] employed a single depth camera in their pose estimation framework 

for tracking full-body motions. Pose estimation from a single depth sensor has been a 
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hallmark of Kinect as an input device, and one of the seminal works in this area was 

presented by Girshick, et al., [18]. 

The low cost of Microsoft Kinect, coupled with the benefits of acquiring depth 

information directly from the sensor, has led to the use of multiple depth sensors in an 

acquisition system. In one of the pioneering works, Kim, et al., [11] presented the 

design and calibration of a system that enables simultaneous recording of dynamic 

scenes with multiple high-resolution video and low-resolution ToF depth cameras. 

Unlike our system, their system relied on hardware trigger for the explic it 

synchronization of color and depth cameras. Berger, et al., [8] employed four Kinects 

for marker-less motion capture. Since their area of application was silhouette -based 

motion capture, they did not explore the use of multiple Kinects in generating dynamic 

scene geometry. They also assume that Kinects are synchronous and did not actively try 

to create a setup for the synchronous capture. For motion capture, it can be assumed 

that synchronization is not a primary requirement as shown by Hasler , et al., [19]. 

Nevertheless, for a dynamic scene reconstruction setup, which merges the data from 

multiple cameras, a higher degree of synchronization is required to produce a correct 

3D animation. Both of the methods [11, 8] do not try to extract any time coherence 

information from the captured depth and color data. 

In this paper we present a software-synchronized multi-view acquisition system 

using multiple Microsoft Kinects. We show that using just of-the-shelf equipment, it is 

possible to create a highly scalable low-cost multi-view acquisition system. We also 

present a new method that can reconstruct spatio-temporally coherent 3D video from a 

dynamic 3D representation that can be acquired by our or any comparable MVV 

acquisition system. 

 

3. Data Acquisition 

Our multi-view recording setup is comprised of multiple Kinect cameras. We tested our 

acquisition, using two, four and six cameras. For the acquisition with six cameras, three 

cameras are placed on each side of the room (Figure 1(a)). The four corner cameras are 

placed with the angle of 90 degrees between them. In between on each side, two additional 

cameras are placed that make the angle of 45 degrees with their two adjacent cameras (shown 

in red and yellow in Figure 1(a). In principle, all Kinects emit the infrared laser at the same 

frequency, which is a potential source of problem when using multiple Kinects for 

simultaneous acquisition. Ideal angle between two Kinects would be 180 degrees for 

simultaneous acquisition without any interference. For our work, we deliberately ignore the 

interference issue because our aim was to test 360 acquisitions and observe how much 

problem is caused by the interference. Our intuition that missing information from one 

camera will be filled by one of the other cameras turned out to be correct as shown by our 

results. The placement of our cameras allows us to capture a dynamic object within an area of 

around 2m x 3m. 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 6, No. 2, April, 2013 

 

 

118 

 

 

Figure 2. One Microsoft Kinect (circled) as used in our acquisition system 

Each Kinect is connected to a dedicated machine comprising Intel Core i5 2.4 GHz with 4 

GB of RAM running Windows 7 64 bit (Figure 2). We believe that this is not a big limitation 

as all comparable acquisition systems use a similar setup. We make use of OpenKinect 

freenect Kinect drivers and library for data acquisition [20]. This library is chosen because it 

provides a wrapper to query for the depth and RGB data using a synchronous interface [21]. 

This facility is not even provided by Microsoft's current SDK for Kinect. In general, all 

current Kinect SDKs provide an asynchronous interface where callback functions are invoked 

when sensor data is available. The synchronous interface manages a buffer where it holds the 

data and provides the depth or RGB data on query with their respective time stamp. This 

procedure introduces some gaps in the data, but for a multi-view synchronous capture these 

gaps are desirable if all Kinects can query the data at the same time. 

The Kinect camera provides 640x480 pixels of RGB and depth data at the frame rate of 30 

fps. Unfortunately this data is not hardware synchronized and there is a lag of 16 ms between 

depth and RGB data. If data is acquired from each Kinect without any consideration to the 

acquisition from other cameras and assumed to be approximately synchronous, the video 

streams will start to drift temporally very quickly. We circumvent this issue by employing the 

following steps: First, our hardware setup is identical for each Kinect that assures that the data 

transfer and processing will take place at the same speed. Before the acquisition step, each 

machine is independently synchronized to a web-server (http://www.time.is) multiple times 

so that their internal clocks are synchronized. This web-server also indicates if the computer 

clock is running faster or slower than the web-server. The machines are synchronized till they 

all report the exact time. Thereafter all machines are programmed to start recording at the 

exact same time. This is done using our software interface, which accepts hour, minute and 

second as the starting time. We also provide the number of frames to record. Since we know 

the frame rate of a Kinect, total number of frames to record, starting time of the recording and 

given that we need to query both RGB and depth frames, exact clock ticks are calculated for 

querying each frame in advance. Each machine then uses the synchronous interface at the pre-

calculated time to query for depth and RGB data alternatively. To minimize the I/O overhead 

we store both RGB and depth data in a buffer and once the recording is finished, data is 

written to the disk. We currently do not use the time stamp information for any post-recording 

synchronization but after comparing the timestamps for the 12 images (6 RGB and 6 depth) 
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obtained for each frame, we did not observe any noticeable differences. Since all machines 

are querying the data at the exact time, the acquisition drift is kept under check. 

4. System Geometry & Calibration 

The projection of a 3D scene point               onto a point in the image 

plane                , for a perspective camera can be modeled by the central projection 

equation: 

 

 

 

 

                                                                                                                                                 (1) 

  

 

where ~ indicates equality up to a non-zero scale factor. Here                       is 

the rotation matrix. The upper triangular 3x3 matrix K encodes the five intrinsic camera 

parameters: focal length f, aspect ratio        , skew γ and the principal point at        . As 

argued by [22, 23], it is safe to assume γ= 0. 

The aim of camera calibration is to determine the calibration matrix K. Instead of directly 

determining K, it is common practice (for e.g., [24]) to compute the symmetric matrix 

         referred to as Image of the Absolute Conic (IAC). IAC is then decomposed 

uniquely using the Cholesky Decomposition to obtain K. 

For our system, we take multiples pictures of a planar checkerboard pattern, moved to 

different location in each frame in order to avoid the degenerate configurations, as shown in 

Figure 3. The motion for the checkerboard need not be known. The model plane contains a 

pattern of 11x8 squares, so there are 352 corners. The size of the pattern is 32cm x 25cm. 

Assuming the model plane as on Z = 0 of the world coordinate system, eq. (1) can be 

arranged as: 

 

 

                    (2) 

or 

where s is the arbitrary scale factor with              which can be easily obtained from the 

images of the model plane. Since, H is a 3x3 matrix, defined up to a scale factor, we have 

from eq. (2): 

                             (3) 

where    is an arbitrary scalar, and by using the orthogonality of   and   , we get the two 

basic constraints on the intrinsic parameters: 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 6, No. 2, April, 2013 

 

 

120 

 

 

Figure 3. Intrinsic camera calibration - Checkerboard as recorded from the (a) 
color camera, (b) depth camera, and (c) infrared sensor 

  
             (4) 

  
       

        (5) 

A homography has 8 degrees of freedom, and there are six 6 extrinsic parameters (3 for 

rotation and 3 for translation), we can only obtain two constraints for the intrinsic parameters. 

We refer the reader to [25], which describes how equations (4) and (5) can be used to extract 

both the intrinsic and the extrinsic parameters. The parameters obtained at this stage are used 

as initializing values, along with the radial distortion parameters [24], to compute the 

Maximum Likelihood Estimate (MSE) of all the parameters.  

The parameters for the depth camera are estimate in a similar fashion. Since the pattern on 

the checkerboard is not discernible by the depth sensor, we selected only the corners of the 

checkerboard manually. Standard stereo calibration technique is used to learn the 

transformation between the depth sensor and the RGB camera [24] (Figure 3). 

 

5. Global Registration and Segmentation 

The final step for getting a dynamic 3D point cloud is to merge all the cameras 

together in a global unified coordinate system. This global registration is an important 

step because without it each point cloud would be in its own coordinate frame. To 

achieve this global registration we first find out the correspondences between the 

different cameras. This is achieved by recording the checkerboard pattern at different 

locations for each pair of adjacent camera as shown in Figure 4. The corners of the 

checkerboard provide the correspondences between two cameras are obtained using 

OpenCV, and in addition we also find the correspondences using SIFT [26]. The 

correspondences are estimated in RGB space and from depth to RGB mapping we 

obtain the correspondences between the point clouds. Once the correspondences 

between all adjacent cameras are found, one camera is selected as a reference camera 

and the correspondences are used as the starting point for the iterative closest point 

algorithm to find the rotation and translation transformations that maps one point cloud 

to the other. This transformation is found for each of two adjacent pairs and all cameras 

are mapped to a unified global coordinate system, which is coordinate frame of the 

reference camera. The global registration is a standard process and any relevant method 

can be applied for this step. In our work we used the Point Cloud Library (PCL) [27] 

because of its flexible data format (PCD) for storing point clouds. 
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Figure 4. Extrinsic calibration for Global Registration - Checkerboard as 
recorded from three cameras. Corners from the checkerboard are used as 

some of the initial correspondences for the Iterative Closest Point method for 
the Global Registration 

Global registration gives a unique pair of rotation and translation transformations for 

each camera and it is applied to the corresponding depth data. The final result of the 

global registration is a 3D point cloud for each frame of the animat ion. Additionally, 

using the mapping between color and depth cameras, we also associate the color value 

with each point. Thus we obtain a dynamic 3D representation of a real world scene. 

This representation is not time coherent because each frame is independent of the other. 

Examples of a 3D point cloud from one of the cameras can be seen in Figure 1(b) and 

5(a). 

Final step before getting a dynamic 3D point cloud is to segment the scene so that the 

real-world actor can be separated from the background. We do the background 

subtraction using the depth data. First the acquisition room is recorded without the 

human actor and later the depth information of the background is used to subtract the 

real-world actor from the background. The result of Global registrat ion and 

segmentation can be seen in Figure 1 and Figure 5. 

We also use data from Ahmed, et al., [6], which have a 3D visual hull representation 

at every time step and a corresponding color information. We extract the point cloud 

from the visual hull representation and also extract the time-coherent representation of 

dynamic 3D content from the data as explained in the next section.  
 

6. Spatio-Temporally Coherent 3D Animation 

As explained in the previous section, the dynamic three-dimensional content obtained 

through either one or more Microsoft Kinects or a traditional multi -view video 

acquisition system completely lacks any temporal coherence. There is no connectivity  

from one point cloud to the next for each consecutive frame of the video. Thus the data 

is not very useful in extracting any meaningful information about the scene other than 

simple visualization. Even it is not visually pleasing, as the position of the points 

change so quickly from frame to frame that it distracts the viewer from the actual 

animation. We therefore propose a new method to extract spatio-temporal coherence 

information from this dynamic 3D point clouds using both geometric and color 

information. This coherence info will be found between two consecutive frames over 

the course the animation. Using the coherence information we aim at tracking a 3D 

point cloud throughout the entire animation. 
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Figure 5. One frame of the dynamic 3D point cloud with RGB mapping can be 
seen in (a). (b) Shows the merged point clouds from all cameras after Global 

registration and Segmentation 

The first step in this method is to extract the orientation or the normal at every point 

of all 3D point clouds. To approximate the normal, we find the normal to the plane that 

is tangent to the surface at that point. Since we have a point cloud, there is no actual 

surface, rather we choose 10 nearest points to fit a plane and then find normal to that 

plane to find the orientation for each point. We treat normal at each point as one of the 

feature of that point. Henceforth, for a 3D point x at frame i, the normal of that point 

will be referred as N(xi). One way to match one point cloud to the next would be to just 

match the two points that have similar normals. This will mostly hold true as our 

animation is not very fast and at each frame we do not have a strong motion. But this 

relies on the assumption that each point has a completely unique orientation and 

therefore mapping from one frame to the next is trivial. In practice this is a false 

assumption because for every three dimensional object there are planar regions where 

the orientation of all the points are the same and only using the orientation information 

to match two 3D point clouds can never work because of the ambiguity in one to many 

mapping from one frame to the next. 

To circumvent this ambiguity we propose to use another set of features using the 

color information. Since we know the mapping of the depth data to the color data, we 

can extract the color info at each point in the 3D point cloud. Thus, when matching two 

point clouds, in addition to the orientation, the color information is also matched to 

ensure that there is no obvious incorrect mapping of the point clouds. Henceforth, for a 

3D point x at frame i, the color of that point will be referred as C(xi). 

The color and orientation information can give us partial matching but it is still 

ambiguous as the actor can wear clothes of a uniform color. Therefore we introduce two  

more criteria to make sure that a point is not mapped to another point of the same color 

and the same orientation but at farther distance. Our data has two notions of distance: 

one obvious notion is the three-space distance between two three-dimensional points. 

This can be trivially found by finding the 3D Euclidean distance between two points. 

For a 3D point x at frame i the Euclidean distance of that point with the other 3D point 

at frame i + 1 will be referred as D(xi). The second novel notion of the distance which 

is one of the major contributions of our algorithm is to use SIFT [26] to find out the 

feature points in the 3D point cloud. SIFT is one of most well knows feature descriptors 

in the image space which is invariant under affine transformation and varying lighting 

conditions. Using SIFT we find feature points in the color image and consequently 

using the mapping between depth and RGB images, we find the feature 3D points for 
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each frame. The SIFT matching is then used to find out the correspondences between 

the feature points at each frame. Once we have feature point matches identified, we 

associate a distance to each point with respect to its nearest feature point. For a 3D 

point x at frame i the distance to its nearest feature point will be referred as F(xi). 

Assuming we are finding a match between two consecutive frames, e.g., i and i + 1, 

we find the match for every 3D point x at the frame i with the 3D points at the frame i + 

1 using the following matching function: 

 

(6) 

 

Where xi+1 is the 3D point at the frame i+1, which is used to evaluate the equation 6. 

M(xi) is the matching distance, 1.0-N(xi)-N(xi+1) is the angular difference in orientation, 

with the similar orientation resulting in a smaller value. ||C(xi)-C(xi+1)|| is the absolute 

difference of color components between (R, G, B) components of two 3D points. ||F(xi)-

F(xi+1)|| is the absolute difference in the distance to the nearest feature point and D(xi) is 

the 3D Euclidean distance between xi and xi+1. The four parameters         are 

weighting parameters resulting in a convex combination of four terms, i.e. their sum is 

equal to 1 and their value is between 0 and 1. For our method we set           
                . These values are chosen based on the reliability criteria for each 

of the term. We give most weight to the difference to the nearest feature point because 

it is directly derived from SIFT and has a higher degree of accuracy. Least weight is 

chosen for D(xi) because in principal we cannot penalize the difference in 3D Euclidean 

position because the change in position is a fundamental property of an animation. This 

term is only used to preserve the drift and avoid the local minima in case multiple 

points at frame i + 1 match the feature distance, orientation and the color. We choose 

the matching point xi+1 as the one with the minimum value of the convex combination. 

If two points result in the same value of M(xi), then the point with smaller ||F(xi)-

F(xi+1)|| is chosen as the matching point. In the unlikely case of same values for M(xi) 

and ||F(xi)-F(xi+1)||, 1.0-N(xi)-N(xi+1) is used to find the matching point, followed by 

||C(xi)-C(xi+1)|| and D(xi). 

 

7. Results 

To test our software-synchronized multi-view RGB acquisition system, we record a 

number of sequences using different number of cameras. Each sequence is between 100 – 200 

frames long. The sequences range from a simple walking motion to the fast boxing motion. 

Results from our acquisition system can be seen in Figure 1, 6(right) and also in the 

accompanying video [28]. It can be seen that the dynamic depth maps are well aligned and 

the RGB image are also mapped accurately to the point cloud. As shown in the figure and the 

video, our method is able to reconstruct a full 360
o
 3D animation of even the faster motion to 

a great degree of accuracy. We do not observe any drift between the cameras even though the 

acquisition setup is not hardware synchronized. We validated our synchronous capture 

approach by deliberately recording a sequence in which one camera was set to record with the 

standard asynchronous acquisition interface. This resulted in a temporal misalignment as can 

be seen in Figure 6(left). Our results and validation show that our system is capable of 

synchronous capture of RGB-D data from multiple Kinects, which can be used for 3D 

animation reconstruction. 
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Figure 6. Image on the left shows the acquisition drift (circled) if the software 
synchronization is not employed. Next two images show the result of 

synchronous acquisition with the alignment of the dynamic point clouds. Last 
image shows the fusion of both RGB and depth data 

Our acquisition system currently requires a dedicated machine for each Kinect. Our 

acquisition uses machines with Intel Core i5 2.4 GHz with 4 GB of RAM running Windows 7 

64 bit. We believe that this is not a significant limitation of our acquisition system because 

most of the comparable acquisition systems use similar arrangement. Using Microsoft's 

current SDK for Kinect it is possible to connect multiple Kinects to a single machine albeit 

using different USB hubs, but we have not yet tested this setup. If multiple Kinects are 

attached to a single machine then a new study would be required to study the impact of 

processing cost and other input / output overheads. We believe our acquisition system 

provides a good solution in terms of robustness, efficiency and scalability, as a new camera 

can easily be added to the system without compromising the acquisition as long as it is 

connected to a dedicated machine. 

To test our spatio-temporal 3D animation reconstruction method we use two types of data 

sets. The first data set is recorded through our software-synchronized acquisition system. We 

also use data from Ahmed, et al., [6], which is captured using eight color cameras with an 

acquisition system synchronized by the dedicated hardware. Figure 7(a), qualitatively shows 

two consecutive frames without time coherence, whereas Figure 7(b) shows the same two 

frames with time coherence. As can be seen in Figure 7(a) there is no connectivity between 

the two frames, e.g., feet of the actor have different shape. Using time coherence we can 

visualize the animation with a single 3D point cloud tracked over the sequence, which can be 

seen in Figure 7(b). More results can be seen in the accompanying video [28]. It can be 

observed that our method can reliably track the point cloud from one frame to the next and 

consequently over the course of the animation. This results in generating a 3D animation that 

is temporally smooth. 

In order to quantitatively validated the proposed method, we perform 3D animation 

reconstruction while measuring the silhouette-based overlap and also by comparing the 

bounding box between the spatio-temporally consistent animation and the non-coherent 

animation. For the silhouette based overlap, we render the spatio-temporally consistent point 

cloud from the viewpoint of one of the input cameras. Once a 3D point cloud is projected 

onto a 2D image plane, calculating the silhouette of projected 2D points is trivially limited to 

finding their convex hull. We render both the original non-coherent 3D point cloud and the 

spatio-temporally coherent 3D point cloud from the same camera view and extract their 

silhouettes. We overlap the two silhouettes and count the number of pixels that do not overlap 

for each frame. On average we found that our spatio-temporally coherent 3D animation 

differs only by 2.8% in terms of silhouette overlap comparison. The graph of silhouette based 
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overlap error can be seen in Figure 8. It can be seen that even though the error increases with 

time, which is expected for every tracking based algorithm it remains really low and does not 

deter the quality of our 3D animation that can be seen in the accompanying video [28]. For 

the bounding box based comparison, we compute the bounding box for the non-coherent 3D 

point cloud and count the 3D points in the spatio-temporally coherent point cloud that are not 

inside this bounding box. This measure also provides a good quantitative analysis in 

analyzing the goodness of our tracking algorithm and its spatio- temporal consistency. It can 

be seen in Figure 9, that on average the bounding box consistency remains less than 2% of the 

non-coherent animation. 

Our method is subject to some limitations. Most notably, we only employ one feature point 

in our matching function (eq. 6). This feature point is the nearest in terms of 3D Euclidean 

distance under whereas ideally one should look for more than one nearest feature points 

relative to the geodesic distance, as shown by Ahmed, et al., [6]. We circumvent this issue by 

only using only one nearest feature point in terms of 3D Euclidean distance, which given the 

high number of feature points does not pose any issues for our method. Other approach would 

be to find the body segments and use multiple feature points from the nearest segments. 

Additionally our method relies on empirical justification for the steps that require heuristics, 

e.g. the choice of the values of coefficients in the objective function (eq. 6). Employing 

machine learning techniques to estimate proper values of parameters may well circumvent 

these heuristics. In the future work, we would like to explore this area of research. 

Despite the limitations, we show that using multiple Microsoft Kinect cameras it is 

possible to capture synchronized dynamic 3D point clouds with the color information. We 

also show that given a dynamic three-dimensional content representation in the form of 

dynamic 3D point clouds with color information, it is possible to reconstruct spatio-

temporally coherent 3D animation of a real-world object. 
 

 

Figure 7. (a) Shows two consecutive frames from a dynamic 3D point cloud 
without any time coherence. (b) Shows same two frames tracked using the 

time coherence. For example, at the feet, the point cloud changes dramatically 
from one frame to the next without the time coherence, whereas in (b) the point 

cloud remains consistent 
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Figure 8. The silhouettes overlap error measure for each time step of the 
spatiotemporal coherent animation 

 

 

 

Figure 9. The bounding box error measure for each time step of the spatio-
temporal coherent animation 

 

 

8. Conclusion 

We presented (1) a system for software-based synchronized 3D video acquisition and 

(2) a method for spatio-temporally coherent 3D animation reconstruction of a real-

world scene from the dynamic RGB-D data. We showed that such a representation 

could be reconstructed using one or more Microsoft Kinect cameras. Microsoft Kinect 

provides both color and depth information of a scene. We combine multiple Kinect 

cameras and capture a complete three dimensional dynamic scene. Our system is 

scalable and can be used with data obtained from any number of cameras. Our spatio-

temporally coherent reconstruction method can be applied to any three-dimensional 

representation of the data, as long it is comprised of 3D point clouds with color 

information. We demonstrated this by applying our method on the data obtained using 
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multiple acquisition setups, and in future we would like to extend our work to increase 

the robustness of our tracking method and explore the possibilities in  the area of scene 

analysis and dynamic surface reconstruction. 
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