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Abstract 

Computer-aided diagnosis (CADx) is usually used as a second opinion by the radiologists. 

Improving CADx increases the treatment options and a cure is more likely. The main 

objective of this research is to introduce a new method for feature extraction in order to build 

a CADx model to discriminate between cancers, benign, and healthy parenchyma. For 

feature extraction, we use both human features, which are obtained by Digital Database for 

Screening Mammography (DDSM), and computational features, and we propose a new 

feature extraction method called Square Centroid Lines Gray Level Distribution Method 

(SCLGM). The experimental results are obtained from a data set of 410 images taken from 

DDSM for different types. Our method select 31 features from 145 extracted features; 18 of 

the selected features are from our proposed feature extraction method (SCLGM). We used 

both Receiver Operating Characteristics (ROC) and confusing matrix to measure the 

performance. In training stage, our proposed method achieved an overall classification 

accuracy of 96.3%, with 92.9% sensitivity and 94.3% specificity. In testing stage, our 

proposed method achieved an overall classification accuracy of 89%, with 88.6% sensitivity 

and 83.3% specificity. 

 

Keywords:  Breast Cancer, Mammogram, Feature Extraction, Feature Selection, 

Computer Aided Diagnosis, Genetic Algorithm, Forward Sequential 
 

1.  Introduction  

Breast cancer is the most common form of cancer among women and is the second leading 

of death after lung cancer. The American Cancer Society [1] estimates that in 2011 

approximately 230,480 women in the US will be diagnosed with tumor breast cancer, and 

about 39,520 women will die from breast cancer. Early detection and diagnosis of breast 

cancer increase the treatment options and a cure is more likely. One of the most effective 

tools for early detection of breast cancer is the mammography.  

Visual interpretation of a mammogram is a tedious and fatiguing process that generally 

requires a magnifying glass.  

The abnormality may be overlooked in a way that for each thousand cases we have only 

three to four cancerous. So, the probability of false negatives is high. Here the radiologists fail 

to detect 10% to 30% of cancers. Two thirds of these false negative results are due to missed 

lesions that are evident retrospectively [2].  

Also, a significant level of false positives were reported, that the positive predictive value 

is less than 35% which means a high proportion of biopsies are performed on benign lesions. 

Avoiding benign biopsies would spare women anxiety, discomfort, and expense. 
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Two systems have been developed to help the radiologists in reading mammogram. The 

first system is computer-aided detection (CADe) which has improved radiologists’ accuracy 

of detection of breast cancer [3, 4]. The second system is computer-aided diagnosis (CADx) 

which classifies the detected regions into malignant or benign categories to help the 

radiologists in recognizing the next step, biopsy or short-term follow-up mammography. Most 

diagnosis algorithms of CADx consist of one stage with five steps: preprocessing, 

segmentation, feature extraction, feature selection, and classification. It begins with a lesion 

region or a region of interest (ROI) that contains the abnormality and outputs the likelihood of 

malignancy or a management recommendation.  

The performance of CADx depends more on the optimization of the feature selection than 

the classification methods. However, the feature space is very large and complex due to the 

wide diversity of the normal tissues and the variety of the abnormalities. Using excessive 

features may degrade the performance of the algorithm and increase the complexity of the 

classifier. For this, the main goal of this research is to evaluate methods for feature extraction, 

introduce other feature extraction techniques and enhance feature selection method to have 

best feature that guarantee the enhancement of classification with less dimension.  
 

2. Related Work 

The density tissues, which surround and mask the suspicious region, makes segmentation 

step very difficult. To overcome this problem we have to enhance feature extraction technique 

in order to obtain a large space of good features from which we could select discriminative 

features to improve the quality of lesion classification. One of the feature extraction 

techniques that are mostly used in literatures is Gray-Level Co-occurrence Matrix (GLCM). 

In [17, 18] authors used five co-occurrence matrices statistics extracted from four spatial 

orientations, with θ ϵ (0, π/4, π/2, 3π/4) and pixel distance (d=1) to detect masses in 

mammograms. The extracted features won't be able to be discriminative with cases of cancers 

due to their non-uniform shape and margins. So our contribution is to increase the number of 

spatial orientations and increase the range of pixel distances.  

Blot [9] compares the GLCM of the local ROI and compare it with the mean GLCM 

obtained from a number of equal size areas surrounding the local ROI. The purpose is to 

compare the difference between these two matrices obtaining a probability estimate of the 

abnormal image structures in the ROI. This method will have bad results if ROI is surrounded 

by normal parenchyma with high gray level value such as nipple and lactation ducts. 

A new approach of texture classification of 3-D Ultrasound (US) breast diagnosis using run 

difference matrix (RDM) with neural networks is developed in [10]. The accuracy reaches 

91.9%. The results of this method are good, but not highly guaranteed because the used 

dataset is small; it includes just 54 malignant and 161 benign tumors. 

Generally, the greater the number of features is, the higher the recognition rate will be. 

However, when the number of features is large but the number of training samples is small, 

features that have little or no discriminative information weaken the performance of 

classifiers. This situation is typically called the curse of dimensionality [11], in this situation 

we have to choose a feature subset yielding the highest performance.  

It is very difficult to predict which feature or feature combinations will achieve better in 

classification rate. We will have different performances as a result of different feature 

combinations. Relatively few features used in a classifier can keep the classification 

performance robust [12]. Therefore, we have to select an optimized subset of features from a 

large number of available features. Two major methods for feature selection have been 

employed for CADx in mammography [13]:  Stepwise feature selection and Genetic 

algorithm (GA). Stepwise feature selection are used in [14, 15, 16].  
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In [17], a feature selection method using stepwise Analysis Of Variance (ANOVA) 

Discriminant Analysis (DA) is used for classifying mammogram masses. This approach 

combines the 17 shape and margin properties of the mass regions and classifies the masses as 

benign or malignant. In ANOVA DA the discriminating power of each feature is estimated 

based on grouping class variable. Principal component analysis (PCA) does feature extraction 

but it doesn’t consider the grouping class variable. The experiment is performed on 300 

DDSM [6] database mammograms.  

The main idea is to start with empty selected feature pool, and then at each step followed, 

one available feature is added to or removed from the selected feature pool with respect to the 

result of analyzing its effect on a selection criterion. 

Wei [18], provide five selection criteria: (1) the minimization of Wilks’ lambda, (2) the 

minimization of unexplained variance, (3) the maximization of the between-class F statistic 

value, (4) the maximization of Mahalanobis distance, and (5) the maximization of Lawley-

Hotelling trace. Most studies in mass detection [15, 16, 19] employed the minimization of 

Wilks’ lambda as the selection criterion, which is defined as the ratio of within-group sum of 

squares to the total sum of squares.  

In [16], the authors test all available selection criteria. A set of 340 features is reduced to 

41 features with the stepwise feature selection. Stepwise feature selection techniques based on 

sequential search method and the main disadvantages of these techniques is it’s availability of 

falling in local minima. Veldkamp [20] used cluster shape features, cluster position features, 

and distribution features for the classification of calcifications. They used a sequential 

forward selection procedure for feature selection. 
 

3. Methodology 

When radiologists need to diagnose a mass in mammogram, they look for some significant 

features that discriminate malignant from benign masses. These visual features -which are 

based on shape, size and margin - could have different interpretation based on radiologist’s 

opinion and experience. To solve the problem of these different interpretations, more 

discriminative features should be extracted. Computer provides multiple methods for 

obtaining these discriminative features, which are done in two steps: 

Feature extraction: this step is responsible for extracting all possible features that are 

expected to be effective in diagnosing a ROI in mammogram, without concerning the 

disadvantages of excessive dimensionality. 

Feature selection: this step is responsible for reducing the dimensionality by removing 

redundant features and searching for the best significant features to avoid the curse of 

dimensionality. 
 

3.1 Feature Extraction 

In [21] we use and modify two of known methods for computational feature extraction, 

which are Spatial Gray Level Dependence Method (SGLDM) and Run Difference Method 

(RDM) to enhance their power in describing textural characteristics of the mass patterns.  

Table 1 shows the extracted features by using the two mentioned methods. More details 

about SGLDM and RDM methods are given in our previous work [21]. 
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Table 1. The Extracted Features Obtained in our Previous Work [21] 

Spatial Gray Level Dependence Method (SGLDM) features 
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Run Difference Matrix (RDM) 
Large difference 

emphasis (LDE):         ∑    (    )   (      )
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Human Features 
Age                   3.29 

Density               3.30 

 

In this paper we propose a new feature extraction method; we call it “Square Centroid 

Lines Gray Level Distribution Method (SCLGM)”. We use the smallest square that includes 

the segmented mass with zero background. As shown in Figure 1, the relations between the 

pixels of each centroid line provide discriminative information about the mass type. 

 

 

Figure 1. Centroid Lines Pixels Provide Discriminative Information About the 
Mass Type 

In our method, we choose four centroid lines (Ci): C1 at θ = 0, C2 at θ = π/4, C3 at θ = π/2 

and C4 at θ = 3π/4, which are the lines that pass through the square’s center point. We 

represent the gray level points at each centroid line by Cgi: 
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 } 

3.29 

After defining Cgi, and as we do in SGLDM, a set of statistics need to be computed before 

extracting textural features. In the following, we compute these statistics and extracted 

textural features: 
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1- Mean: which measure the average of the gray level of each line (Cgi): 
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2- Variance and its difference vector: variance is used to measure the variability of the 

gray levels for each central line around their mean value: 
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As a result, we have four variance values one for each line, then we compute the 

differences between these variances as a vector     

   (|     |                               ) 3.32 

Table 2 shows all extracted features using equations 3.31 and 3.32 based on our proposed 

feature extraction method SCLGM. 

 
Table 2. The Extracted Features for Variance and its Difference Vector using 

SCLGM 
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Mean absolute deviation of 

variance:     
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3- Standard deviation (δ) and its difference vector (Δδ):  
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Table 3 shows all extracted features using equations 3.49 and 3.50 based on our proposed 

feature extraction method SCLGM. 

 

Table 3. The Extracted Features for Standard Deviation and its Difference 
Vector using SCLGM 

Average of Standard deviation: 
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4- Mean absolute deviation (MAD) and its differences  MAD is a robust measure of 

the variability of gray level distribution around the mean, for each centroid line i we 

compute the MAD as follows: 
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 The differences of MAD could be computed as follow: 

     (|         |                               ) 3.68 

Table 4 shows all extracted features using equations 3.67 and 3.68 based on our proposed 

feature extraction method SCLGM. 

 

Table 4. The Extracted Features for Mean Absolute Deviation and its Difference 
Vector using SCLGM 
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Maximum of difference of 
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5- Skewness (SK): skewness is a measure of the asymmetry of the gray level distribution, it 

is computed by the following formula: 
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Skewness differences could be computed as follow: 

    (|       |                               ) 3.86 

Table 5 shows all extracted features using equations 3.85 and 3.86 based on our proposed 

feature extraction method SCLGM. 
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Table 5. The Extracted Features for Mean Absolute Deviation and its Difference 
Vector using SCLGM 

Average of SK: 
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6- Kurtosis (K): Kurtosis is a measure of whether the gray level distribution is peaked or 

flat relative to a normal distribution. 
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Kurtosis differences vector could be computed as follows: 

   (|     |                               ) 3.104 

Table 6 shows all extracted features using equations 3.103 and 3.104 based on our 

proposed feature extraction method SCLGM. 

 
Table 6. The Extracted Features for Mean Absolute Deviation and its Difference 

Vector using SCLGM 
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The pseudo code description of the proposed SCLGM technique is given in Algorithm 

1. 

The mentioned four centroid lines are extracted and represented by four vectors Cθ as 

detailed in steps 9-15 of Algorithm 1, each vector contains all points with nonzero gray level 

value. After extracting the vectors of centroid lines, we compute 11 measures for each vector 

as shown in steps 16-26. Then we extract the SCLGM features in 28-30 steps.  

 

3.2 Feature Selection 

For feature selection we use the same method that we proposed in [21], this method 

demonstrated in Figure 2, we apply feature selection methods 10 times, each time the results 

are slightly changed from previous. Then, the results are combined and ordered with respect 

to both the number of occurrences and the accuracy values that are obtained by criteria or 

fitness function. Algorithm 2 describes the steps of feature selection. 

As shown in Algorithm 2, the selected features are represented by four sets: 

1- Sequential Forward Features (SFF): which are the features selected by 

Sequential Forward Selection technique. 

2- Genetic Algorithm Features (GAF): which are the features selected by 

Genetic Algorithm technique. 

3- Union of Selected Features (USF): USF contains the union of features of SFF 

and GAF. 

4- Intersection of Selected Features (ISF): represents the shared features 

between SFF and GAF. 

 

Algorithm 1: The pseudo code of the proposed SCLGM technique. 

Purpose: 
1. Extracting 75 features from the mammogram images. 

Input: 
2. Enhanced segmented objects with black background (I). 

3. The used direction for co-occurrence θ = {0°, π/4, π/2, 3π/4}. 

Output: 
4. The SCLGM extracted features vector of the input image I. 

Procedure: 
5. begin  

6. for each angle θ do 

7.      
8.        ((   )  )  //image side center 

9. for points x=-c to c do 

10.      ( )     
11.      (   )          

12.        
13.          (   )  
14.         
15. end loop; 

16.         (  )  //Compute the following measures 

17.             (  )  
18.                       (  )  
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19.                      (  )  
20.                                (  )  
21.        (  )  
22.                  (  )  
23.             (  )  
24.                       (  )  
25.              (  )  
26.                        (  )  
27. end loop; 

28. for each measure vector Mi do 

29.               
       (       (  )        (  )        (  )      (  )  
       (  )                 (  )    (  )         (  ))   

30. end loop; 

31.                       
32.       

 

Figure 2. Feature Selection Technique 
 

4. Experiments 

To enable direct comparison with our previous work [21], we used the same datasets, 

methodology and implementation environment. Table 7 describes the used datasets. 

 

Algorithm 2: The pseudo code of the proposed feature selection technique. 

Purpose: 
1. Selecting the best and discriminative features from the extracted set. 

Input: 
2. 145 extracted features. 

Output: 
3. The selected features are represented by the following sets: SFF, GAF, USF, and ISF. 

Procedure: 
4. begin  

5. for i =1 to 10 do 

6.          (
                         

                  
)   

7.          (                           )  
8. end loop; 

Sequenti

al FS 

GA 

FS 

Selected 

Features Input 

Features 

10 times 

10 times 
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9.          (       )  
10.              (       )  
11.                         
12.       

 

Table 7. The Experiments are Done with Three Datasets 

Dataset # Cancers  # Benign # Normal Totals 

Training dataset  126 105 179 410 

Testing dataset-1 35 42 23 100 

Testing dataset-2 60 14 26 100 

 

Figure 3 shows three cases representing three types of mammogram: normal, benign and 

cancer, downloaded from DDSM.  

As mentioned before, we extract 145 features, some of these features are obtained from 

DDSM database –human features- and the others are extracted mathematically. 

 

 

 

Figure 3. An Example for Each Normal, Benign and Cancer 
 

For feature selection, we run forward sequential feature selection for ten times and we 

choose SVM classification algorithm -for its simplicity and high possibility of finding a 

global minimum- as a classifier in the criteria function of the forward sequential method. We 

use GA as a randomized feature selection method with the following parameters: 

- The population size (P) which is the number of chromosomes in each generation; we 

use a random value for population size computed by the following Matlab formula: 

P=round ((L-1)*rand (DF, 200*DF)) + 1; 5.1 

Where L is the number of input features, DF is the desired number of selected features; 

we use its value in range of 10 to 15.  
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- Max_Generations = 200, Max_Generations stands for the maximum number of 

generations and is used as a termination criterion. The GA will be stopped before the 

generated number of chromosome populations exceeds the Max_Generations, and the 

top scoring chromosome will be returned as the search’s answer; 

- The generations with no change in highest-scoring (elite), this parameter is used as a 

second termination criterion. It represents the number of generations that may pass 

with no changes in the elite chromosome before that elite chromosome will be returned 

to as the search’s answer. In our method we set elite equal to one. 

We apply GA methods 10 times for feature selection; the obtained selected features are 

ranked with respect to the number of occurrences of each feature in the 10 rounds and its 

criteria-or fitness- function. Table 8 shows the number of occurrences of each feature in the 

10 rounds. 

 After feature selection we start classification phase using the Feed-Forward Artificial 

Neural Network (FFANN) with back-propagation, which is one of the most popular 

techniques, as a classifier. We use three levels to represent the forward neural network, the 

input layer with a number of neurons equal to the number of selected features, the output 

layer with a number of three nodes to represent the target classes –normal, benign and cancer-, 

and a hidden layer. 

We use “Log-sigmoid” for transfer function, which is used to calculate the layer's output 

from its net input as follow: 

      ( )    (     (  ))⁄  5.2 

To avoid falling in local minima and to made the result independent on the initial values, 

we use 10-fold cross validation. 

 

Table 8. The Selected Features and the Number of Times it is Selected by Each 
Technique 

 Forward 

Sequential 
Genetic Algorithm 

x145 10 10 

x143 9 10 

x135 7 8 

x76 5 5 

x142 5 10 

x59 4 10 

x64 2 10 

x103 1 2 

x126 1 2 

x43 1 10 

x128 1 10 

x33 1 10 

x96 1 10 
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x120 2 2 

x132 0 3 

x144 0 9 

x61 0 10 

x31 0 10 

x139 3 0 

x138 2 0 

x80 2 0 

x114 1 0 

x22 1 0 

x69 1 0 

x44 1 0 

x60 1 0 

x39 1 0 

x16 1 0 

x98 1 0 

x84 1 0 

x82 1 0 

 

We implement the FFANN four times, each time we use one of the four sets that are 

obtained in feature selection stage, which are SFF, GAF, USF, and ISF. In the following we 

preview the classifications results using mentioned performance metrics: 

  

1- Classification using SFF 

The total number of the features selected by forward sequential technique is 27 features; 

we use these features as input to the FFANN with 29 neurons in the hidden layer and three 

neurons at the output layer. 

 

Training stage: Figure 4 shows the ROC curve and the Confusion matrix of feed-forward 

ANN classifier in training stage. When we have a look on this figure we can judge that we 

have a very good classification with high performance as shown by the largest area under the 

ROC curve. The Confusion matrix shows that: 

1- From 126 cancer cases, 105 are classified truly as cancer while the remained 21 are 

classified as benign,  

2- From 105 benign cases, 89 are classified truly as benign, and 16 cases are classified 

in false as a cancer, 

3- And 179 normal cases are classified truly as normal. 

The overall classification accuracy is 91%, with 83.33% sensitivity and 84.7% specificity. 
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Figure 4. The ROC Curve and the Confusion Matrix Analysis of FFANN 
Classifier for Training using SFF Features 

 

Test stage: As mentioned before, we use two different and difficult datasets for testing the 

model obtained in training stage. The difficulties of the used test datasets lead to decrease the 

accuracy of classification. With dataset-1 the accuracy is 82% as shown in the confusion 

matrix in Figure 5, and with dataset-2 the accuracy is 86% as shown in the confusion matrix 

in Figure 6. 

 

 

Figure 5. The ROC Curve Analysis and the Confusion Matrix of Testing 
Dataset-1 using SFF Features 

 

2- Classification using GAF: GA method selects 18 features as the best for the 

classification; we use these features as input to the FFANN with 20 neurons in the hidden 

layer and three neurons at the output layer.  

Training stage: The classification performance is demonstrated by the ROC curve and the 

Confusion matrix shown In Figure 7, as shown the area under ROC curve is large like that in 

Figure, which means that the performance here will be near that in case 1. The Confusion 

matrix, could be interpreted as follow: 

1- From 126 cancer cases, 103 are classified truly as cancer while the remained 23 are 

classified as benign,  

2- From 105 benign cases, 90 are classified truly as benign and 15 cases are classified in 

false as a cancer, 

3- And 179 normal cases are classified truly as normal. 

The overall classification accuracy is 90.7%, with 82% sensitivity and 85.7% specificity. 
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Figure 6. The ROC Curve Analysis and the Confusion Matrix of Testing 
Dataset-2 using SFF Features 

 
Testing stage: After training we test the created model using two different and difficult 

datasets. As shown in Figure 8, the accuracy with dataset-1 is 84%. In cancer cases, 31 of 35 

cases are classified truly as cancer, 2 as benign and 2 as normal. In dataset-2, the accuracy is 

86%, which is better than that in dataset-1, see Figure 9. 

 

3- Classification using ISF 

Shared features are the features that are selected by both sequential and GA techniques; the 

number of these features is 13 features. We create a FFANN with 13 neurons for input, 15 

neurons for the hidden layer and 3 neurons for output layer. 

Training stage: Figure 10 shows the ROC curve analysis the confusion matrix for FFANN 

classifier with ISF features: 

1- 112 of 126 cancer cases are classified truly as cancer while the remained 14 cases are 

classified as benign.  

2- With 105 benign cases, 88 are classified truly as benign and 17 cases are classified in 

false as a cancer, 

3- And 179 normal cases are classified truly as normal. 

 

 

Figure 7. The ROC Curve Analysis and the Confusion Matrix of FFANN 
Classifier for Training using GAF Features 
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Figure 8. The ROC Curve Analysis and the Confusion Matrix of Testing 
Dataset-1 using GAF Features 

 

 

Figure 9. The ROC Curve Analysis and the Confusion Matrix of Testing 
Dataset-2 using GAF Features 

 

The overall classification accuracy is 92.4%, with 88.9% sensitivity and 83.81% specificity. 

As shown the results is better than that obtained with either GAF or SFF.  

Test stage: As shown in Figure 11, the accuracy with dataset-1 is 86%. In cancer cases, 31 

of 35 cases are classified truly as cancer, 2 as benign and 2 as normal. In dataset-2, the 

accuracy is 89% as demonstrated in Figure 12. In general the accuracy of classification with 

testing datasets is better with ISF than with either SFF or GAF. But it is less than the accuracy 

that we obtained with training dataset. 

 

4- Classification using USF 

We have 31 features as a total number of the selected features by each of sequential and 

GA techniques. In the following we show the experiment results with training and testing data 

set using USF. 

Training stage: Figure 13 shows the ROC curve of the classification using USF, the area 

under the curve is so small which means that we have the best accuracy. The total accuracy 

reaches 96.3% as shown in the “all” confusion matrix in Figure 13; in which we have: 
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1- 117 of 126 cancer cases are classified truly as cancer while the remained 9 cases are 

classified as benign,  

2- 99 of 105 benign cases are classified truly as benign while 6 cases are classified in 

false as a cancer, 

3- And 179 normal cases are classified truly as normal. 

 

  

Figure 10. The ROC Curve Analysis and the Confusion Matrix of FFANN 
Classifier for Training using ISF Features 

 

 

Figure 11. The ROC Curve Analysis and the Confusion Matrix of Testing 
Dataset-1 using ISF Features 

 
So with union features we have the best performance, but it takes more time. The overall 

classification accuracy is 96.3%, with 92.9% sensitivity and 94.3% specificity.  

Test stage: As shown in Figure 14, the accuracy of the classification with dataset-1 is 88%. 

In cancer cases, 31 of 35 cases are classified truly as cancer, 2 as benign and 2 as normal. 

Figure 15 shows the confusion matrix and ROC curve for the classification with USF, The 

accuracy of the classification is 89%, it is better than that with SFF, GAF, or ISF. 
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Figure 12. The ROC Curve Analysis and the Confusion Matrix of Testing 
Dataset-2 using ISF Features 

 

 

 

Figure 13. The ROC Curve Analysis and the Confusion Matrix for FF-ANN 
Classifier using USF Features 

 

 

Figure 14. The ROC Curve Analysis and the Confusion Matrix of Testing 
Dataset-1 using USF Features 
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In, Table 9, we show a simple comparison in accuracy between our method and others. 

Actually, direct comparison of these systems is so difficult because most of these studies done 

on different databases and different cases. 

 

 

Figure 15. The ROC Curve Analysis and the Confusion Matrix of Testing 
Dataset-2 using USF Features 

 

 

Table 9. A Simple Comparison in Accuracy between our Method and Others 

Author Training dataset 

size accuracy 

Pohlman[8] 51 76%-93% 

Hadjiiski [22] 348 81% 

Jiang [7] 211 72.7% 

Surendiran [27] 300 87% 

Zheng [5] 3000 87% 

Our previous work [21]  410 87% - 94.6% 

Proposed method 410 89% - 96.3% 

 

5. Conclusions and Future Work 

We propose a new feature extraction method. We call it: Square Centroid Lines Gray level 

distribution Methods (SCLGM). By choosing four centroid lines we compute six 

mathematical measures, which we use to extract 79 features. To enable direct comparison 

with our previous work [21], we used the same datasets, methodology and implementation 

environment. The total number of the extracted features is 143, and by using feature selection 

techniques we selects 31 features, 18 of the selected features are from our proposed feature 

extraction method (SCLGM). The Results were encouraging and if we compare the results 

with that in our previous wok [21], we find that the accuracy enhanced by 2%. 

The performance could be enhanced more and more by extracting and selecting the best 

and the most discriminative features so for future work we suggest the following: 

 Here in our thesis we use gray level region grow methods for segmentation, and it 

does well, but not with ill-defined cases. So enhancing segmentation methods 

will be one of our future works. 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 6, No. 1, February, 2013 
 

 

35 

 

 Enhancing our new proposed feature extraction technique SCLGM by finding 

more measures to extract more features will be one of our future works. 

 We apply SCLGM on mammograms with mass types. In the future work we will 

apply it on the calcification cancer type, and it will extract a discriminative 

feature and will do best. 

 After feature extraction we have to enhance the feature selection method, as 

shown in our experiments the selected features play the main role in enhancing 

the classifications performance. 

 Finally, we should do comparison between different classifiers’ methods. 
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