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Abstract 

This paper presents a detailed study of human body microwave radiation by methods of 

stochastic dynamics. Weak electromagnetic signals are received by a Dicke radiometer and 

their characteristics are investigated by statistical methods to exclude possible artifacts. The 

signals’ deterministic content is detected by several methods of stochastic dynamics, and 

multi-attractors in the radiometric signals are observed. A novel method of finding the 

Hausdorff dimensions in the signals is proposed. The number of attractors and 

characteristics of their dimensions in each signal is found by means of the cluster analysis 

technique. These attractor dimensions of radiation of human bodies are compared with those 

of the background and radiometer noises, and the differences between these characteristics 

are noticed. Several hypotheses on the origins of this new interesting finding, including the 

physiological reasons, are proposed. 
 

Keywords: radiometer, time-delay state space reconstruction, attractor, fractal dimension, 

cluster analysis 
 

1. Introduction 

Microwave radiometry (MR) is the registration of the electromagnetic (EM) 

thermally-caused radiation of objects in natural conditions. The power of microwave 

radiation from an object is proportional to its absolute temperature, so the signal can be 

recalculated in temperature units (the brightness temperature). Usually, the power of 

thermal signals is below the noise level of conventional receivers, and a special kind of 

them, radiometers, is designed for reliable signal registration. The material and its 

spatial structure influence the radiation, allowing remote sensing of natural or artificial 

objects to estimate their temperature, spatial shapes, and inner material structure [1-4]. 

The detection of the cosmic microwave background radiation in the 60-s [5] was the 

first spectacular success of MR, and it remains nowadays the subject of extensive MR 

investigations [6]. Many applications of MR are in medicine, as this method allows 

obtaining the thermal images from the inside of body in contrast to the infrared imaging 

[4, 7-11]. Now some developments are within security applications, and several 

radiometer vision systems have been developed for detecting weaponry hidden beneath 

the clothing without additional illumination [12-15]. 

Several practically used types of radiometers are known, and one of them is based on 

the first design invented by R. H. Dicke [16]. It exploits an idea of periodical switching 

the receiver from antenna to the equivalent noise source which has temperature equal to 

that of the receiver. The radiometer eliminates the thermal noise of the hardware by 
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means of periodical deduction of this noise from the input signal. A square-law detector 

is used to produce an output signal which is proportional to the input power. Then it is 

integrated over a rather long period to smooth the fluctuations, digitized by an analog-

to-digital (A/D) converter, and registered as a time series in the memory of a computer.  

In real conditions, the radiometers register the sum of the brightness temperature and 

the temperature of background EM noise in the frequency band concerned. The 

influence of the background radiation, referred in literature on MR to as the radio 

frequency interference (RFI), is considered as an adverse effect, especially at low 

radiances of objects under investigation. A variety of special techniques were proposed 

to reduce this interference [17-19]. 

None of radiometers is free of residual time-dependent hardware noise if practically-

usable integration times are concerned. As a rule, the radiometer output signals show 

rather complicated dynamics, as the thermal and digital noise and the incoming thermal 

signals are nonlinearly mixed with each other in hardware. An account of basic spectral 

components of the noise in the microwave radiometric measurements is made in [20]. 

The resolution deterioration by the radiometer hardware noise can be partly reduced 

by instrumentation modification and application of special numerical procedures 

instead of expensive cooling of radiometers. Similarly, the undesirable influences of the 

RFI can be numerically reduced by appropriate processing of the output signals. To 

develop the algorithms for the improvement of the radiometer sensitivity and the RFI 

mitigation, the characterization of radiometers is essential. One of the possible 

approaches exploiting state-space reconstruction algorithms is considered in this work. 

Unlike the factor analysis applied in the radiometric signal processing [3], the signal 

state-space reconstruction allows finding dimensions of the phase space in which the 

time-dependent signal is embedded, rather than establishing a specific relationship 

between the signal and the independent variables of this phase space. The first 

applications of this technique in processing microwave signals date back to the late 80-s 

[21]. In those experiments, strange attractors of different dimensions were discovered in 

the signals scattered by various natural surfaces. Later, these fractal structures were also 

found in microwave signals coming from the troposphere. 

A state-space reconstruction method [22] was first applied to the human body 

microwave radiation in [23]. The results showed essential difference in some 

characteristics of the signals from each other and from those of white noise. In this 

paper, we present a more detailed study which allows finding and classing the 

deterministic noise nature by comparing the calculated parameters of signals, registered 

by the same one-channel Dicke-type radiometer as in [23], from eleven individuals, the 

reference 50-Ohm load, and the environment. 

A modified phase-space reconstruction algorithm, developed and implemented in this 

study, is applied to each of these chaotic signals to find the characteristics and origins 

of the deterministic chaos. This is important, firstly, for the future development of 

efficient filtering algorithms for the elimination of the noise caused by the radiometer 

hardware to further improve the radiometer sensitivity. Also, this technique can reveal 

the deterministic chaos in the background EM radiation and facilitate the RFI 

mitigation in MR. Finally, it is potentially helpful for the radiometric detection of 

human presence if patterns of the deterministic noise originating from the human body 

radiation prove to differ from those associated with other sources. 

Section 2 of this paper is devoted to some essential introductory material to the state-

space reconstruction algorithm and to methods of calculation of the fractal dimensions. 

Also, a modification of one calculation method is proposed there. In Section 3, 
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application of these techniques to a multi-attractor system is shown. Section 4 is 

focused on a detailed description of the algorithm of calculating fractal dimensions in 

the radiometric multi-attractor signal. In Section 5, the experimentation and 

implementation of the data-processing algorithm with emphasis on one particular data 

set are described. The results of application of this algorithm are analyzed in Section 6. 

Section 7 concludes the study. 

 

2. Techniques of Calculation of the Attractor Dimension 

Typically, the nonlinear time-dependent processes can be chaotic due to dynamic 

instability, but the latent determinism can still be detected using the state-space 

reconstruction algorithms, e.g., the technique proposed in [22]. These methods allow to 

consider a time series in an extended phase space and to find an attracting subset of this 

space (an attractor), around which the trajectories are concentrated and where they 

display oscillations of a certain type. If the deterministic chaos exists in a process in 

question, these procedures enable calculating the fractal dimension of the stochastic 

system’s attractor (the strange attractor). The nearest integer above the attractor 

dimension indicates the minimal number of variables which fully describe the 

stochastic dynamics of the nonlinear deterministic process. 

Consider a time series of N samples s(t) registered by the radiometer. It is constituted 

by a number of processes incorporated in components of vectors X(t) which are 

unknown due to the complexity of the source dynamics. The idea of the algorithm is to 

obtain a minimal set of independent or orthogonal components of X(t). The state-space 

reconstruction procedure consists in constructing an m-dimensional vector time series 

X(t) from the initial series s(t). 

To find these vectors, a technique based on a rigorous proof [24] is used. It replaces 

the original time series s(t) by its (m–1) time lags τ, which constitute the vector time 

series in an m-dimensional state space [29-31, 36-39, 41-48, 50-55]: 

            , ,..., 1i i i i it s t s t s t m       X X                         (1) 

where i=1,2,…, N– (m–1)τ/Δt, Δt is the constant time step in the original scalar time 

series, and N is the number of points in it. This vector series is further processed to 

yield the attractor dimension estimates. The reconstructed-space dimension m is 

referred to as the embedding dimension. 

The choice of the time delay τ is an important issue since the correct state-space 

reconstruction requires that the vector components be decorrelated from each other. The 

simplest solution of this problem is the construction of an autocorrelation function with 

the subsequent finding of the coordinate of its first zero [25-28]. However, this function 

measures the linear dependence among the points, and it may be inappropriate for the 

nonlinear analysis. It is proposed in [29] that τ should be found as the local minimum of 

mutual information among the successive points. Another suggestion was made to take 

τ=T/m where T is the period of the dominant peak in the spectrum of the signal [26]. 

Among several types of attractor dimensions, two measures can be selected: the 

correlation dimension dc and the Hausdorff dimension dH. In general, the latter is the 

upper limit of the fractal dimension and the former always being smaller or equal to it 

[22]: 

c H.d d                                                        (2) 
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For finding dc, the calculation of the correlation integral C(r) is required [22]. This 

correlation integral is shown to be a power-law function of the correlation dimension 

[22, 27] which is determined according to the following formula, once the fractal is 

completely embedded in the state space: 

 c
0

lim ln ln .
r

d C r r


   
                                            (5) 

The Hausdorff dimension dealing with the infinite number of points is usually 

expressed as the box-counting dimension for a finite set of vectors. In the box-counting 

procedure, one assesses how many m-dimensional hypercubes with edge ε are sufficient 

to cover all points specified by vectors X in the state space. Sometimes, it is more 

convenient to count the  hyperspheres of radius ε instead of the hyperboxes [27]. 

Let n(ε) be the minimum number of the hyperspheres of radius ε which is necessary 

to cover all the mentioned points of the m-dimensional phase space. This number of the 

hyperspheres is a reciprocal power-law function of the Hausdorff dimension, and it can 

be found as the number of unique integer part combinations of X/ε [30]. Then, under 

the stipulation that the fractal is completely embedded in the phase space, the Hausdorff 

dimension in its box-counting variant is [27, 30] 

   H
0

lim ln ln 1 .d n


 


   
                                        (6) 

According to (5) and (6), the fractal dimensions are found as the slopes of straight 

lines plotted by the least-squares method in the coordinates log C(r) – log r and log n(ε) 

– log(1/ε) in the region of small r and ε, respectively. 

The above-mentioned dimensions can be united in one definition [27, 31]. Let an 

interval of the phase space be divided into n subintervals. The probability of the 

trajectory visiting a particular i-th subinterval is defined as pi. Then, the definitions of 

dimensions (5) and (6) can be combined into a generalized dimension of order q: 

 ( ) 1
1 10

lim ln ln .
nq q

iq i
d p




 
                                         (7) 

It can be shown [27, 31] that the generalized dimension takes the form of the box-

counting dimension (6) when q=0 and it turns into the correlation dimension (5) when 

q=2. The equality dc=dH in (2) is fulfilled only when trajectory points have uniform 

distribution over the phase space interval (pi=1/n), in accordance with (7). 

It is possible to find the Hausdorff dimension using another procedure somewhat 

different from counting the minimal number of hyperspheres covering X. Consider a set 

of vector differences Xi–Xj. Similar to finding whether a phase space vector belongs to 

a certain hypersphere [30], the number Gi of unique combinations of integer parts of 

(Xi–Xj)/ε determines the minimum number of hyperspheres sufficient to cover these 

differences. If Xi is a reference vector and Xj vectors are “clustered” in groups smaller 

than ε then Gi determines how many ε-sized groups exist with respect to Xi. Hence, the 

average number of vectors in a hypersphere associated with ith vector is n/Gi. 

According to the interpretation set forth in [48], the correlation integral ensues from 

(7) with q=2: 
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  average number of vectors in th hypersphere2 1 1

1 1 1

1

1
.

n n n i

i i in n ni i i

n

i in i

C p p p

n G n G


  



   

 

  


        (8) 

Then, 

1 i ip G n .                                                 (9) 

Hence, the Hausdorff dimension can be derived from (7) with q=0 and finite n as 

 
1

H
0 0 0 0

ln 1 ln ln ln ln
lim lim lim lim .

ln ln ln ln

n

i i i i ii
p p G n G n G

d
      



   


       


   (10) 

The box-counting dimension defined according to (6) will be referred in this work to 

as the Method-1 Hausdorff dimension (dH,1) and that found from (10) will be termed the 

Method-2 Hausdorff dimension (dH,2). 

The range of r in which the correlation dimension can be determined is limited by the 

values of the correlation integral varying theoretically from 2/n
2
 to 1 [27]. However, 

C(r), n(ε), and G(ε) are meaningful when r or ε are in the range between the smallest 

and the largest absolute vector differences. In practice, the ranges of these arguments 

used for finding the dimensions depend on n, m, and range of data set variation. An 

empirical method of locating the lower boundary of ε and r used in determining the 

dimensions of an attractor is described below in Sect. 4. 

To verify the codes, the Lorenz equations [32] have been integrated numerically in 

Matlab using the fourth-order Runge-Kutta algorithm with Δt =0.005, N =2048, and the 

parameters of the equations as in [25]. The first zero of the time-dependent 

autocorrelation function is found at τ=0.79. It allows calculating the vectors X(t), the 

correlation integral C(r), and the numbers of hyperspheres n(ε) and G(ε). 

All the three dimensions of the Lorenz attractor are calculated for m=2, 3,…, 10, and 

dc, dH,1, and dH,2 are found as the saturation levels of the dimensional estimate curves. 

Takens suggested [24] that a functional series dimension converges when 

2 1 .m d                                                      (11) 

The saturation of the correlation dimension plot is indeed attained when the 

condition (11) is satisfied. The Method-2 box-counting dimension is slightly slower in 

the convergence, and the Method-1 box-counting dimension plot comes most sluggishly 

to the saturation, converging only at m=8. The slower convergence of the Method-2 and 

Method-1 box-counting dimension plots is accounted for by the relatively small number 

of data samples which is most crucial for finding the Hausdorff dimension [27]. 

In practice, due to numerical errors and certain arbitrariness of choosing the linearity 

interval in the log-log plots, the dimensional estimates above the convergence fluctuate 

around the mean value. The uncertainty of calculating the dimensions is represented by 

the standard deviation. The Lorenz attractor convergence has yielded the correlation 

dimension dc=2.09 with the standard deviation 0.06 and the Hausdorff dimensions 

dH,1=dH,2=2.05 with the standard deviations 0.02. The Lorenz attractor dimensions are 

found in agreement with the results obtained by other authors [22, 25, 30]. 
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Difficulties in calculating the correlation dimensions can be encountered for signals 

contaminated by the Gaussian noise which produces slopes equal to the embedding 

dimension in the small-r areas [27, 25]. The box-counting dimension appears to be 

much less sensitive to the Gaussian noise, according to [25]. 

The number of data points is critical for measuring the fractal dimension. According 

to different approaches, a 5% error in the dimension estimation probability is attained 

for a data set with a minimum number of points 5
d
 [27] or 10

2+0.4d
 [26]. The methods 

which can essentially reduce the minimum number of data points were reported, e.g. in 

[33]. Takens’ theory of best estimator results in the 5% error level for as few as 1.25
d
 

data points [27]. 

Thus, very extensive data sets are required to obtain high attractor dimensions with  

good accuracy. However, the MR samplings are typically slow, and it is virtually 

impossible to accumulate the time series with more than several thousand points. 

Moreover, the phase-space reconstruction duration varies as N
2
, so processing of larger 

data sets will consume increasingly longer times. Therefore, some tradeoff between the 

dimension accuracy and the time limitation should be reached. In this work, we do not 

in any way attempt to estimate the optimum size of the data sets, but it is demonstrated 

that, taking advantage of the developed algorithm, as few as 121 points are sufficient 

for discerning the signal from individuals in some cases. 

 

3. Calculation of Dimensions in Multi-attractor Systems 

The above methods focus on finding a single attractor dimension from the time-delay 

reconstruction of a phase space. However, the time-dependent signal radiated by human 

body can contain origins of more than one fractal attracting set. The resulting signal 

will incorporate traces of these fractals on different size scales. It will be referred to as 

the multi-attractor signal. In the strict sense, this signal contains only one attractor with 

the corresponding dimensions defined according to (5)-(7), but it is treated as if it were 

comprised of several attractors isolated in delimited size ranges of the phase space. In 

other words, the multi-attractors can have more than one fixed-order dimension in 

different regions of the size parameter variation. 

The introduced concept of a multi-attractor should not be confused with the 

generally-accepted term multiple fractal, or multifractal. Multiple fractals emerge when 

probability of a trajectory visiting different areas of the phase space is not uniform. 

Multifractals are well-defined in dynamics of a number of mathematical and physical 

systems (see, for example, [27, 34, 35] and references therein). The singularity scaling 

formalism introduced in [34] yields analytical spectra of generalized dimensions (7) 

versus q varying from –∞ to +∞ for a number of multifractal sets. 

The mathematically strict concept of the multifractal generalized dimension spectrum 

could be helpful in analyzing the radiometric signals;  however, it is inapplicable if the 

probability distribution in the reconstructed phase space is unknown, as in our case. The 

procedure of calculating these probabilities utilized in [35, 36] solves this problem but 

complicates the dimension analysis to a considerable extent. Instead, we propose a 

facile multi-attractor approach to estimating the fixed-order dimension patterns of the 

radiometric signals. As shown below, these patterns turn out to be imprecise, but they 

are easily obtained and can in principle apply for distinguishing signals of individuals 

from those of the load and the background. 

To understand the origination of several local dimension measures in the correlation 

integral of a radiated signal, consider two cases of overlapping and non-overlapping 

fractal sets with different dimensions. If one fractal with the correlation dimension d1 
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overlaps with another one with the correlation dimension d2 starting from r0, then their 

contribution to the logarithm of the correlation integral at distance r>r0 is 

    21 2

2 2 1 2 0ln ln ln ln 1
dd d

oC c d r c c r r r     
 

                   (12) 

where c1 and c2 are the proportionality factors. 

The last term in the right-hand part of (12) is negligible if 1<d1<d2 and c1~c2. Then 

lnCo has slope d2 for r>>r0 and slope d1 at distances below r0. This case is represented 

by the correlation integral curves of Figure 1(a) with the sharp bends between their 

linear sections corresponding to r0-values. On the other hand, (12) can be rewritten as 

  22 1

1 1 2 1 0ln ln ln ln 1
dd d

oC c d r c c r r r     
 

                    (13) 

in which the last term can be neglected if 1<d2<d1. In this case, the correlation integral 

has slope d1 over the whole range of distances except a narrow area near r0. 

In the case of two non-overlapping fractals with the same parameters as above and 

the boundary lying at r0, the logarithm of the correlation integral is 

     21 2

2 2 1 2 0 0ln ln ln ln 1
dd d

noC c d r c c r r r r                    (14) 

in which the last term is of the order of zero provided c1~c2. Then ln Cno has slope d2 at 

distances above r0 and slope d1 at distances below r0. 

Thus, finding local slopes at the correlation integral curve against r  in log-log 

coordinates allows identifying individual fractal dimensions of a multi -attractor data set 

when the condition of the size parameter tending to zero is relaxed. An ideal picture of 

correlation integral plots describing two overlapping fractals is shown in Figure 1(a). 

The horizontal lines denote the slope-estimation areas. Unlike an ideal single-fractal 

plot, two distinct local slopes in these plots are discernable. As shown in Figure 1(b) by 

the dashed lines, the lower dimension converges close to d1,c = 0.97 and the higher one 

converges around d2,c =1.88. 

 

          
Figure 1. (a) Idealized Bi-attractor Correlation Integrals vs. the Size Parameter r 

in Logarithmic Coordinates; (b) The Slopes (dimensional estimates) vs. the 
Embedding Dimension 
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To obtain the spectrum of multi-attractor dimensions of the human-radiated signals, 

analysis based on extracting local slopes of C(r) and G(ε) in log-log coordinates over 

the whole region of r- and ε-variation has been performed. It is reported below in detail. 

 

4. Data Processing Method for Multi-attractor Signals 

The data fewness and diversity of fractal structures concealed in the body-emitted 

signal complicates the analysis and interpretation of the reconstructed time series. 

Moreover, the device itself and the background noise generate such structures hidden in 

the signal. Therefore, it is important to develop an algorithm which could allow reliably 

obtaining spectra of the multi-attractor dimensions in the signals of the individuals, 

load, and background. Comparing them, one can then figure out peculiarities of the 

signals and judge the possibility of distinguishing between them. 

As a starting point, one can see in Figure 1(a) that the linear sections corresponding 

to certain dimensional estimates are separated from each other by bends, i.e., the 

sections with considerable curvature. This fact is used further in the slope-finding 

procedure. 

The following algorithm for finding local slopes of the correlation integral and 

number of spheres in the logarithmic coordinates for a constant embedding dimension 

has been used. The lower limit of both the correlation integral and hyper -sphere-

counting slopes is determined as the boundary where the curvature of the line 

connecting adjacent points falls to near-zero values. The curvature of a function y(x) is 

 
3 2

2 2 21 .dy dx d y dx


  
 

                                   (15) 

The assumption that y1(x1)≡log C(r) and y2(x2)≡log N(ε) are continuous functions of 

x1≡log r and x2≡log(1/ε), respectively, allows applying this formula to the log-log plots. 

By analogy drawn to discrete data series, one can replace first and second derivatives in 

(15) by finite increment ratios. In Figure 3, examples of such plots for the person S data 

and m=15 are presented. The area of the linear sections is bounded on the side of large 

negative values of log r and small negative values of log (1/ε) by the finite resolution of 

the phase space portraits. At the opposite sides of the arguments, it is restricted by the 

finite area of the fractal in the phase space. 

Consider first the case of a single fractal dimension. The dimension determination 

requires, on the one hand, that the slopes should be with high degree of linearity. On the 

other hand, to meet the size parameter smallness conditions in (5) and (10), the linearity 

region must be as close to the lower argument boundaries as possible. For that reason, 

the onset of linearity in correlation integral plots will be arbitrarily defined as abscissa 

of the first point of two consecutive ones with absolute mean curvature less than 0.2 

and standard deviation less than 0.1 following a point which does not satisfy these 

criteria.  It is at large negative values of log r.  On the contrary, the lower limit of the 

linearity area in hypersphere-counting plots is located at large values of log (1/ε). It is 

defined similarly, but the absolute mean curvature of two consecutive points is assumed 

to be less than 0.5 and the standard deviation is less than 0.25. It is seen in Figure 3 that 

near-zero curvatures defined in such a way are attained at log r = –1.70 for the 

correlation integral plot and at log (1/ε) = –1.50 for the hypersphere-counting plot at 

m=15. These coordinates are considered as the lower boundaries of detectable slopes 

and are marked with bold arrows. The upper limits could be defined in exactly the same 

way starting from the opposite side of the plots, but there is usually no need in doing 
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this because of existence of distinct breaks in the slopes typically encountered over the 

linearity regions. These breaks are characterized by large curvature and should be 

regarded as the end of the slope calculation area for a single fractal.  

In the case of multi-attractors, these breaks demarcate the boundary between the 

areas of calculating two different dimensions, as it follows from (12) and (13). Because 

a limited number of data points can distort the linearity to a considerable extent, one 

has to develop a special algorithm of finding limit curvatures below which the 

corresponding points in the log-log plot section are still described by a single line and 

above which the slope is assumed to change. Furthermore, close values of individual 

slopes thus found, though different due to the statistical straggling, may be assigned to 

one and the same fractal dimension. It is therefore necessary to distinguish the groups 

encompassing the closely set slopes. The algorithms of ascertaining which points in the 

log-log plots are described by a single line, and discriminating the slope groups are set 

forth in 4.1 and 4.2, and an example of the algorithm application is given in Section 5. 

 

4.1. Exploiting Limit Curvature Determination in the Detection of Slopes 

First, we cancel the condition of lower boundary defined above for a single fractal. 

Instead, we arbitrarily fix the minimum value of slopes stipulating that they must be 

greater than unity. Starting from both ends towards the linearity region, linear fits of 

every three points in a row in the log-log plots are obtained. The first three points from 

both sides fitted by a line with slope higher than unity designate the onset of the 

working area. Other points are discarded. 

In fact, the points in the working areas never lie on smooth curves like those in 

Figure 1(a). The twisting pattern of lines connecting the points in real profiles can be 

accounted for not only by traces of multiple dimensions, but also by presence of errors 

which are discussed in [27]. To detect the individual linearity areas, one should find the 

intervals of arguments in which near-zero curvatures are continuous. Their deviations 

from zero will be described by a certain distribution function. Since these deviations are 

assumed to be random, the linear area curvatures obtained using (15) are expected to 

obey the normal distribution with a maximum close to zero. 

Once the parameters of this Gaussian distribution function have been found, one can 

determine the full range of curvatures satisfying the linearity conditions by means of 

the three-sigma rule. However, the curvature range in which fitting by the Gaussian 

function is valid is inherently unknown. Furthermore, the normal distribution 

approximation is known not to be always justified in statistical investigations, and 

statistical samplings require special tests for normality. Therefore, the Gaussian fittings 

are performed over various curvature ranges (from ±0.1 to ±15 with step 0.1). In each 

step, the 95% probability of the normal distribution applicability is probed using the 

Shapiro-Wilk test and D’Agostino’s K-squared test ([37] and references therein) 

realized in Matlab codes. Only those distributions are used for finding the zero-

curvature scattering which satisfy both tests for normality. 

After each step of the validated zero-curvature range determination, the slopes of 

linear sections in the working areas of the log-log plots are found and accumulated. A 

plot section is supposed to be linear if the curvatures in this section are within the found 

range of the zero-curvature scattering. The linear sections are separated from each other 

by the points corresponding to the curvatures outside this range. Linear sections of the 

correlation integral and hypersphere-counting plots must include, at least, two zero-

curvature points. 
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These slopes in arrays are cumulated in groups (clusters). The clusters are separated 

from each other by fairly big gaps. Because there is an uncertainty in finding the fractal 

dimensions, each of the dimensions is assumed to lie within a cluster. The uncertainty 

of locating the dimension is simplistically equated to the standard deviation in the 

group of slopes. Thus, the task of finding the dimension spectrum is reduced to 

determination of the optimum number of the slope clusters, the mean values and the 

standard deviations in each of them. 

 

4.2. Discrimination of Slope Clusters in Multi-attractor Data 

Dissection of set of points into groups is not a trivial task in mathematical sense. 

This is the matter of a special part of mathematical statistics called the cluster analysis.  

In this work, a particular technique of the cluster analysis, termed the partitioning 

method, is exploited [38]. The standard algorithm of this method, called the k-means 

algorithm, attempts to minimize the within-cluster sum of squares: 

2

1

c

j i

n

j ii x S
x 

 
                                            (16) 

where  1 2, ,...,
cnS S S  is the set of mutually exclusive spherical clusters, μi is the mean, 

or centre, of points xj in the Si cluster. 

The algorithm tries random starting points and eventually converges at local minima 

of the sum of squared Euclidean distances. There is no guarantee, however, that the 

found minimum is global. Another disadvantage of the algorithm is that one has to 

assign the number of clusters in advance. 

Detecting the global minimum of (16) can be secured by repeatedly applying the k-

means algorithm to the arrays of attractor dimensions when the number of slope clusters 

has been predefined. A minimum of the residual sum of squares found among all the 

trials is taken as the global minimum. 

In this work, the k-means algorithm, as a built-in function of Matlab 7, is applied 300 

times to each of the dimension arrays. After the minimum of the squared distances has 

been found, coordinates of the centres in this trial represent mean attractor dimensions.  

Finding the optimum number of slope clusters is less straightforward. Consider a 

model non-uniform array of points in a line, as illustrated in Figure 2. Let a cluster be 

defined as a group of points comparable with the largest space between two adjacent 

points in the array. Four clusters are intuitively discernible in Figure 2. The four 

clusters, by the above definition, would have remained even if a few points had been 

removed from any of them. Indeed, in this case the gaps in each group are smaller than 

those separating the clusters. Exploiting the hierarchical clustering terminology, the 

clusters in this work are defined to be located on one level below the hierarchical top. 

In general, there is no clear delimitation which size of the clusters should be regarded 

as that comparable with the largest space. Consequently, the number of clusters defined 

in the above manner becomes indefinite. The solution to this issue will be sought using 

the global minimum of the within-cluster sum min of absolute distances from the 

centres. 
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Figure 2. Successive Clustering Applied to the Groups of Points (see the text) 
 

Assume that the location of each cluster centre in the global minimum of (16) is 

known. In Figure 2 the centres are marked as the coral hexagons. An example of 

consecutive partitioning in clusters is shown in this figure, with the preset number of 

clusters successively increasing by unity from the top downwards. The resulting 

clusters are encircled with dotted lines. The sum of the distances for the two clusters in 

the uppermost part of Figure 2 is 

   
4 4

2 1 1 1
1 2 ,j

j

N i
j j j j jNj i j

x x x x N
  

      
                    (17) 

the sum of the distances in the three clusters in the next row of Fig. 2 is 

 
   

3 21,2 1 3,4 1

1,2 3,4

2

1 2 1 2 ,

j j

j j

N Ni i
j j jN Nj i j i

j j j j jj j

x x x

x N x x N

   

 

    

      
 

   

 
                    (18) 

and the sum of the distances in the four clusters one row lower is  

 
4 4

4 21 1 1
2 1 2j

j

N i
j j jNj i j

x x N
  

                               (19) 

where Nj and Δxj are, respectively, the number of points and the distance falling on one 

point in jth cluster. 
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On the assumptions that the sum of the distances is determined mainly by the large 

spaces xj between the dense groups of points and these groups are spaced equally, the 

difference of (18) and (17) is 

 3 2 21,2
2 2j jj

x x


                                  (20) 

and the difference between (19) and (17) is 

 
4

4 2 21
2 .j jj

x x


                                   (21) 

One can generalize (20) and (21) as 

2.
ca n a c an                                          (22) 

Letting Δnc approach zero, the separation of variables in (22) and integration yields 

1ln 2a cC n                                                (23) 

where C1 is the integration constant. Thus, a decreases exponentially with nc. 

Consider now the sum of distances from the centres of clusters when no large spaces 

are left within the clusters. From this point on, the partitioning into clusters has to be 

carried out inside the dense groups of points. This situation is presented in the two 

lowermost rows in Figure 2. In this case, increasing the number of clusters will yield 

splitting of the dense groups of points one after another into two equal clusters. Then, 

the sum of the distances in the five clusters is 

   1

1

4 4

5 1 1 14 21 2 1 2
4 2 2 2 1 2j

j

N Ni i
j j jN Ni j i j

x x x N x N
   

                   (24) 

and the sum of the distances in the six clusters is 

   

6 4 21,3 1 2,4 1

1,3 2,4

4 2

2 2 1 2 .

j j

j j

N Ni i
j jN Nj i j i

j j j jj j
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 

    

     

   

 
                   (25) 

The differences between the sums (24), (25) and (19) are 

5 4 1x                                                    (26) 

and 

6 4 1 3.x x                                               (27) 

In general, on the assumption that every point in each cluster occupies equal space 

Δx, it follows from (26), (27), and (19) that 

 41
2 1

4b n b c c b jj
n x n N 

                                (28) 
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where b and b+Δnc are the numbers of clusters comprised only of the dense groups of 

points. Passing on to infinitely small increments, the integration of (28) after the 

separation of variables results in 

2ln b b cC k n                                                 (29) 

where C2 is the integration constant and  4

1
1 4b jj

k N


  . 

It follows from (29) that b increases exponentially with the number of clusters. But 

because the total number of points can be rather high, kb is very small and b is close to 

being constant. The exponential dependences (23) and (29) of the minimum sum of 

distances on the number of clusters are the two extreme cases. In fact, the exponential 

factor can vary from –1/2 or less to kb as one takes account of increasingly finer levels 

of spacing between the points. 

It is now possible to answer the question which the optimum number of clusters in 

the array of slopes is. It is the nearest integer to the abscissa of the intersection point of 

two best successive linear fits in the area of the small values of nc, when ln min is 

plotted against nc. There is a bend of the fit slopes around certain nc. Algorithmically, 

this point is found in the following way. Consider the linear correlation of  ln min and nc. 

When nc varies in the range from 2 to i and from i to nc,end (i is in the range from 3 to 

nc,end–1), two corresponding correlation coefficients and their product can be calculated. 

The variation of i yields an array of products of the correlation coefficients in which a 

maximum is found. The argument nc corresponding to the maximum product is 

considered as the borderline for applying the two linear fits on both sides from it. The 

integer nearest to the intersection point of these fits is the optimum number of clusters. 

Summing up, the proposed method provides a fairly reliable estimate of number of 

attractors and their dimensions in a certain radiometric signal. Like any time -delay 

phase space reconstruction procedure, it has certain restrictions [27]. In particular, the 

method can yield distorted or spurious dimensions if a) the initial time series has 

insufficient number of data; b) there exists lacunarity in the phase space  structure of the 

fractals or a high level of Gaussian noise in the signal; c) the reconstructed vectors are 

correlated to each other. However, the influence of these errors is smoothed away in the 

method owing to a) the accumulation of slopes; b) detection of curvature scattering 

limits; c) statistical averaging of the slopes within a cluster.  

In general, the above-mentioned errors can be still more reduced using the minimum 

mutual information method in determination of time delays [29] and utilizing more 

extensive data series. 

 

5. Experimentation and Data-processing Procedure Implementation 

For our experimentations, a variant [15] of the Dicke radiometer is used. It is 

designed for 1.88 GHz with the input frequency bandwidth around 100 MHz. The 

sensitivity announced by the manufacturer is about 0.05 K for Δτ=0.1 s. The device is 

placed in a thermostat with an appropriate temperature to avoid the slow thermal drift 

of its parameters. The signal is collected by an 8-element microstrip antenna with 

VSWR≈1.05-1.1 in the mentioned frequency band. The radiometer temperature 36°C is 

maintained by a thermostat during all the measurements. 
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The deterministic noise sources of the radiometer may include the high-frequency 

switches, the nonlinearity of receivers, the A/D convertors, the mismatch of microwave 

components and antennas, the non-ideal grounding of all equipment, etc. 

The following measurements are performed. Eleven students and co-workers from 

our group (Moscow State Institute of Electronics and Mathematics–Technical 

University, Laboratory of Bioelectromagnetism), marked as D, G, D1, G1, I1, I, L, M, S, 

U, and V were chosen for the measurements of their EM radiation. The signals are 

taken during 1 minute from the chest and head areas of the individuals placed at 3-m 

distance from the antenna. Additionally, a part of the power is taken by this antenna 

from the surrounding space due to the antenna’s wide main lobe and side lobes. The 

integration of an analog signal from the radiometer is digitized by an embedded 12-bit 

A/D converter with the time step Δt=0.495 s, and the data accumulation is restricted to 

N=121 readings for each sampling. In addition to the signals from the individuals, the 

noise from a 50-Ohm load and the signal from the environment are registered for the 

comparison purpose. All the signals have approximately the same level, and they are in 

the linear zone of the radiometer, which is confirmed by the manufacturer. 

The integrated output signal is further processed by means of the state space 

reconstruction algorithm described in Section 4. For comparison, both the correlation 

dimensions and the Method-2 Hausdorff dimensions are calculated. The Method-1 of 

the hypersphere-counting appears unworkable in this case because of slow convergence 

due to the small number of samples. 

The time of first zero of autocorrelation function is adopted as the time delay in 

processing all the data sets except four cases (persons G1, I1, U, and background noise). 

The decorrelation time in these cases is too long for processing at high embedding 

dimensions so that the higher-order dimensions can be overlooked. The time delay for 

these data sets is calculated from the period corresponding to the most pronounced peak 

in the Fourier spectra of the signals. Because of the decorrelation time limitation, the 

data sets are processed for m varying from 2 to 21 for all the individual signals except 

two ones (G and M) which displayed moderately long decorrelation times (over 3 s).  

The phase space of these two time series can be reconstructed only up to the embedding 

dimension 17. 

An example of finding slopes for the person S data at m=15 is shown in Figure 3. 

The linear areas are marked with uppercase Latin letters (in the correlation integral 

plot) or lowercase Greek letters (in the hypersphere-counting plot) and are associated 

with certain slope values. The curvature fit range [–0.5;+0.5] in Fig. 3(a) yields the 

linearity curvature range [–0.66;+0.56] (dashed lines), and the local slopes are 8.15 (A), 

7.51 (B), 7.00 (C). The curvature fit range [–0.6;+0.6] in Fig. 3(b) results in the 

linearity range [–1.11;+1.28] (dashed lines) and the local slopes 4.03 (α), 9.91 (β). 

Another curvature fit range in this figure, [–1.5;+1.5], yields the linearity range [–

2.00;+2.91] (dash-dotted lines) and the local slopes 1.10 (γ), 3.33 (δ), 4.03 (ζ), 2.39 (η), 

9.91 (θ). 
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Figure 3. Correlation Integral Plot (a) and hypersphere-counting; (b) plot in 

logarithmic scales (left axes) as blue and red crosses, respectively (the 
person S data set, m=15). The corresponding curvatures (right axes) are 

shown as blue and red circles. The arrows denote the onset of linearity for 
a single fractal dimension. The letters in the plots denote local slopes. The 

horizontal lines demarcate the curvature boundaries within which plot 
segments are considered as linear 

 

        
Figure 4. The Slopes of the Correlation Integral Plots (a) and Hypersphere-
Counting Plots (b) vs. the Embedding Dimensions (the person S data set) 

 

The results of the entire procedure applied to the person S data set are plotted in 

Figure 4 against the embedding dimension. One can clearly see saturation of both the 

correlation dimensions (Figure 4(a)) and the Hausdorff dimensions (Figure 4(b)) below 

6. The Hausdorff dimensions in this range are poorly resolved, however. The 

correlation dimensions have poor resolution above 6 and below 10. No dimensions 

above 10 have been reliably detected in all the correlation dimension plots for all the 

data sets. 

One sees at least one well-resolved dimension in the Hausdorff dimension plot. This 

dimension is around 10. The uppermost points in this plot may be related to the white 

noise in the data. In fact, better resolution of higher dimensions in the Hausdorff 

dimension plots is observed in processing all the data sets. Thus, as a very favorable 

result, use of these graphs enables detecting the higher attractor dimensions which are 

poorly resolved or invisible in the correlation dimension plots. As shown below, it is 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 6, No. 1, February, 2013 

 

 

218 

 

higher dimensions that allow distinguishing the background noise and matched load 

signals from those generated by human body. 

The saturation of the attractor dimensions appears to set in approximately in the last 

third of this embedding dimension range. Consequently, it is the interval in which the 

observed dimensional estimates can be statistically processed. The slope values are 

accumulated in the embedding dimension range (14;17) for G and M data sets and 

(15;21) for the others. 

After  the arrays  of  slopes  have  been  accumulated, the partition of the slopes  into 

clusters (Section 4.2) is implemented. The procedure of finding the optimum number of 

the dimension clusters for the person S data set is exemplified in Figure 5 which shows 

the logarithm of the global minimum sum of the distances from the centres of clusters 

vs. number of clusters. Obviously, there is a sharp bend in slopes of fitting lines around 

nc=9. Rounding of the abscissas of the intersection points yields nine clusters for both 

the correlation dimension and the Hausdorff dimension. 

It is worth mentioning that the slopes of the fit lines at smaller nc in Figure 5 are 

indeed close to the theoretically predicted value –1/2. The slope is –0.49 for the array 

of the correlation dimensions and –0.55 for that of the Hausdorff dimensions. This is a 

good corroboration of the assumptions of the dense and nearly uniform filling of the 

clusters. 

Because the assignment of each slope to a certain cluster at the global minimum of  

has been stored, one can use it in calculation of the average dimension and its standard 

deviation in each cluster. The overall dimension patterns thus found are shown and 

discussed in Section 6. 
 

 
Figure 5. Global minimum sums of distances from cluster centres vs. the 

number of clusters, as found for the correlation dimension (blue squares) and 
Hausdorff dimension (red squares) arrays for the person S data set. The 
dashed lines represent two best linear fits for the successive sum values 

 

6. Results and Discussion 

The above data-processing procedure has allowed calculating the attractor dimension 

spectra from the slopes clustering. Each dimension in the spectrum lies within a certain 

interval specified by the standard deviation found for a particular group of slopes. 

The mean values and spans of all the revealed clusters are shown in Figure 6. The 

number of clusters for each kind of the dimensions varies from 3 to 10. Because of the 

method restrictions mentioned above, the slope spans like those in Figure 6 may not 
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quite accurately reproduce the location of specific attractors in the total pattern. 

Moreover, the standard deviation may not be an adequate measure to estimate the 

dimension uncertainty with high probability. However, the method benefits minimize 

the effects of these errors. The error due to the periodicity might be neglected because 

no pronounced peaks have been observed in the Fourier spectra of the signals. The 

analysis of the results plotted in Figure 6 shows that 34 of 81 (42%) intervals in the 

correlation dimension plot do not intersect with the corresponding Hausdorff dimension 

intervals. On the other hand, 37 of 77 (48%) intervals in the Hausdorff dimension chart 

have no correspondence in the correlation dimension results. In the case of the 

Hausdorff dimensions, most of these intervals fall on the upper part of the chart. 

Nonetheless, these dimensions unconfirmed by the alternative estimation cannot be 

rejected for two possible reasons. The first reason is that their area of existence can be 

narrow (r~r0) and they can be masked with overlapping dimensions (see (12)). Another 

reason is the formation of very prolate spectra of generalized dimensions [27, 34, 35]. 

The joint pattern from superposition of the correlation dimensions and the Hausdorff 

dimensions is demonstrated in Figure 7. 

 

        
Figure 6. The Correlation Dimensions (a) and the Hausdorff Dimensions; (b) of 

Multi-attractors in Microwave Signals of Several Individuals, Matched Load, 
and Background EM Noise 

 

 
Figure 7. Superposition of the Spectra of Both Dimensions from Figure 6 

 

Poorly resolved low-dimensional attractors in the signals of individuals may 

originate from the receiver’s own attractors and the induced EM noise from other 
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equipment (Load and BG in Figures 6, 7). Thus, the human attractors with dimensions 

up to about 5.5, if they exist, cannot be discerned by this method. Some of the high -

dimensional attractors (5.86–8.36, 9.64–11.56, and 14.80–15.71) can be ascribed to the 

background noise and the instrument, too. There are the empty spaces (8.36–9.64 and 

11.56–14.80) in the combined dimension spectra of the background noise and matched 

load. One can notice that some of the dimension spans of certain individuals fall into 

these “windows”. In particular, the lower space contains the dimension intervals of 

persons S and V and in the higher “window” one can find the dimension intervals of the 

persons S, D1, G1, and U. Although all these spans, except for the person U, mutually 

intersect and, therefore, cannot be used as the personal “fingerprints”, one can 

implement this peculiarity for distinguishing the human-generated signals from those of 

the hardware and background EM noise. One can speculate that these attractors 

correlate with human body tremor, heart beating, or even correspond to similar 

attractors registered in the normal state of human brain activity. An alternative point of 

view on the origin of fractals in the signals involves the projective approach. In fact, the 

antenna collects the EM power from a larger area than a human body torso, and these 

spatiotemporal signals are converted into time-dependent signals processed by noisy 

hardware. This projection may result in the fractal-like time dependence [21,[39]. 

Because the range of embedding dimensions covered in this work does not exceed 21, 

it is worthwhile to mention that the fractal dimensions above ten may not attain 

saturation, according to the Takens suggestion (11). Thus, the actual dimension values 

of higher-order attractors in the signals are still disputable, and further research is 

required to reliably establish the origins of these attractors. 

The proposed method opens up a possibility of the hardware noise filtering and RFI 

mitigation in the human radiation signal series. The most straightforward solution of 

this problem is the removal of the signals constituting those reconstructed state-space 

vectors which make the largest contribution to the emergence of the dimensions specific 

for the matched load and background noise spectra. This procedure is supposed to be 

the trial-and-error technique, and it is expected to consume considerable amounts of 

time. Therefore, there is a definite need for its optimization and other approaches to the 

state space refinement are highly desirable. 

Unfortunately, the data obtained do not allow making any unambiguous conclusion 

on possibility of using the described method to detect the human presence in real 

conditions, since the combined dimension spectra of only five of eleven persons appear 

distinguishable from those of the background radiation and hardware noise. To prove or 

disprove this possibility, more experiments are needed. In particular, they should 

involve longer expositions of individuals to obtain more extensive data series. 

 

7. Conclusions 

In this paper, the time-domain characterization of a 1.81-GHz microwave radiometer 

has been performed. To obtain the reliable data, different sources of thermal microwave 

radiation have been used, including radiation from eleven individuals. The interference 

caused by non-ideal design of the radiometer and background EM radiation has been 

studied using two state-space reconstruction algorithms which allow detection of the 

deterministic chaos in the noise-like signals. 

An original procedure of finding the Hausdorff dimension has been proposed in this 

work. In contrast to the well-known box-counting method, it is based on averaging the 

number of unique integer parts of ratios between vector differences and the size 

parameter. The idea of applying the cluster analysis to the scattered slopes, as a method 
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for extracting the separate average dimensions, has been implemented in the study by 

means of the theoretically predicted and computationally verified concept of the 

optimal number of slope clusters. 

Multi-attractors have been found in the signals coming from the individuals, load, 

and background noise. Their dimensions have been calculated and compared with each 

other. It is valid to assign most of the attractors to the hardware and EM noise in the 

laboratory. However, several higher-order dimensions detected in the signals of the 

individuals have been found beyond the dimension spans of the hardware and 

background radiation, and the future experimentation has been suggested to explore the 

origin of these attractors.  
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