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Abstract 

Multispectral approach to brain MRI analysis has shown great advance recently in 

pathology and tissue analysis. However, poor performance of the feature extraction and 

classification techniques involved in it discourages radiologists to use it in clinical 

applications. Transform based feature extraction methods like Independent Component 

Analysis (ICA) and its variants have contributed a lot in this research field.  But these global 

transforms often fails in extraction of local features like small lesions from clinical cases and 

noisy data. Feature extraction part of the recently introduced Multiresolution Independent 

Component Analysis (MICA) algorithm in microarray classification is proposed in this work 

to resolve this issue.  Effectiveness of the algorithm in MRI analysis is demonstrated by 

training and classification with Support Vector Machines (SVM). Both synthetic and real 

abnormal data from T1-weighted, T2-weighted, proton density, fluid-attenuated inversion 

recovery and diffusion weighted MRI sequences are considered for detailed evaluation of the 

method. Tanimoto index, sensitivity, specificity and accuracy of the classified results are 

measured and analyzed for brain abnormalities, affected white matter and gray matter tissues 

in all cases including noisy environment. A detailed comparative study of classification using 

MICA and ICA is also carried out to confirm the positive effect of the proposed method. 

MICA based SVM is found to yield very good results in anomaly detection, around 2.5 times 

improvement in classification accuracy is observed for abnormal data analysis. 
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1. Introduction 

Magnetic Resonance Images (MRI) acquisition provides different sequences like T1-

Weighted Images (T1WI), T2-Weighted (T2WI), Proton Density Images (PDI), Fluid-

Attenuated Inversion Recovery (FLAIR) etc. Massive information on tissue structure and 

pathology can be extracted from these sequences, but each sequence differs in available 

information content [1]. Slice by slice examination and extraction of small details and 

abnormalities from these large numbers of sequences is a tedious job in clinical applications. 

Multispectral data analysis combines the slices of the same brain portion from each sequence 

to form a single suite so that it helps to analyze the corresponding pixel information as a pixel 

signature [1]. For example, see the sample slices of T1WI, T2WI and Diffusion Weighted 

Image (DWI) shown in Figure 1. It is observed that details present in an image vary from 

slice to slice. In Figure 1, T1WI shows White Matter (WM) information clearly, whereas 
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T2WI contains Gray Matter (GM) and Cerebro Spinal Fluid (CSF) information. DWI fails to 

distinguish the brain tissues, but pathological information is clearly visible in it.  

 

 

Figure 1. Input Slices of T1WI, T2WI and DWI (from left to right) 
 

Researchers in MRI analysis have been intensively working for last few decades to 

improve the performance of existing data mining techniques using multispectral approaches. 

But it remains as a challenge because classification accuracy highly depends upon the input 

data characteristics and feature analysis methods. Pre-processing, feature extraction and 

classification are the main steps involved in a typical multispectral analysis system [1]. Pre-

processing techniques like image registration, denoising and contrast improvement can 

contribute much to select the best features for further analysis. Classification methods in 

multispectral analysis can be effectively classified into two categories, unsupervised and 

supervised learning [2]. Unsupervised methods like k-means [3], Fuzzy C-Means (FCM) [4] 

and Expectation Maximization (EM) [5] can give satisfactory results for MR image analysis.  

But radiologists often rely on feedback from previous data and diagnosis to reach at a correct 

opinion for each case.  Supervised learning techniques follow similar strategy, and widely 

used in computer aided categorization of MRI data. Artificial Neural Networks (ANN) [5] 

and Support Vector Machines (SVM) [6] are the two widely accepted techniques in 

supervised MRI classification [2, 7]. A detailed review of some supervised and unsupervised 

classification methods in MS lesion segmentation is described in [8]. 

Methods like Principal Component Analysis (PCA) [9], ICA [10], its nonlinear version 

kernel ICA [11] and Wavelets [12] are very useful in dimensionality reduction and feature 

analysis. In recent years, SVM classification coupled with ICA has proved to be very efficient 

in clinical application of MRI [13]. However, studies in gene array classification [14] 

revealed that ICA, as a global transform, failed to project the small abnormalities present in 

high dimensional data. In an attempt to retain the local information in multidimensional gene 

data, Han and Li [14] introduced a new Multi-resolution ICA (MICA) method for feature 

analysis in microarray classification. The new method is observed to generate better results 

for gene data analysis compared to other conventional methods. Multiresolution part of this 

MICA algorithm is adopted in this work to analyze MRI images for abnormality detection in 

the context of multispectral analysis.  

In this work, each 2-D MRI slice is reshaped to a 1-D data and used as a component signal 

in the multisignal form of multispectral data. Multisignal wavelet analysis is applied on these 

signals to extract approximation coefficients and detail coefficients. Detail coefficients are 

processed with PCA to retain the local information. ICA is applied on the reconstructed 

signals to get relevant features. Feature selection and subspace decomposition explained in 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 6, No. 1, February, 2013 

 

 

179 

 

MICA algorithm is excluded from this work, since it is not practical with MRI data. Feature 

vectors for further analysis are selected under the supervision of experienced radiologists. 

This study uses both synthetic and real brain MRI images to evaluate the proposed 

algorithm. Simulated samples of Multiple Sclerosis (MS) lesions (combination of registered 

T1-weighted, T2-weighted and PD) obtained from BrainWeb database are given as input in 

synthetic image analysis. T1, T2, FLAIR and diffusion weighted images for total 55 cases 

collected from Siemens’ whole body 3T MRI machine are used  in clinical data analysis. The 

proposed method is compared with ICA based SVM (ICA+SVM) to evaluate the 

performance improvement in classification of brain matters like GM, WM and abnormality 

presence. Visual and quantitative results confirm that MICA based SVM (MICA+SVM) is a 

promising and effective method for abnormal tissue analysis. 

This paper is organized in the following manner. An overview of the materials and 

methods used in this work is given in Section 2. Section 3 discusses the experimental results 

from visual and quantitative analysis. Section 4 concludes the paper. 
 

2. Materials and Methods 
 

2.1. Database 

The input database in this study consists of three sets of abnormal MRI data. The first set 

contains synthetic brain MR images obtained from BrainWeb, Simulated Brain Database at 

the McConnell Brain Imaging Centre of the Montreal Neurological Institute (MNI), McGill 

University (http://www.bic.mni.mcgill.ca/brainweb). Axial T1WI, T2WI, and PD slices 

representing Multiple Sclerosis details are combined to generate the multispectral image sets. 

Slices with 1-mm thickness and 181x217 size are collected from each sequence for noise 

levels 0%, 1% and 3%.  

T1WI, T2WI and FLAIR images of 20 abnormal clinical cases are included in the second 

set and third set is a collection of T1WI, T2WI and Diffusion Weighted Image (DWI) slices 

from 35 abnormal clinical cases. These images were sampled by Siemens’ whole body 3T 

MR system (Siemens, AG Medical Solutions, Erlangen, Germany) and collected from 

Institute of Radiology and Imaging Sciences (IRIS) Pvt. Ltd, Kochi, India as per the data use 

agreement approved by Institutional review board. The clinical brain MR images were 

acquired by axial spin echo T1WI with repetition time (TR) = 1600 ms, echo time (TE) = 8.9 

ms and T2WI with TR/TE = 4000ms/95 ms, FLAIR images with TR/TE = 6000 ms/ 94 ms 

and inversion time (TI) = 2026.5 ms. Additional parameters were, slice gap 6.5 mm, thickness 

5mm and size 209x244. Echo-planar diffusion weighted images in the third set were collected 

with thickness 4mm, TR/TE = 6500ms/ 95ms, slice gap 6mm and size 184x216 as parameter 

settings.  
 

2.2. Multisignal Wavelet Analysis 

Each image in multispectral MRI is reshaped as a 1-D signal to form multisignals in 

wavelet analysis of MRI [12, 15]. Wavelet transform of the multisignal is computed from 

projection of the signal onto the scaled and shifted version of the basic function, mother 

wavelet. Multiresolution wavelet transform provides a time-scale domain representation of 

the signal under consideration where time and scaling information can be studied 

simultaneously. Multiresolution analysis (MRA) of input signals using Mallat algorithm [15] 

is shown in Figure 2. Input multisignal is passed through a low pass filter (Hlow) and its 

corresponding high pass filter (Hhigh) simultaneously. A dyadic decimation that halves the 

resolution removes extra elements of the signals. These steps are applied recursively to the 
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result of low pass filter subbands from input signals and increasingly smoother versions of the 

original signals are generated. Decomposed spectral signatures from one-dimensional 

multisignal wavelet analysis are expanded by inserting zeros in the upsampling process [12] 

to reconstruct the original spectral bands. 

 

Figure 2. Concept of Multiresolution Analysis 
 

2.3. Proposed Multi-resolution Independent Component Analysis in MRI 

As a global transform, conventional ICA fails to project the significant and precise 

information from input multispectral data. MICA algorithm solves this issue by suppressing 

redundant global information, but retaining the local features with more priority [14]. The 

proposed steps from MICA for MRI analysis are shown in Figure 3 and explained through the 

following steps. 

 

Figure 3. Proposed MICA for MRI 
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1. Pre-processing and Multisignals formation. 

MRI sequences for clinical trials are usually acquired with different size and orientation. 

Registration of the images [16] to form a co-registered multispectral suite is the preliminary 

step in analysis process. Each pixel vector in a multispectral image forms the spectral 

signature corresponding to that pixel and a collection of these spectral signatures generate 

multisignals as shown in Figure 3. 

2.  Wavelet Transform and Analysis of detailed coefficients 

1-D wavelet analysis of multisignals generates approximation coefficients and detail 

coefficients for different resolutions.  Let X= [x1, x2,…, xp ]
T
 be the spectral signature of a 

pixel as shown in Figure 3, where ‘p’ is the number of bands in multispectral image. L-level 

discrete wavelet decomposition of X forms a set {D1, D2...DL, AL}, where Di’s are the detail 

coefficient at level ‘i’ and AL is the approximation coefficient. Detail coefficients contain 

global features. So global feature selection is done by thresholding and recalculation of Di’s 

using a level threshold µ, where 1≤µ≤ L-1. Wavelet coefficient analysis and principal 

component calculations for different threshold values proposed in MICA algorithm [14] is 

summarized here. 

if 1≤j≤ µ, 

 Conduct principal component analysis of Di’s to get PC matrix U = [U1, U2 …Up] 

 and corresponding score matrix S= [S1, S2,…Sp]. 

 Reconstruct the original Dj by Dj = (1/nj)DjInj+S1xU1
T
 

if j>µ, 

 Reconstruct and update each detail coefficients matrix Dj by using loading  

  vectors U1, U2...Uk  consisting of 100% explained variance [14] percentage and 

  their corresponding vectors in the score matrix such that  

  Dj=(1/nj)DjInjInj
T
+[S1,S2,…,Sk]x[U1,U2,…Uk]

T 
,  

where nj is the number of rows in Dj and Inj  is a unit vector of size n jx1. 

3. Reconstruction of Multisignal 

The new wavelet decomposed data at level ‘L’ can be represented as T* = {D1, D2...DL, 

AL}. Inverse discrete wavelet transform, IDWT (T*), gives the reconstructed signal X* for 

further analysis.  

4. Independent Component Analysis 

Independent component analysis (ICA) is a generic model which helps to find a linear 

representation of non-gaussian and mutually independent data [10].  Let   x = [x1, x2, ..., xn ]
T
 

be a random vector where xi’s are mixtures, and ‘s’ be another random column vector 

representing independent components s1, ... , sn.  

Let ‘A’ be the matrix with elements aij, i=1…n, j=1…n such that  

  x =As             (1)                                                         

W, inverse of the matrix A can be computed from an estimation of ‘A’ and is used to obtain 

the independent component simply by,  

  s=Wx      (2)            
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Steps to calculate independent components using FASTICA [10] can be summarized as 

follows: 

 Step 1. Centering, it is the most basic and necessary preprocessing step in ICA 

 computation. Mixed vector ‘x’ is centered by subtracting mean vector ‘m’ from it. 

 i.e., xc = x-m. 

 Step 2. Whitening process, it transforms the data so that it has an identity  covariance 

 matrix. i.e., E(xcxc
T
)=I. It makes components of xc uncorrelated. Eigen value 

 decomposition of the covariance matrix of xc can be used to reduce the complexity of 

 the problem. i.e., Whitening can be done by decomposition, xc= ED
-1/2

E
T
x, where E 

 is the orthogonal matrix of eigenvectors of input covariance matrix CX and D is the 

 diagonal matrix of its eigen values. Whitening matrix P is calculated as P=D
-1/2

E
T
 

 and it is used to compute the whitened data, z=Px.  Subsequent ICA estimation is  

 done with z. 

 Step 3. Iteration for W, it is a process of finding orthogonal unmixing matrix W for 

 whitened data  using an appropriate learning rule. W is computed such that 

 projection W
T
x  maximizes the measures of nongaussianity. Optimization of objective 

 functions or contrast functions is used to measure the nongaussianity [10].  Unmixed 

 signal vector ‘s’  is calculated  from W using eq. (2). 

In this work, FastICA learning algorithm [10] is applied on reconstructed signal X* 

to get W and unmixed signals. 

 

2.4. Classification Using SVM 

It has been proved in latest studies that Support Vector Machines (SVM) is a better option 

for MRI analysis [7] compared to other methods in supervised classification. Originally, 

Vapnik [6] develops it in statistical machine learning theory as a linear binary classifier based 

on the class of hyper-planes, 

   (W.x) + b=0, W  R
N
, b  R  (3) 

and decision functions  

f(x) = sign((W.x) + b)   (4) 

where ‘W’ is a weight vector and ‘b’ is the threshold or bias. SVM searches for an optimal 

hyper-plane having maximal margin of separation between two classes for a particular 

training dataset. Therefore, the classification task is only a function of the support vectors, the 

training data that lie on the margin. 

In dual form [6] the problem reduces to  

Maximize   
1 ,

1
( , )

2

n

j i j i j

i i

i i

j

y y K x x 


 
 (5) 

Subject to αi  0 and  
1

0i

n

i

i

y


  

and solve for αi.  K(xi, xj) can be a linear or non-linear kernel [5, 6]. 

A detailed explanation of MRI analysis using SVM is present in [7, 13]. SVM with 

Radial Basis Function (RBF) non-linear kernel is used in this work for brain tissues 

analysis. 
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2.5. Quantitative Measures 

Performance evaluation of the proposed method is done with two types of measurements. 

First criterion is Tanimoto Index, the most commonly used measurement in medical imaging 

[13]. It is used to measure the similarity of the obtained result with ground truth as follows,  

 T = 
||

||

BA

BA



   , where A and B are two datasets involved in the classification 

comparison.  

Other set of measurements contains statistical measures like Sensitivity, Specificity and 

Accuracy [8]. Sensitivity is the proportion of actual positives correctly classified and 

specificity is the proportion of negatives correctly identified. Specificity, sensitivity and 

accuracy can be calculated as follows: 

  Sensitivity = (TP/ (TP+FN)) *100% 

  Specificity = (TN/ (TN+FP)) *100% 

  Accuracy = ((TP+TN)/ (TP+TN+FP+FN))*100 %, where TP, TN, FP and FN can be 

defined in the context of MRI analysis as, 

 True Positive  (TP)  - Tumor pixels correctly identified as tumor,  

  False positive  (FP)  - Other tissues incorrectly identified as tumor,  

 True Negative  (TN) - Other tissues correctly identified, 

  False Negatives (FN)  - Tumor pixels incorrectly identified as others. 
 

3. Experimental Results and Discussions 

Feature extraction and classification are the major steps involved in this analysis. Proposed 

MICA and classical ICA method are implemented for feature extraction process. These 

techniques are applied on synthetic and clinical datasets described in Section 2.1 to generate 

independent components. No image registration was required in the case of synthetic images, 

but image registration using Matlab functions is applied on clinical dataset as a preprocessing 

step. Implementation of step 2 in proposed algorithm is done with a 4-level wavelet 

decomposition of input multisignals using Daubechies-8 (db8) wavelet. An optimal value for 

threshold ‘µ’ is set as 2 by trial and error. Training and testing datasets for abnormalities and 

affected tissues were selected from generated MICA results. For each brain matter class, a 

feature vector is formed by a 3x3 window of nine samples selected under the guidance of an 

experienced radiologist. 

Mathworks Matlab 7.0 (R2009a) implementation on a PC with Pentium Dual CPU of 

2.0GHz and 2GB RAM running Microsoft Windows 7 was executed for the complete system 

evaluation. Pattern recognition Toolbox in Matlab served the purpose of non-linear (RBF 

kernel) SVM training and classification with its default parameter settings. Leave one out 

cross validation is used in performance analysis to evaluate the improvement in classification 

accuracy. The same environment and feature selection method is repeated to generate the 

classified results using conventional ICA. A detailed comparative study of MICA and ICA is 

conducted and obtained results are summarized below. 
 

3.1. Synthetic Image Analysis  

Synthetic MRI data analysis contains images with noise levels 0%, 1% and 3%, each set 

consisting of seven multispectral slice sets of T2WI, T1WI and PD images (total 21x3 slices) 
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collected from Brainweb database. The 0% noise sample images (slices of MS lesions) are 

shown in Figure 4A and unmixed results are given in Figure 4B. Top row in Figure 4B is the 

extracted components by ICA and bottom row gives MICA results. 

It is observed from Figure 4B that abnormalities (circled portion) are so clear in MICA 

results that radiologists can visually analyze the points directly from the components before 

classification. Brain abnormalities (lesions) and affected tissues (WM and GM) are studied to 

analyze the improvement in anomaly detection on applying MICA instead of ICA with SVM 

classification.  Figure 4C shows GM in 1
st
 column, WM in 2

nd
 column and lesions in 3

rd
 

column. It is easily seen that tumor information from classified result using MICA (last row 

last column) exceeds that from ICA+SVM (first row last column). Figure 4C 2
nd

 column 

comparison shows that affected portions in WM can be seen as black holes in the MICA 

+SVM results. However, unaffected portion of WM and GM are better classified by 

ICA+SVM. A performance evaluation using the measures specified in Section 2.5 confirm 

these observations with quantitative results summarized in Table 1. 

 

Figure 4. Feature Extraction and Classification Results:  A) Input Slices T2WI, 
T1WI and PDI (from left to right); B) Feature Extraction Results, top row- ICA 

results, bottom row-MICA Results; C) Classified GM, WM and MS lesion (from 
left to right): top row- ICA results, bottom row-MICA Results 

 

 
Table 1. Tanimoto Indices and Accuracy Estimates of MS Lesions in Noisy 

Environment 

Noise  Tanimoto 

Index 

Specificity  Sensitivity Accuracy 

0% ICA+SVM 0.7279 99.9030 73.7931 99.8067 

MICA+SVM 0.8211 99.9310 81.3793 99.8625 

1% ICA+SVM 0.6552 99.8724 65.5172 99.7457 

MICA+SVM 0.7213 99.8978 72.4138 99.7964 

3% ICA+SVM 0.3517 99.7604 35.1724 99.5225 

MICA+SVM 0.4898 99.8138 49.6552 99.6290 
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Positive changes in Tanimoto index values for different noise levels support improvement 

in image quality on applying MICA. For 0% noise, it is observed as 0.0932, for 1% noise it is 

0.0661 and it is highest for 3% noise, 0.1381. Average of the sensitivity, specificity and 

accuracy of the obtained classification results is also added to Table 1. Sensitivity and 

accuracy values support the positive impact of MICA in tumor extraction, especially in noisy 

environment. Values in Table 1 indicate the efficiency of multiresolution analysis in noisy 

data classification. To evaluate MICA in real environment, a detailed analysis of clinical data 

is performed as discussed in the next section. 

 

3.2. Clinical Image Analysis 

Two sets of clinical data are used in visual and quantitative analysis. The first dataset 

contains T1WI, T2WI and FLAIR images with specifications as described in Section 2.1. 

Total 70 multispectral slice sets were selected for analysis from 20 abnormal cases. Figure 5 

top row shows slices in a sample multispectral image set. T2WI and FLAIR images show  

 

                

Figure  5. Classification Results using Dataset 1: (from left to right) top row - 
Input Slices T1WI, T2WI and FLAIR image, middle row- ICA Results, GM, WM 

and Abnormal Tissue, bottom row-MICA Results GM, WM and Abnormal Tissue 
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lesion surrounded by edema, but that information is not visible in T1WI. Classified results 

from ICA+SVM and MICA+SVM are given in Figure 5 middle row and last row respectively 

with GM in the 1
st
 column, WM in the 2

nd
 column and abnormality in the 3

rd
 column. 

MICA+SVM results show the lesion and the surrounding edema (Figure 5 last row last 

column) with a clear description of the separation between lesion and edema in the original 

image. On observing the affected portion of WM (Figure 5 2
nd

 column), MICA+SVM results 

looks better than ICA+SVM results. However, MICA cannot reach the performance of ICA in 

classification of WM. 
 

 

Figure  6.  Bar Chart Showing Tanimoto Index of Tumor, WM and GM for 
Clinical Dataset 1 

 

 

Table 2. Statistical Analysis of Clinical Dataset 1 
 

 

 

 

 

 

 

 
 

The bar chart shown in Figure 6 clearly depicts the Tanimoto index difference between two 

methods. Significant improvement observed for tumor class is a vital point in this analysis. 

But here also WM classification looks good with ICA+SVM. Tanimoto differences between 

MICA+SVM and ICA+SVM are observed as 0.2566, 0.071 and -0.1316 for tumor, GM and 

WM respectively. Specificity, sensitivity and accuracy values obtained for GM, WM and 

abnormality by MICA+SVM and ICA+SVM are summarized in Table 2. Quantitative 

analysis results in Table 2 strongly support the visual results. Accuracy value increased from 

Noise Feature 

Extraction 

Specificity  Sensitivity Accuracy 

Abnormality ICA+SVM 50 17.3085 37.6814 

MICA+SVM 97.2599 43.3540 94.7727 

GM ICA+SVM 85.7690 57.6267 78.6936 

MICA+SVM 96.1801 83.7134 93.8117 

WM ICA+SVM 94.8525 85.6485 92.4228 

MICA+SVM 90.9110 82.7608 88.0974 
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37.6814 to 94.7727 in tumor classification, i.e., around 2.5 times performance improvement is 

observed for MICA+SVM. 

 

            

Figure  7.  Classification Results using Dataset 2: (from left to right) A) Input 
Slices DWI, T1WI and T2WI; B) ICA Results, WM, GM and Abnormal Tissue; C) 

MICA Results WM, GM and Abnormal Tissue 
 

Total 110 multispectral slice sets of T1WI, T2WI and DWI selected from 35 abnormal 

cases were included in the second set of clinical data analysis. Some input slices showing 

white matter abnormalities are given in Figure 7A (top row). Figure 7B gives ICA+SVM 

results and Figure 7C shows MICA+SVM results in the order of WM, GM and abnormality 

from left to right. Classification result for abnormality is similar to the  previous results, 

abnormal tissue details in MICA+SVM results (Figure 7C last column) exceeds that in 

ICA+SVM (Figure 7B last column).  The first column comparison of Figure 7B and 7C 
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shows that affected portion of WM (circled portion) is almost completely detected by 

MICA+SVM. But in the case of unaffected portion of GM (2
nd

 column) ICA+SVM performs 

better than MICA+SVM.  

Tanimoto index values obtained from similarity checking of classified results with ground 

truth are shown as a bar chart in Figure 8. Tanimoto differences between MICA+SVM and 

ICA+SVM were observed as +0.0973 and +0.0665 for tumor and WM respectively. 

Quantitative analysis with second set of measurements supports these results with noticeable 

increase in specificity, sensitivity and accuracy as summarized in Table 3. 

 

 

Figure 8. Bar Chart Showing Tanimoto Index of Tumor and WM for Clinical 
Dataset 2 

 
 

Table 3. Performance Analysis of Clinical Dataset 2 for Abnormal Tissues 
(Abn.) and WM 

 Feature 

Extraction 

Specificity  Sensitivity Accuracy 

Abn. ICA+SVM 99.7998 74.7604 99.6027 

MICA+SVM 99.8101 76.0383 99.6233 

WM ICA+SVM 93.4206 83.5774 90.6051 

MICA+SVM 95.3921 89.5794 93.6099 
 

Experimental results demonstrate that multiresolution analysis avoids the loss of 

significant MRI details in feature extraction, and it provides a relatively good pre-processing 

step for high performance tissue classification and abnormality analysis. MICA is robust and 

reliable in noisy environment also. However, it suppresses the majority information before 

wavelet reconstruction. Sometimes this will affect normal brain matter extraction, as it is 

observed in the case of unaffected WM and GM tissue classification. 
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4. Conclusion 

In recent years, multispectral approach helped MRI analysts a lot to improve the analysis 

time and accuracy of the clinical trials. However, extraction of very critical features like small 

lesions is a great challenge in pathology analysis due to lack of efficiency of the existing 

methods. The proposed multiresolution analysis coupled with ICA is demonstrated as a good 

choice to resolve this issue. SVM classification is used to investigate and evaluate the 

performance of the method in abnormality analysis. Experimental results using synthetic and 

clinical data confirm that the proposed method performs better than ICA based classifications 

in lesion/tumor detection. Experiments conducted for noisy synthetic images also support 

these findings with acceptable results in favor of MICA. Refinements of MICA are under 

consideration to give equal priority to normal and abnormal tissue classification in future 

works. 
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