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Abstract 

In the paper, we firstly recommend a new variational model for image decomposition into 

cartoon and texture or noise by introducing a new function in Sobolev space, in order to 

overcome the inconsistency between the theoretical model and numerical simulation. 

Secondly, we prove the existence of minimal solutions of the improved ROF energy functional. 

Subsequently, we also introduce two additional improved models in the same way. Finally, we 

show some numerical experiments of our improved ROF models, and correspondingly 

compare them with those of the ROF model, VO model and TV- 1H  model. The results show 

that our models work well. 
 

Keywords: Image decomposition, variational approach, minimal solution, cartoon, texture 
 

1. Introduction 

Decomposing an image into meaningful components is an important and challenging 

inverse problem in image processing. Let f  be an observed image which contains texture 

and/or noise. Texture is characterized as repeated and meaningful structure of small patterns. 

We are interested in decomposing f into two components f u v  , such that u   represents 

cartoon part of f , which is the geometric or structural component of f , while v   is the 

oscillating or texture component of f . PDE-based methods have been widely used over the 

past decade for image decomposing [1-15]. 

In 1992, Rudin et al.[13] proposed a TV- 2L  model (ROF) used to remove the noise. This 

algorithm can be used to image decomposition. The model is defined as a variational problem 

 
 2

2
min  .

Lu
E u Du v


        (1.1) 

Where 0   ,  BVu   represents cartoon part, v f u   is texture part. In 2011, 

Meyer[10] pointed out some limitations of the ROF model and proposed a different 

decomposition model which was called the TV-G model. The model is described as the 

following form 

 min  
Gu

E u Du v


  ,      (1.2) 

where  ,  BV , >0.v f u u      The Banach space G contains signals with large 

oscillations, such as texture or noise. It is well known that the G-norm captures oscillatory 

patterns and texture better than the standard ROF model does, but the TV-G model is difficult 

to implement due to the nature of the G-norm. In 2003, Vese el at.[14] proposed firstly a 

mailto:lruih@sohu.com


International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 6, No. 1, February, 2013 

 

 

136 

 

numerical scheme to solve this model using Euler-Lagrange equations based on pL -norms. 

Then they proposed the G- norm in the following energy 

 
   2

1 2

2

1 2 1 2
, ,
min , ,

2
p x yL Lu g g

E u g g Du g f u g g



 

       ,  (1.3) 

where 
1 2( , ),   ,  , >0g g g div g v f u G       ,  BVu  . The model is also called VO 

model. Subsequently, Aujol et al. [2-3,10,15] provided some numerical schemes to compute 

the TV-G model. In 2003, Osher et al.[12] offered a new image decomposition model using 

the 1H -norm. The functional to minimize in this case is 

 
 2

2
1min  

2 L
E u Du v

 


   ,                               (1.4) 

where  ,  BV , >0.v f u u      The authors showed that the TV- 1H  model was simpler 

than the VO model did, because of the fewer parameters tuned and just one unknown function 

solved in the TV- 1H  model. In 2004, Nikolova[11] proved a  TV- 1L  model because 1L -

norm was particularly well suited to remove salt and pepper noise. The model can better 

protect structures and present other interesting properties than the ROF model does. In 2008, 

Lieu el at.[9] proposed a class of TV- sH models for image decomposition following the idea 

of the Meyer's idea. 

The cartoon component u  of f  belongs to BV space in the all of above models. It is well 

known that the functional norm of BV space function is defined as follows 

    1

1 2 0sup , , ,
N

nDu udiv C    


     ,                       (1.5) 

where 
 

1.
L

  
  But it is difficult to find such a function   when we take the numerical 

implementation. So we generally transfer the regularization term Du
  into the 

 1L
u


  

term, that is, u  belongs to the Sobolev space, which will cause the inconsistency between the 

theoretical model and numerical simulation. Happily, Bresson el at.[6] introduced a new 

function w  in 1,1W  space to close in the function u  in BV space in their active contour model 

in order to overcome the above mentioned defect. They relax the energy functional of the TV 

regularization term 
 BV

u


 as 

 
   1 2

2

,
min  , .

L Lu w
E u w w u w

 
        (1.6) 

In this work, we develop a global minimization model for image decomposition inspired 

by [6]. Besides, we give its theoretical proof of existence of solution of the minimal 

functional, and also propose a numerical scheme to perform the evolution equations in an 

efficient. Finally, we also recommend another two models by the same approach. 

The rest of the paper is organized as follows. In Section 2, we formulate a novel image 

decomposition model inspired by [6], and provide the evolvement equations. In Section 3, we 

main theoretically prove the existence of minimizer of our proposed model. In Section 4, we 

deal with additional models by the same method. In Section 5, we show the numerical 

experimental results, and compare the results of our proposed model with those of the ROF 

model, VO model and TV- 1H  model, respectively. In Section 6, we give some conclusions 

and discussions. 
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2. Our Proposed Mathematical Model  

In this section, we introduce our model which is inspired by the work [6]. We first present 

it in the continuous setting. Then we provide a mathematical study for the model. 

Considering an image f  which contains cartoon and texture, can be decomposed into two 

components u v . The first component u  is so-called cartoon part, and has a simple 

geometric description. The second component v  contains texture or noise.  

According to the above analysis in section 1, then we propose the following minimization 

problem, inspired by the work [6] and ROF model 

  1 2 2

2 2

,

1
min  ,

2 2L L Lu w
E u w w w u f u




      ,   (2.1) 

where 1,1 2,  W ( ),  ( ),v f u w u L        and   are positive parameters. The model is 

called as the improved ROF model. 

The energy functional (2.1) may be minimized using a multitude of optimization 

procedures. In order to avoid the scale problem and for algorithm simplicity, we propose the 

following alternating iterative minimization procedure. Let us denote 

(i)    min  , ,
w

E u w u E u w  with u  fixed; 

(ii)    min  , ,
u

E u w w E u w  with w  fixed. 

Then, we follow the idea of coordinate descent to minimize by alternating the 

minimization of (i) and (ii) iteratively. The global convergence of the algorithm to one of the 

local minima of the functional ( , )E u w  can be established by noting the fact[8]. Here, we use 

the idea of the steepest descent to find the solution to those minimization problems in (i) and 

(ii). Let us write down the evolvement equations 

 
0

1
,

w w
div w u

w 

  
      

      (2.2) 

   
1

1
.

u
w u f u

 


   


      (2.3) 

 

3. Existence of Minimal Solutions 

In this section, we prove existence of minimizer for the improved ROF model, adapting 

the technique in the work [1]. For simplifying the theoretical proof, we introduce a function 

w  in BV space of the functional, and relax the functional into the following form: 

   1 2 2

2 2 22

,

1
min  , - -

2 2 2L L Lw u
E w u w w u f u w w  

 
       . (3.1) 

where    2 1,2- ,  ,  W , >0.v f u u L w       
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Proposition 3.1 Fix 0  , then there is a minimal solution      1,2 2ˆ ˆ, Ww u L       of 

the problem (3.1). 

Proof: Fix 0,   it is clear that  ,E u w  is coercive. Suppose    1,2, Wn nw u     

 2L   is a minimizing sequence for the problem (3.1), then we can obtain 

2 2 2
M, M,  M.n n nL L L

w w u           (3.2) 

Therefore, we get that 
nw  and 

nu  are bounded in  1,2W   and  2L  , respectively. Then 

there exist ŵ  and û  in  1,2W   and  2L  , and two subsequences such that ˆ
nw w  in 

1,2W -weak and ˆ
nu u   in 2L -weak. According to the convexity, we gain that  ˆ ˆ,w u   is a 

solution of problem (3.1).  

Proposition 3.2 Fix 0  , if  ˆ ˆ,w u   is a solution of problem (3.1), then they separately 

satisfy the Euler-Lagrange equations 

 
ˆ 1

ˆ ˆ ˆ ˆ 0,
ˆ

w
div w u w w

w


   


 



 
       
 
 

    (3.3) 

1
ˆ ˆ ˆ( ) ( ) 0.w u f u  


           (3.4) 

with the Neumann boundary condition, 
ˆ

0
w

N





. 

Proposition 3.3 Fix 0  , suppose  f L  , and  ˆ ˆ,w u   be a solution of problem (3.1). 

Then, we have ˆinf supess f w ess f

 

  , ˆinf supess f u ess f

 

  . 

Proof: Let supk ess f


 , 1G C  is a truncation function, ( ) 0G t   on [0, )  and ( )G t  is 

strictly increasing on (0, ) . Given ˆ( )v G w k  , and then ' ˆ ˆ( )v G w k w     . We 

multiply equation (3.3) by v  and integrate in  , hence we get 

     
1

ˆ ˆ ˆ ˆ ˆw G w k dx w u G w k dx    


 

         

   
2

ˆ ˆ ˆ ˆ 0.w G w k dx w G w k dx    
 

            (3.5) 

Since ' 0G   and 0G  , we can obtain 

     
1

ˆ ˆ ˆ ˆ ˆ 0.w u G w k dx w G w k dx    


 

           (3.6) 
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i.e., 

   
1 1 1 1

ˆ ˆ ˆ ˆ

1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ 0.

w u w u

w u G w k w u G w k

   

     

 
   

 
   

   
      

   

      
               

      
         (3.7) 

Thus,  
1 1

ˆ ˆ

1 1
ˆ ˆ ˆ 0.

w u

w u G w k

 

  


 


 

 
  

 

  
      

  
  In fact, it is equal to zero since 0G  . 

Therefore, 
1 1

ˆ ˆ

0,
w u 

 

  
   

  

   where   is Lévesque measure, then, 
1 1

ˆ ˆ .w u 
 

 
  

 
 

According to (3.4), we have 
ˆ

ˆ .
1

w f
u


 







 Furthermore, we derive  

ˆ supu f ess f k  

   


  

 
, ˆ ˆ .w u k      (3.8) 

Similarly, we can get  ˆinfess f u


 , ˆinfess f w


 . 

Theorem Let  f L  , then there is at least one minimal solutions of the minimization 

functional (2.1). 

Proof: Based on the above discussions, we have 

   ˆ ˆ, ,E w u E w u    , 1,2 2W , .w u L       (3.9) 

Especially, we take 1,  1w u  , then 

1 1 2
ˆ ˆ ˆM, M, M.

L L L
w w u           (3.10) 

We can obtain that ŵ  is uniformly bounded in 1,1W  space and BV space. Thus there 

exists a subsequence and ŵ  in BV space such that ˆ ˆw w   in BV w  and ˆ ˆnw w

  in 1L -

strong. At the same time, û  is uniformly bounded in 2L  space, then there is a subsequence 

and û  in 2L  space such that ˆ ˆu u   in 2L -weak. According to the convexity, we obtain 

   
0

ˆ ˆ ˆ ˆ, liminf ,E w u E w u  


  

  2 2

22 2 2

0

1
ˆ ˆ ˆ ˆ ˆ ˆliminf - - .

2 2 2L L
w w u f u w w     



 

 

 
       

 
        (3.11) 

So,      2ˆ ˆ, BVw u L     is a minimal solution of the minimization functional (2.1). 

 

4. Additional Improved Models 

In this section, we introduce additional two improved models by the same approach. One is 

the improved VO model, the other is the improved TV- 1H model. The improved VO model 

will be the following form 
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  1 2 2

1 2

22

1 2 1 2
, , ,

1
min  , , ,

2 2
p x yL L L Lw u g g

E w u g g w w u g f u g g





          , (4.1) 

where ,     and   are positive parameters 
1 2( , ),   ,g g g div g v f u G    

1,1Ww , 
2u L , Thus, the corresponding evolution equations are the form 

 
0

1w w
div w u

w 

  
      

,      (4.2) 

   1 2

1

1
,x y

u
w u f u g g

 


       


   (4.3) 

 
1 2

2 2 2 21

1 2 1 2 1 2 1

3

( ) ,

p p

x xx xy
p

g
u f g g g g g g g 



   
             

 (4.4) 

 
1 2

2 2 2 22

1 2 1 2 1 2 2

4

( ) .

p p

y xy yy
p

g
u f g g g g g g g 



   
             

 (4.5) 

Similarly, we propose the improved TV- 1H  model 

   1 2 2

22 1

,

1
min  , .

2 2L L Lw u
E w u w w u f u





         (4.6) 

where 1,1 2,  W ,  ,v f u w u L      and  are positive parameters. In the same way, we 

come up with the evolvement equations 

 
0

1w w
div w u

w 

  
      

,      (4.7) 

   
1

1u
w u f u

 


     


.     (4.8) 

 

5. Numerical Experiments 

In this section, we show some numerical results using our three provided models, and 

compare them with those of by ROF model [13], TV- 1H model [12] and VO model [14].  

In the following experiments, we use three standard high-resolution images as experiments, 

such as Logo image, Lena image and Barbara image. 

 

   
(a)                                     (b)                                       (c) 

Figure 1. Test Original Images: (a) Lena Image, (b) Logo Image, (c) Barbara 
Image 
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(a)                                    (b)                                    (c)                                     (d) 

Figure 2. Lena Image Decomposition and Comparison: (a) Cartoon Part by ROF 
Model, (b) Texture Part by ROF Model, (c) Cartoon Part by Our Improved ROF 

Model, (d) Texture Part by Our Improved ROF Model 
 

    
(a)                                    (b)                                    (c)                                     (d) 

Figure 3. Logo Image Decomposition and Comparison: (a) Cartoon Part by 
ROF Model, (b) Texture Part by ROF Model, (c) Cartoon Part by Our Improved 

ROF Model, (d) Texture Part by Our Improved ROF Model 
 

Figure 2 and Figure 3 demonstrate two simulation results by decomposing Lena image and 

Logo image. Through comparing the cartoon parts of Figure 2(a) and Figure 3(a) by ROF 

model with those of Figure 2(c) and Figure 3(c) by our improved ROF model, respectively, 

besides the texture parts of Figure 2(b) and Figure 3(b) by ROF model with those of Figure 

2(d) and Figure 3(d), respectively, we can see that the cartoon parts in Figure 2(a) and Figure 

3(a) involve more texture than those in Figure 2(c) and Figure 3(c), but the parts in Figure 

2(b) and Figure 3(b) include less texture than those in Figure 2(d) and Figure 3(d). So, we can 

get that the decomposition effects by our improved ROF model achieve better than those by 

ROF model does. 
 

    
(a)                                      (b)                                      (c)                                   (d)  

Figure 4. Lena Image Decomposition and Comparison: (a) Cartoon Part by TV-
1H  Model, (b) Texture Part by TV- 1H  Model, (c) Cartoon Part by Our 

Improved TV- 1H  Model, (d) Texture Part by Our Improved TV- 1H  Model 
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Figure 4 shows one experimental result by decomposing Lena image. After comparing the 

cartoon part of Figure 4(a) by TV- 1H  model with that of Figure 4(c) by our improved TV-
1H  model, and the texture part of Figure 4(b) by TV- 1H  model with that of Figure 4(d), 

respectively, we find that the part in Figure 4(a) involve more texture than that in Figure 4(c), 

but the part in Figure 4(b) include less texture than that in Figure 4(d). Then, we can derive 

that the effect by our improved TV- 1H  model infers better than that by TV- 1H  model does. 

In addition, we also detect that the TV- 1H  model is excel to the ROF model by contracting 

Figure 2(b) to Figure 4(b), and our improved TV- 1H  model can more fit to image 

decomposition by comparing Figure 2(c) with Figure 4(c) because of the excessive stair-case 

effect in Figure 2(c). 
 

    
(a)                                    (b)                                       (c)                                    (d) 

Figure 5. Barbara Image Decomposition and Comparison. (a) Cartoon Part by 
VO Model, (b) Texture Part by VO Model, (c) Cartoon Part by Our Improved VO 

Model, (d) Texture Part by Our Improved VO Model 
 

Figure 5 shows one experiment by decomposing Barbara image. By comparing the cartoon 

part of Figure 5(a) by VO model with that of Figure 5(c) by our improved VO model, and the 

texture part of Figure 5(b) by VO model with that of Figure 5(d), respectively, we can see that 

the effect of VO model is close on that of our improved VO model. 
 

6. Conclusions and Discussions 

By the above theory analysis and numerical simulations, we can see that our three 

proposed models are very effect for image decomposition. The alternating iterative 

minimization algorithm is also feasible. If we only consider the experimental results, we are 

willing to recommend our improved TV- 1H  model. 

In the paper, we only prove the existence of minimal solutions of the improved ROF model 

energy functional, but don’t prove the existence and uniqueness of minimal solutions of the 

evolution equations and the existence of minimal solutions of the other two models. We will 

do our best to settle these problems in the future.  
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